A customizable drug delivery system and method utilizing a laser pattern generator (LPG) to define application of a drug delivery payload (DDP) contained within a drug delivery device (DDD) to a drug delivery target (DDT) is disclosed. A computer control device (CCD) supervises the LPG to select a drug payload pathway (DPP) from a drug pathway database (DPD) and writes the selected DPP to the DDD. This pathway patterning process (PPP) modifies the hydrophilic properties of the DDD and enables the DDD to selectively attract and absorb the DDP. The DDD is then injected with the DDP or exposed for drug exposure time (DET) by the CCD and DPD during which the DPP written to the DDD absorbs a controlled amount of DDP. The DDD when subsequently inserted into a drug delivery target (DDT) delivers the DDP to the DDT under controlled delivery rates defined by the DPP and the DET.
A61M 31/00 - Devices for introducing or retaining media, e.g. remedies, in cavities of the body
G16H 70/40 - ICT specially adapted for the handling or processing of medical references relating to drugs, e.g. their side effects or intended usage
G16H 20/17 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
An ophthalmic optical testing system/method allowing human eye characteristics modeling and evaluation of a lens under test (LUT) is disclosed. The system and method incorporate an axial positioning platform (APP) allowing tip/tilt/rotation about a vertical or horizontal axis of an optical retention framework (ORF) containing a cassette support tower (CST). The CST retains a pupil lens fixture (PLF) incorporating pinhole or light blocking device (POL). The ORF mates to a corneal and test longitudinal axis positioning platforms (LAP) that are attached respectively to a corneal lens fixture (CLF) retaining corneal lens optics (CLO) and a test lens fixture (TLF) retaining an lens under test (LUF) and LUT. The LAPs allow longitudinal adjustment of lenses along a common optical axis (LOA) pathway. APP positioning, LAP adjustments, and selection of CLO/PLO/LUT permit LOA optical characteristics to be adjusted and tested.
An ophthalmic optical testing system/method allowing human eye characteristics modeling and evaluation of a lens under test (LUT) is disclosed. The system and method incorporate an axial positioning platform (APP) allowing tip/tilt/rotation about a vertical or horizontal axis of an optical retention framework (ORE) containing a cassette support tower (CST). The CST retains a pupil lens fixture (RLE) incorporating pinhole or light blocking device (POL). The ORE mates to a corneal and test longitudinal axis positioning platforms (LAP) that are attached respectively to a corneal lens fixture (CLF) retaining corneal lens optics (CLO) and a test lens fixture (TLF) retaining an lens under test (LUF) and LUT. The LAPs allow longitudinal adjustment of lenses along a common optical axis (LOA) pathway. APP positioning, LAP adjustments, and selection of CLO / PLO / LUT permit LOA optical characteristics to be adjusted and tested.
B24B 9/14 - Machines or devices designed for grinding edges or bevels on work or for removing burrsAccessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of optical work, e.g. lenses, prisms
A customizable drug delivery system and method utilizing a laser pattern generator (LPG) to define application of a drug delivery payload (DDP) contained within a drug delivery device (DDD) to a drug delivery target (DDT) is disclosed. A computer control device (CCD) supervises the LPG to select a drug payload pathway (DPP) from a drug pathway database (DPD) and writes the selected DPP to the DDD. This pathway patterning process (PPP) modifies the hydrophilic properties of the DDD and enables the DDD to selectively attract and absorb the DDP. The DDD is then injected with the DDP or exposed for drug exposure time (DET) by the CCD and DPD during which the DPP written to the DDD absorbs a controlled amount of DDP. The DDD when subsequently inserted into a drug delivery target (DDT) delivers the DDP to the DDT under controlled delivery rates defined by the DPP and the DET.
A61M 31/00 - Devices for introducing or retaining media, e.g. remedies, in cavities of the body
G16H 70/40 - ICT specially adapted for the handling or processing of medical references relating to drugs, e.g. their side effects or intended usage
G16H 20/17 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
A customizable drug delivery system and method utilizing a laser pattern generator (LPG) to define application of a drug delivery payload (DDP) contained within a drug delivery device (DDD) to a drug delivery target (DDT) is disclosed. A computer control device (CCD) supervises the LPG to select a drug payload pathway (DPP) from a drug pathway database (DPD) and writes the selected DPP to the DDD. This pathway patterning process (PPP) modifies the hydrophilic properties of the DDD and enables the DDD to selectively attract and absorb the DDP. The DDD is then injected with the DDP or exposed for drug exposure time (DET) by the CCD and DPD during which the DPP written to the DDD absorbs a controlled amount of DDP. The DDD when subsequently inserted into a drug delivery target (DDT) delivers the DDP to the DDT under controlled delivery rates defined by the DPP and the DET.
An ophthalmic laser treatment system and method providing for a liquid optical interface (LOI) with a patient eye surface (PES) using an elliptical ocular suction ring (OSR) is disclosed. A disposable ocular patient interface (OPI) provides for simultaneous differential vacuum mating of the PES, OSR, OPI, and an optical window retainer (OWR). The PES, OSR, OPI, and OWR form an enclosed volume in which liquid may be interjected to cover the PES during laser treatment. A vacuum suction pump (VSP) provides controlled vacuum to the OPI ensuring proper differential vacuum mating (DVM) between the PES, OSR, OPI, and OWR during laser treatment. The OWR connects to a laser objective bracket (LOB) via an ocular force sensor (OFS) and an optical separator bracket (OSB). The OFS senses applied pressure to the PES and provides data to a computerized control device (CCD) that limits applied pressure to the PES during laser treatment.
A system/method allowing personalized ex vivo customization of a generic ophthalmic lens blank (OLB) or ophthalmic lens with known diopter (OKI)) based on localized field- measured patient characteristics is disclosed, The OLB Is composed of a clear material that contains an ultraviolet (UV) absorbing compound. The refractive index of a portion of the clear materia! may be customized by spatial modification (CSM) of its refractive index via the use of pulsed laser radiation (PLR). The customization of clear material (i) creates a lens which cannot be created otherwise, or (ii) eliminates the need for remote laboratory fabrication of a customized intraocular lens (IOL) for the patient. The OLB is retained within a secured lens container (SLC) providing for precise physical orientation of the OLB haptics and OLB lens structure with respect to the application of FLR to the OLB, The SLC contains a lens filler materia! (LFM) covering the OLB and is hermetically sealed after the OLB has been positioned within the SLC interior and prior to sterilization of the SLC+QLB combination,
A61F 2/00 - Filters implantable into blood vesselsProstheses, i.e. artificial substitutes or replacements for parts of the bodyAppliances for connecting them with the bodyDevices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
A61F 2/14 - Eye parts, e.g. lenses or corneal implantsArtificial eyes
A61F 9/008 - Methods or devices for eye surgery using laser
B23K 26/02 - Positioning or observing the workpiece, e.g. with respect to the point of impactAligning, aiming or focusing the laser beam
A system/method allowing personalized ex vivo customization of a generic ophthalmic lens blank (OLB) or ophthalmic lens with known diopter (OKD) based on localized field-measured patient characteristics is disclosed. The OLB is composed of an acrylic material that has been infused with an ultraviolet (UV) absorbing compound rendering it amenable to customized spatial modification (CSM) of its refractive index via the use of pulsed laser radiation (PLR). The CSM of refractive index eliminates the need for remote laboratory fabrication of a customized intraocular lens (IOL) for the patient. The OLB is retained within a secured lens container (SLC) providing for precise physical orientation of the OLB haptics and OLB lens structure with respect to the application of PLR to the OLB. The SLC contains a lens filler material (LFM) covering the OLB and is hermetically sealed after the OLB has been positioned within the SLC interior and prior to sterilization of the SLC+OLB combination.
A system/method allowing personalized ex vivo customization of a generic ophthalmic lens blank (OLB) or ophthalmic lens with known diopter (OKD) based on localized field-measured patient characteristics is disclosed. The OLB is composed of a clear material that contains an ultraviolet (UV) absorbing compound. The refractive index of a portion of the clear material may be customized by spatial modification (CSM) of its refractive index via the use of pulsed laser radiation (PLR). The customization of clear material (i) creates a lens which cannot be created otherwise, or (ii) eliminates the need for remote laboratory fabrication of a customized intraocular lens (IOL) for the patient. The OLB is retained within a secured lens container (SLC) providing for precise physical orientation of the OLB haptics and OLB lens structure with respect to the application of PLR to the OLB. The SLC contains a lens filler material (LFM) covering the OLB and is hermetically sealed after the OLB has been positioned within the SLC interior and prior to sterilization of the SLC+OLB combination.
An ophthalmic laser treatment system and method providing for a liquid optical interface (LOI) with a patient eye surface (PES) using an elliptical ocular suction ring (OSR) is disclosed, A disposable ocular patient- interface (OPI) provides for simultaneous differential vacuum mating of the PES, OSR, OPI, and an optical, window retainer (OWR). The PES, OSR, OPI, and OWR form an enclosed volume in which liquid may be interjected to cover the PES during laser treatment. A vacuum suction pump (VSP) provides controlled vacuum to the OPI ensuring proper differential vacuum mating (DVM) between the PES, OSR : OPI, and OWR during laser treatment. The OWR connects to a laser objective bracket (LOB) via an ocular force sensor (OFS) and an optical separator bracket (OSS). The OFS senses applied pressure to the PES and provides data to a computerized control device (CCD) that limits applied pressure to the PES during laser treatment.
An ophthalmic laser treatment system and method providing for a liquid optical interface (LOI) with a patient eye surface (PES) using an elliptical ocular suction ring (OSR) is disclosed. A disposable ocular patient interface (OPI) provides for simultaneous differential vacuum mating of the PES, OSR, OPI, and an optical window retainer (OWR). The PES, OSR, OPI, and OWR form an enclosed volume in which liquid may be interjected to cover the PES during laser treatment. A vacuum suction pump (VSP) provides controlled vacuum to the OPI ensuring proper differential vacuum mating (DVM) between the PES, OSR, OPI, and OWR during laser treatment. The OWR connects to a laser objective bracket (LOB) via an ocular force sensor (OFS) and an optical separator bracket (OSB). The OFS senses applied pressure to the PES and provides data to a computerized control device (CCD) that limits applied pressure to the PES during laser treatment.
Lenses for surgical implantation; Surgical instruments for use in laser eye surgery; Surgical and medical apparatus and instruments for use in ocular surgery
13.
Intraocular lens (IOL) fabrication system and method
A system/method allowing intraocular lens (IOL) fabrication using a femtosecond laser is disclosed. The system and method generate a stream of pulses at a rate of at least 1 million pulses per second and a pulse length of 300 femtoseconds or less to sculpt a polymeric material blank (PMB) to form an IOL. The high repetition rate and short pulse length combine to permit IOL fabrication in less than 10 minutes. During this fabrication procedure a lens may be formed within the IOL by incorporating a refractive index shaping (RIS) structure within the IOL. Additionally, IOL haptics may be formed during this IOL formation process. This combination of physical feature generation and RIS structure generation permits per-patient customization of the IOL as it relates to sphere, cylinder, asphericity, multifocality, and/or higher optical aberrations (HOAs).
A lens for placement in a human eye, such as intraocular lens, has at least some of its optical properties formed with a laser. The laser forms modified loci in the lens when the modified loci have a different refractive index than the refractive index of the material before modification. Different patterns of modified loci can provide selected dioptic power, toric adjustment, and/or aspheric adjustment provided. Preferably both the anterior and posterior surfaces of the lens are planar for ease of placement in the human eye.
A system/method allowing hydrophilicity alteration of a polymeric material (PM) is disclosed. The PM hydrophilicity alteration changes the PM characteristics by decreasing the PM refractive index, increasing the PM electrical conductivity, and increasing the PM weight. The system/method incorporates a laser radiation source that generates tightly focused laser pulses within a three-dimensional portion of the PM to affect these changes in PM properties. The system/method may be applied to the formation of customized intraocular lenses comprising material (PLM) wherein the lens created using the system/method is surgically positioned within the eye of the patient. The implanted lens refractive index may then be optionally altered in situ with laser pulses to change the optical properties of the implanted lens and thus achieve optimal corrected patient vision. This system/method permits numerous in situ modifications of an implanted lens as the patient's vision changes with age.
A system/method allowing hydrophilicity alteration of a polymeric material (PM) is disclosed. The PM hydrophilicity alteration changes the PM characteristics by decreasing the PM refractive index, increasing the PM electrical conductivity, and increasing the PM weight. The system/method incorporates a laser radiation source that generates tightly focused laser pulses within a three-dimensional portion of the PM to affect these changes in PM properties. The system/method may be applied to the formation of customized intraocular lenses comprising material (PLM) wherein the lens created using the system/method is surgically positioned within the eye of the patient. The implanted lens refractive index may then be optionally altered in situ with laser pulses to change the optical properties of the implanted lens and thus achieve optimal corrected patient vision. This system/method permits numerous in situ modifications of an implanted lens as the patient's vision changes with age.
A system/method allowing hydrophilicity alteration of a polymeric material (PM) is disclosed. The PM hydrophilicity alteration changes the PM characteristics by decreasing the PM refractive index, increasing the PM electrical conductivity, and increasing the PM weight. The system/method incorporates a laser radiation source that generates tightly focused laser pulses within a three- dimensional portion of the PM to affect these changes in PM properties. The system/method may be applied to the formation of customized intraocular lenses comprising material (PLM) wherein the lens created using the system/method is surgically positioned within the eye of the patient. The implanted lens refractive index may then be optionally altered in situ with laser pulses to change the optical properties of the implanted lens and thus achieve optimal corrected patient vision. This system/method permits numerous in situ modifications of an implanted lens as the patient's vision changes with age.
A system/method allowing hydrophilicity alteration of a polymeric material (PM) is disclosed. The PM hydrophilicity alteration changes the PM characteristics by decreasing the PM refractive index, increasing the PM electrical conductivity, and increasing the PM weight. The system/method incorporates a laser radiation source that generates tightly focused laser pulses within a three-dimensional portion of the PM to affect these changes in PM properties. The system/method may be applied to the formation of customized intraocular lenses comprising material (PLM) wherein the lens created using the system/method is surgically positioned within the eye of the patient. The implanted lens refractive index may then be optionally altered in situ with laser pulses to change the optical properties of the implanted lens and thus achieve optimal corrected patient vision. This system/method permits numerous in situ modifications of an implanted lens as the patient's vision changes with age.
A lens for placement in a human eye, such as intraocular lens, has at least some of its optical properties formed with a laser. The laser forms modified loci in the lens when the modified loci have a different refractive index than the refractive index of the material before modification. Different patterns of modified loci can provide selected dioptic power, toric adjustment, and/or aspheric adjustment provided. Preferably both the anterior and posterior surfaces of the lens are planar for ease of placement in the human eye.
A lens for placement in a human eye, such as intraocular lens, has at least some of its optical properties formed with a laser. The laser forms modified loci in the lens when the modified loci have a different refractive index than the refractive index of the material before modification. Different patterns of modified loci can provide selected dioptic power, toric adjustment, and/or aspheric adjustment provided. Preferably both the anterior and posterior surfaces of the lens are planar for ease of placement in the human eye.
A system for determining the shape of a cornea of an eye illuminates at least one of the interior surface, the posterior surface, and the interior region of the eye with infrared light of a wavelength that can generate fluorescent light from the portion of the cornea illuminated. The generated fluorescent light is then detected. A step of illuminating can comprise focusing the infrared light in a plurality of different planes substantially perpendicular to the optical axis of the eye. From the detected light it is possible to create a map of at least a portion of the interior surface, at least a portion of the posterior surface, and/or portion of the interior region of the cornea. Clarity of vision can be determined by generating autofluorescence from proteins in the pigment epithelial cells of the retina.
A61B 3/107 - Objective types, i.e. instruments for examining the eyes independent of the patients perceptions or reactions for determining the shape or measuring the curvature of the cornea
B29D 11/00 - Producing optical elements, e.g. lenses or prisms
A system/method allowing hydrophilicity alteration of a polymeric material (PM) is disclosed. The PM hydrophilicity alteration changes the PM characteristics by decreasing the PM refractive index, increasing the PM electrical conductivity, and increasing the PM weight. The system/method incorporates a laser radiation source that generates tightly focused laser pulses within a three- dimensional portion of the PM to affect these changes in PM properties. The system/method may be applied to the formation of customized intraocular lenses comprising material (PLM) wherein the lens created using the system/method is surgically positioned within the eye of the patient. The implanted lens refractive index may then be optionally altered in situ with laser pulses to change the optical properties of the implanted lens and thus achieve optimal corrected patient vision. This system/method permits numerous in situ modifications of an implanted lens as the patient's vision changes with age.