The invention relates to a family of compounds that comprise fluorescent cyanine dyes. The compounds are near infrared absorbing heptamethine cyanine dyes with a 4,4-disubstituted cyclohexyl ring as part of the polymethine chromophore. The compounds are generally hydrophilic and can be chemically linked to biomolecules, such as proteins, nucleic acids, and therapeutic small molecules. The compounds can be used for imaging in a variety of medical, biological and diagnostic applications.
C07D 403/08 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group containing two hetero rings linked by a carbon chain containing alicyclic rings
C07D 403/14 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group containing three or more hetero rings
C07D 413/14 - Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
C07D 417/14 - Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group containing three or more hetero rings
C09B 23/01 - Methine or polymethine dyes, e.g. cyanine dyes characterised by the methine chain
C09B 23/08 - Methine or polymethine dyes, e.g. cyanine dyes characterised by the methine chain containing an odd number of CH groups more than three CH groups, e.g. polycarbocyanines
G01N 33/58 - Chemical analysis of biological material, e.g. blood, urineTesting involving biospecific ligand binding methodsImmunological testing involving labelled substances
2.
ELECTROPHORESIS-MEDIATED CHARACTERIZATION OF DNA CONTENT OF ADENO-ASSOCIATED VIRUS CAPSIDS
According to aspects of methods of characterizing a population of particles putatively containing recombinant nucleic acids in a fluid sample of the present disclosure, includes extracting nucleic acids from the particles, labeling the extracted recombinant nucleic acids, separating the labeled nucleic acids by size, and comparing the separated labeled nucleic acids with a standard to determine one or more of: 1) a ratio of full viral particles to empty viral particles in the fluid sample, 2) a ratio of full viral particles or empty viral particles to partially full viral particles, and 3) a ratio of viral particles containing an intact recombinant genome to viral particles containing an incomplete recombinant genome, thereby characterizing the population of particles in the fluid sample. Optionally included are extracting proteins from the particles, labeling the extracted proteins, separating the labeled proteins according to size, and comparing the separated labeled proteins with a standard.
C12Q 1/6806 - Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
C12Q 1/70 - Measuring or testing processes involving enzymes, nucleic acids or microorganismsCompositions thereforProcesses of preparing such compositions involving virus or bacteriophage
G01N 33/50 - Chemical analysis of biological material, e.g. blood, urineTesting involving biospecific ligand binding methodsImmunological testing
An automated pipetting system includes a pipettor. The pipettor includes a pipetting channel, a first plunger mechanism operable to change a pressure in the pipetting channel to aspirate or dispense a liquid, and a second plunger mechanism operable to change the pressure in the pipetting channel to aspirate or dispense the liquid.
G01N 35/10 - Devices for transferring samples to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
G01F 11/28 - Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with stationary measuring chambers having constant volume during measurement
G01F 11/02 - Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with measuring chambers which expand or contract during measurement
4.
MICROFLUIDIC CHIP AND ELECTRICAL INTERFACE FOR MICROCHIP ELECTROPHORESIS
A microfluidic system may include a microfluidic chip having a non-conductive substrate and wells connected in common to a microfluidic channel within the non-conductive substrate. Each well may have a galvanic contact with a first portion at an upper surface of the sample well and a second portion that extends into the non-conductive substrate. A plurality of electrodes 114,116 may be provided as part of an electrical interface, with each electrode configured to contact a respective galvanic contact of the microfluidic chip. The electrical interface may also include at least one shared power amplifier 104 that is configured to generate a power signal (e.g., constant current, constant voltage, pulsed power signal). A selector 110 may be configured to receive the generated power signal from the shared power amplifier 104 and configured to select at least one of the plurality of electrodes 114,116 and output the received power signal thereto.
Provided herein are capillary electrophoresis methods for separating and detecting double-stranded ribonucleic acid (dsRNA) contaminants in samples of single-stranded ribonucleic acids (ssRNA) such as RNA therapies (e.g., mRNA vaccines).
Provided are improved toroidal ion traps and methods of design of such ion traps. Toroidal ion traps include an inner electrode comprising a first surface; an outer electrode at least partially circumferentially surrounding the inner electrode, the outer electrode comprising a second surface substantially facing the first surface, wherein the outer electrode is spaced apart from the first surface in a radial direction; a first end electrode comprising a third surface; a second end electrode comprising a fourth surface substantially facing the third surface; an axis of rotation extending through the inner electrode; and wherein: the first, second, third, and fourth surfaces define an ion confinement cavity and at least portions of each of the first, second, third, and fourth surfaces extend through or along iso-potential surfaces associated with a linear combination of toroidal multipoles to generate an electric field extending through slits in the first and second end electrodes.
Provided are improved toroidal ion traps and methods of design of such ion traps. Toroidal ion traps include an inner electrode comprising a first surface; an outer electrode at least partially circumferentially surrounding the inner electrode, the outer electrode comprising a second surface substantially facing the first surface, wherein the outer electrode is spaced apart from the first surface in a radial direction; a first end electrode comprising a third surface; a second end electrode comprising a fourth surface substantially facing the third surface; an axis of rotation extending through the inner electrode; and wherein: the first, second, third, and fourth surfaces define an ion confinement cavity and at least portions of each of the first, second, third, and fourth surfaces extend through or along iso-potential surfaces associated with a linear combination of toroidal multipoles to generate an electric field extending through slits in the first and second end electrodes.
An ion guide includes a plurality of lenses arranged in series along a curved central axis. Each lens includes a body and a central opening, and the central openings of the plurality of disks define a curved ion guide region. The ion guide includes an ion deflector configured to apply a radial DC electric field across the ion guide region and along the curved central axis. The ion deflector includes at least one DC voltage source that is configured to apply a positive DC voltage to at least some of the plurality of lenses and a negative DC voltage to at least some of the plurality of lenses.
Systems, apparatuses, and methods are described for 3D luminescence imaging, by identifying a preferred optical pair and optimizing a scanned image using the preferred optical pair. An optimal filter pair may be selected from a list of two or more optical filters. An acceptable threshold of information may be obtained using a subset of the list of two or more optical filters (e.g., an optimal filter pair). An imaging device may be configured with the optimal filter pair to produce a pair of luminescence images of a target sample. In addition, luminescence images may be pre-processed to reduce the time-cost of conventional processing techniques of luminescence images. One or more computing devices may generate initial prior data based on a pair of luminescence images. An output may include one or more output luminescent sources that have been refined and/or optimized from the initial prior data.
Systems, apparatuses, and methods are described for 3D luminescence imaging, by identifying a preferred optical pair and optimizing a scanned image using the preferred optical pair. An optimal filter pair may be selected from a list of two or more optical filters. An acceptable threshold of information may be obtained using a subset of the list of two or more optical filters (e.g., an optimal filter pair). An imaging device may be configured with the optimal filter pair to produce a pair of luminescence images of a target sample. In addition, luminescence images may be pre-processed to reduce the time-cost of conventional processing techniques of luminescence images. One or more computing devices may generate initial prior data based on a pair of luminescence images. An output may include one or more output luminescent sources that have been refined and/or optimized from the initial prior data.
Systems, apparatuses, and methods are described for 3D luminescence imaging, by identifying a preferred optical pair and optimizing a scanned image using the preferred optical pair. An optimal filter pair may be selected from a list of two or more optical filters. An acceptable threshold of information may be obtained using a subset of the list of two or more optical filters (e.g., an optimal filter pair). An imaging device may be configured with the optimal filter pair to produce a pair of luminescence images of a target sample. In addition, luminescence images may be pre-processed to reduce the time-cost of conventional processing techniques of luminescence images. One or more computing devices may generate initial prior data based on a pair of luminescence images. An output may include one or more output luminescent sources that have been refined and/or optimized from the initial prior data.
An ion detector assembly comprising: a first particle shield comprising an ion entry opening for receiving an ion beam propagating along a first propagation axis; a deflector configured to generate an electric field in a deflection region that deflects the ion beam out of alignment with the first propagation axis along a deflection path; a second particle shield comprising an ion exit opening; and a detection element configured to convert and multiply the ion beam to electrons after deflection via the deflector, wherein: the first particle shield extends at an angle relative to the second particle shield, the first particle shield and the second particle shield define a corner region, and the deflector comprises: a first rear surface extending proximate to the first particle shield; a second rear surface extending proximate to the second particle shield, a vertex where the first rear surface meets the second rear surface, the vertex being disposed proximate to the corner region; and a curved deflection surface opposite the vertex and extending between the first rear surface and the second rear surface.
This disclosure provides liquid chromatography tandem mass spectrometer (LC-MS/MS) methods and systems for detecting low levels of pesticides in a test sample. In the disclosed methods and systems, an ammonium salt is added to a mobile phase added to a liquid chromatography column or to the eluant from a liquid chromatography column. This addition improves the signal for certain pesticides by a factor of from 2 to 20, improving their detection limits in a variety of test samples.
This disclosure provides liquid chromatography tandem mass spectrometer (LC-MS/MS) methods and systems for detecting low levels of pesticides and mycotoxins in a test sample. In the disclosed methods and systems, oxalic acid is added to a mobile phase composition of a reverse phase chromatographic separation column. This addition improves the signal for certain pesticides and mycotoxins by a factor of from 1.5 to 9, improving their detection limits in a variety of test samples.
A method for mixing liquids using an automated liquid handling system includes: aspirating liquid volumes of a first liquid and a second liquid from alternating ones of a first liquid supply (S1) and a second liquid supply (S2) into a mixing volume such that the aspirated liquid volumes form a liquid stack including a series of alternating, interfacing layers of the first and second liquids in the mixing volume; permitting the interfacing layers of the first and second liquids to mix with one another by diffusion in the mixing volume to form a mixture liquid; and dispensing the mixture liquid from the mixing volume.
B01F 31/65 - Mixers with shaking, oscillating, or vibrating mechanisms the materials to be mixed being directly submitted to a pulsating movement, e.g. by means of an oscillating piston or air column
B01F 23/45 - Mixing liquids with liquidsEmulsifying using flow mixing
G01N 1/00 - SamplingPreparing specimens for investigation
A gas chromatograph (GC) column connection device includes a housing including first and second opposite ends, the housing including a housing bore extending therethrough between the first and second ends of the housing. The device includes: a piston in the housing bore; a ferrule at least partially in the housing bore at a second end of the piston; a biasing mechanism in the housing bore at a first end of the piston; and a retaining member in the housing bore between the first end of the housing and the biasing mechanism, with the retaining member spaced apart from the first end of the housing. The retaining member is configured to retain the biasing mechanism such that the biasing mechanism urges the piston axially toward the second end of the housing.
Spectrometers include an optical assembly with optical elements arranged to receive light from a light source and direct the light along a light path to a multi-element detector, dispersing light of different wavelengths to different spatial locations on the multi-element detector. The optical assembly includes: (i) a collimator arranged in the light path to receive the light from the light source, the collimator including a mirror having a freeform surface; (2) a dispersive sub-assembly including an echelle grating, the dispersive sub-assembly being arranged in the light path to receive light from the collimator; and (3) a Schmidt telescope arranged in the light path to receive light from the dispersive sub-assembly and focus the light to a field, the multi-element detector being arranged at the field.
Spectrometers include an optical assembly with optical elements arranged to receive light from a light source and direct the light along a light path to a multi-element detector, dispersing light of different wavelengths to different spatial locations on the multi-element detector. The optical assembly includes: (i) a collimator arranged in the light path to receive the light from the light source, the collimator including a mirror having a freeform surface; (2) a dispersive sub-assembly including an echelle grating, the dispersive sub-assembly being arranged in the light path to receive light from the collimator; and (3) a Schmidt telescope arranged in the light path to receive light from the dispersive sub-assembly and focus the light to a field, the multi-element detector being arranged at the field.
Provided herein are methods, compositions, and kits for detecting a target nucleic acid, such as from a virus, in a biological sample. More specifically, the methods, compositions, and kits described herein describe detection of target nucleic acid from a coronavirus, such as SARSCoV-2 coronavirus, with non-ionic detergents and isothermal amplification.
The invention relates to a family of compounds that comprise fluorescent cyanine dyes. The compounds are near infrared absorbing heptamethine cyanine dyes with a 4,4-disubstituted cyclohexyl ring as part of the polymethine chromophore. The compounds are generally hydrophilic and can be chemically linked to biomolecules, such as proteins, nucleic acids, and therapeutic small molecules. The compounds can be used for imaging in a variety of medical, biological and diagnostic applications.
G01N 33/569 - ImmunoassayBiospecific binding assayMaterials therefor for microorganisms, e.g. protozoa, bacteria, viruses
C09B 23/01 - Methine or polymethine dyes, e.g. cyanine dyes characterised by the methine chain
C09B 23/08 - Methine or polymethine dyes, e.g. cyanine dyes characterised by the methine chain containing an odd number of CH groups more than three CH groups, e.g. polycarbocyanines
G01N 33/58 - Chemical analysis of biological material, e.g. blood, urineTesting involving biospecific ligand binding methodsImmunological testing involving labelled substances
C07D 403/08 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group containing two hetero rings linked by a carbon chain containing alicyclic rings
C07D 403/14 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group containing three or more hetero rings
C07D 413/14 - Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
C07D 417/14 - Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group containing three or more hetero rings
09 - Scientific and electric apparatus and instruments
Goods & Services
Automatic fluid-composition control machines and instruments; DNA chips; Laboratory apparatus and computer systems for use in protein purification; Magnetic separators for scientific use; Medical laboratory research instruments for DNA analysis; Medical laboratory research instruments for RNA analysis; Medical laboratory research instruments for nucleic acid isolation; Scientific apparatus and instruments, namely, fluid handling device used for disposable bioprocessing applications and parts and fittings therefor; Scientific instruments, namely, electronic analyzers for testing and analyzing chemical and biological substances for the presence, absence, or quantity of contaminants
22.
SAMPLE INTRODUCTION DEVICES AND SYSTEMS AND METHODS OF USING THEM
Magnetic couplers and sample introduction devices including them are described. In certain configurations, a sample introduction device can include a magnetic coupler that can be used to hold down a sampling device to permit introduction of an analyte sample from the sampling device to an instrument or another component. Systems including the magnetic couplers, and methods and devices using them are also described.
Assembly fixtures to provide sample introduction devices are described. In certain configurations, the assembly fixture can be used to provide a sample introduction device that can include a magnetic coupler. For example, the magnetic coupler can be used to hold down a sampling device to permit introduction of an analyte sample from the sampling device to an instrument or another component.
Thermal isolation chambers that can be used to heat or cool a chromatography column are described. Certain configurations include at least one plate and an insulative barrier. The plate and insulative barrier can form a cyclical air flow path such that air in the cyclical air flow path can be provided to a chromatography column to remove heat from the chromatography column. The heat can be transferred to the plate. Systems including the thermal isolation chambers, and methods of using the thermal isolation chambers to perform chromatographic separations are also described.
The invention provides agents that target carbonic anhydrase, which can be used as imaging agents or therapeutic agents. The agents can be used to image tumor hypoxia as well as other physiological processes in a subject.
C07D 401/06 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
A61K 31/4439 - Non-condensed pyridinesHydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
A61K 31/444 - Non-condensed pyridinesHydrogenated derivatives thereof containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring hetero atom, e.g. amrinone
A61K 31/506 - PyrimidinesHydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
C07D 401/14 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
C07D 417/14 - Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group containing three or more hetero rings
C09B 23/01 - Methine or polymethine dyes, e.g. cyanine dyes characterised by the methine chain
C09B 23/08 - Methine or polymethine dyes, e.g. cyanine dyes characterised by the methine chain containing an odd number of CH groups more than three CH groups, e.g. polycarbocyanines
An autosampler includes a carrier for receiving a plurality of sample containers each having a top end and a visible indicium. The visible indicia are located below a top plane defined by the top ends. The autosampler includes: an optical sensor configured to read the visible indicia and to generate a corresponding output signal, and having a line of sight; a controller configured to receive the output signal; and a sampling system to withdraw a sample from the sample containers. The autosampler is operative to relatively move the optical sensor and/or the carrier such that the line of sight intersects the visible indicium of a selected one of the sample containers, wherein the line of sight extends: downward from a height above the height of the top plane; at an oblique angle to the top plane; and through a gap between the selected sample container and an adjacent sample container.
An autosampler includes a carrier for receiving a plurality of sample containers each having a top end and a visible indicium. The visible indicia are located below a top plane defined by the top ends. The autosampler includes: an optical sensor configured to read the visible indicia and to generate a corresponding output signal, and having a line of sight; a controller configured to receive the output signal; and a sampling system to withdraw a sample from the sample containers. The autosampler is operative to relatively move the optical sensor and/or the carrier such that the line of sight intersects the visible indicium of a selected one of the sample containers, wherein the line of sight extends: downward from a height above the height of the top plane; at an oblique angle to the top plane; and through a gap between the selected sample container and an adjacent sample container.
An autosampler includes a sample carrier for receiving first and second sets of sample containers each having a top end, a side wall, and a visible indicium on its side wall. The autosampler includes: an optical sensor to read the visible indicia and to generate a corresponding output signal; a controller to receive the output signal; and a sampling system to withdraw a sample. The sample carrier supports the first and second sets of sample containers at different heights such that the indicia of the sample containers of the second set are located above the top ends of the sample containers of the first set, whereby the indicia of the sample containers of the second set are exposed to the optical sensor over the top ends of the sample containers of the first set, thereby enabling the optical sensor to read the indicia of the second set of sample containers.
G01N 35/00 - Automatic analysis not limited to methods or materials provided for in any single one of groups Handling materials therefor
G01D 5/12 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using electric or magnetic means
G06K 7/10 - Methods or arrangements for sensing record carriers by electromagnetic radiation, e.g. optical sensingMethods or arrangements for sensing record carriers by corpuscular radiation
29.
AUTOSAMPLERS AND ANALYTIC SYSTEMS AND METHODS INCLUDING SAME
An autosampler includes a sample carrier for receiving first and second sets of sample containers each having a top end, a side wall, and a visible indicium on its side wall. The autosampler includes: an optical sensor to read the visible indicia and to generate a corresponding output signal; a controller to receive the output signal; and a sampling system to withdraw a sample. The sample carrier supports the first and second sets of sample containers at different heights such that the indicia of the sample containers of the second set are located above the top ends of the sample containers of the first set, whereby the indicia of the sample containers of the second set are exposed to the optical sensor over the top ends of the sample containers of the first set, thereby enabling the optical sensor to read the indicia of the second set of sample containers.
A system may include a horizontal actuator to move a tray, to which a microwell plate and a microfluidic chip may be coupled. The system may include a vertical actuator to move a support arm, to which a plurality of pipettes or pipette tips may be coupled. The system may include a rotational actuator to move an angle bracket, to which a magnet may be coupled. The system may include a heater, through which the pipettes may extend. The system may include a pump to control the flow of fluids through the pipettes. Disclosed methods include performing PCR within the described system.
This disclosure provides 8,9-dihydrocannabinoid derivatives, deuterated cannabinoid derivatives, and tritiated cannabinoid derivatives. The disclosure also provides compositions, methods of use, and processes of preparation of the foregoing derivatives.
C07C 39/23 - Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic, containing six-membered aromatic rings and other rings, with unsaturation outside the aromatic rings
A61K 31/397 - Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having four-membered rings, e.g. azetidine
C07D 205/04 - Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
This disclosure provides 8,9-dihydrocannabinoid derivatives, deuterated cannabinoid derivatives, and tritiated cannabinoid derivatives. The disclosure also provides compositions, methods of use, and processes of preparation of the foregoing derivatives.
C07C 37/00 - Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
C07C 37/14 - Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms by addition reactions, i.e. reactions involving at least one carbon-to-carbon unsaturated bond
C07D 205/04 - Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
A pipette tip for use with a pipettor including a pipettor shaft having a terminal end has opposed proximal and distal ends and includes a tubular body and a coupling portion. The tubular body extends between the proximal and distal ends. The tubular body define a fluid passage terminating at a proximal opening adjacent the proximal end and a distal opening adjacent the distal end. The coupling portion is located on the proximal end. The coupling portion includes an interlock feature configured to mechanically interlock with the pipettor shaft proximate the terminal end to selectively and releasably secure the pipette tip to the pipettor shaft.
Certain configurations are described of column heaters that can be used in gas chromatography applications to provide individual heating zones along a gas chromatography column (550). The column heater may comprise a plurality of inductive elements (510-530) that can be used to provide heating zones. A thermally conductive support can be used with the gas chromatography column and the inductive elements if desired. The column heater can be used to provide a travelling wave, a thermal gradient or other heating profiles.
Certain configurations are described of column heaters that can be used in gas chromatography applications to provide individual heating zones along a gas chromatography column (550). The column heater may comprise a plurality of inductive elements (510-530) that can be used to provide heating zones. A thermally conductive support can be used with the gas chromatography column and the inductive elements if desired. The column heater can be used to provide a travelling wave, a thermal gradient or other heating profiles.
A circuit, e.g., a CMOS sensor, with individually addressable transfer transistors and individually addressable reset transistors is described. Through the individually addressable transistors, pixels within different regions of interest, of the same or different size and/or the same or different exposure times, can be efficiently processed. Different regions of interest may be exposed concurrently and read out independently.
A circuit, e.g., a CMOS sensor, with individually addressable transfer transistors and individually addressable reset transistors is described. Through the individually addressable transistors, pixels within different regions of interest, of the same or different size and/or the same or different exposure times, can be efficiently processed. Different regions of interest may be exposed concurrently and read out independently.
H04N 5/345 - Extracting pixel data from an image sensor by controlling scanning circuits, e.g. by modifying the number of pixels having been sampled or to be sampled by partially reading an SSIS array
H04N 5/3745 - Addressed sensors, e.g. MOS or CMOS sensors having additional components embedded within a pixel or connected to a group of pixels within a sensor matrix, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
H04N 5/374 - Addressed sensors, e.g. MOS or CMOS sensors
H04N 5/341 - Extracting pixel data from an image sensor by controlling scanning circuits, e.g. by modifying the number of pixels having been sampled or to be sampled
The present invention is a system and method for improving extraction of analytes from a solution by disposing a plurality of polydimethylsiloxane(PDMS) particles in a thin layer on an inner wall of an extraction vial, by increasing a surface area and volume of particles disposed to extract analytes from the solution and thereby increasing extraction capacity and speed for gas chromatography-mass spectrometry (GC-MS) anal sis.
B65D 41/00 - Caps, e.g. crown caps or crown seals, i.e. members having parts arranged for engagement with the external periphery of a neck or wall defining a pouring opening or discharge apertureProtective cap-like covers for closure members, e.g. decorative covers of metal foil or paper
The present invention is a system and method for improving extraction of analytes from a solution by disposing a plurality of polydimethylsiloxane(PDMS) particles in a thin layer on an inner wall of an extraction vial, by increasing a surface area and volume of particles disposed to extract analytes from the solution and thereby increasing extraction capacity and speed for gas chromatography-mass spectrometry (GC-MS) anal sis.
Certain configurations of an ionization source comprising a multipolar rod assembly are described. In some examples, the multipolar rod assembly can be configured to provide a magnetic field and a radio frequency field into an ion volume formed by a substantially parallel arrangement of rods of the multipolar rod assembly. The ionization source may also comprise an electron source configured to provide electrons into the ion volume of the multipolar rod assembly to ionize analyte introduced into the ion volume. Systems and methods using the ionization source are also described.
Certain configurations of an ionization source comprising a multipolar rod assembly are described. In some examples, the multipolar rod assembly can be configured to provide a magnetic field and a radio frequency field into an ion volume formed by a substantially parallel arrangement of rods of the multipolar rod assembly. The ionization source may also comprise an electron source configured to provide electrons into the ion volume of the multipolar rod assembly to ionize analyte introduced into the ion volume. Systems and methods using the ionization source are also described.
In certain embodiments, the invention relates to systems and methods for in vivo tomographic imaging of fluorescent probes and/or bioluminescent reporters, wherein a fluorescent probe and a bioluminescent reporter are spatially co-localized (e.g., located at distances equivalent to or smaller than the scattering mean free path of light) in a diffusive medium (e.g., biological tissue). Measurements obtained from bioluminescent and fluorescent modalities are combined per methods described herein.
Systems, apparatuses, and methods are described for calibrating a laser power are described. A system may include a sample to be tested and a control sample that comprises a control analyte. A user may indicate a known concentration of the control analyte to the system (e.g., by entering a concentration value into a user interface or other process). The system may perform multiple runs at different laser powers and compare the measurements of each run against expected values for the control analyte at the known concentration. From that comparison, a calibrated laser power may be computed and that computed power level can be used by the system for the running of tests on an unknown sample.
G01N 21/27 - ColourSpectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection
A liquid handling system 10 for use with a liquid sample in a container 60 includes a probe 100 and an actuator 37. The probe 100 is configured to be inserted into the container 60 to contact the liquid sample in the container 60. The probe has a probe axis. The probe includes an elongate probe body 110 having a distal end, and an integral mixing device 140 on the probe body proximate the distal end. The actuator 37 is operable to reciprocate the probe in the container along the probe axis such that the mixing device generates mixing currents in the liquid sample.
Systems and methods use electric fields to separate bioanalytes from a substrate comprising a biological sample. Biological material, especially blood samples, are sometimes dried onto absorbent substrates. By applying an electric field across the substrate, or a portion thereof, bioanalytes from the sample are attracted to a conductor having a positive or negative charge, depending on the charges carried by the bioanalytes. The electric field can be created using two conductors in circuit with a power source, and the substrate may be positioned between the conductors.
Systems and methods use electric fields to separate bioanalytes from a substrate comprising a biological sample. Biological material, especially blood samples, are sometimes dried onto absorbent substrates. By applying an electric field across the substrate, or a portion thereof, bioanalytes from the sample are attracted to a conductor having a positive or negative charge, depending on the charges carried by the bioanalytes. The electric field can be created using two conductors in circuit with a power source, and the substrate may be positioned between the conductors.
A noise reduction filter for data signals is implemented using two orthogonal coordinates comprising intensity and differential intensity values generated from sampling and sorting the data signals. A weighting function is used to amplify or reduce different portions of a data set distribution generated using the intensity and differential intensity values. The weighting function may also include scalar constants to further enhance the capability of the noise reduction filter. The noise reduction filter can be used to reduce the noise components or increase the useful signal components of a noisy data signal, thereby increasing the signal-to-noise ratio, and also increasing spectral resolution. The noise reduction filter can also be used in special cases where the intensity and frequency spectra of the noisy data signal are overlapping. The noise reduction filter may be used in various applications including spectroscopy and image processing, among others.
A noise reduction filter for data signals is implemented using two orthogonal coordinates comprising intensity and differential intensity values generated from sampling and sorting the data signals. A weighting function is used to amplify or reduce different portions of a data set distribution generated using the intensity and differential intensity values. The weighting function may also include scalar constants to further enhance the capability of the noise reduction filter. The noise reduction filter can be used to reduce the noise components or increase the useful signal components of a noisy data signal, thereby increasing the signal-to-noise ratio, and also increasing spectral resolution. The noise reduction filter can also be used in special cases where the intensity and frequency spectra of the noisy data signal are overlapping. The noise reduction filter may be used in various applications including spectroscopy and image processing, among others.
Aspects of the present disclosure provide systems, methods, devices, and computer-readable media for interference filter correction based on angle of incidence. In some examples, a sample emits an emission spectrum that is filtered by an emission filter to provide a transmission spectrum. The emission spectrum illuminates the emission filter at multiple angles of incidence. The angles of incidence result in a spectral shifting of the transmission spectrum. Based on this spectral shifting, the intensity of the transmission spectrum is corrected. An image corresponding to the corrected intensity of the transmission spectrum may be generated.
A blood sample processor for imaging a centrifuged blood sample is provided including a transparent container with the centrifuged blood sample therein. An illumination source is position to illuminate the centrifuged blood sample at a non-right angle to the transparent container. A digital camera disposed opposite the transparent container images the centrifuged blood sample and the image is processed to determine the relative locations of component layers of the centrifuged blood sample.
A blood sample processor for imaging a centrifuged blood sample is provided including a transparent container with the centrifuged blood sample therein. An illumination source is position to illuminate the centrifuged blood sample at a non-right angle to the transparent container. A digital camera disposed opposite the transparent container images the centrifuged blood sample and the image is processed to determine the relative locations of component layers of the centrifuged blood sample.
A spectrometer with an unobstructed, Schmidt reflector is described. The spectrometer may include a Schmidt corrector and a dispersive element as separate components. Alternatively, the Schmidt corrector and dispersive element may be combined into a single optical component. The spectrometer may further include a field-flattener lens.
The invention relates to a family of compounds that comprise fluorescent cyanine dyes. The compounds are near infrared absorbing heptamethine cyanine dyes with a 4,4-disubstituted cyclohexyl ring as part of the polymethine chromophore. The compounds are generally hydrophilic and can be chemically linked to biomolecules, such as proteins, nucleic acids, and therapeutic small molecules. The compounds can be used for imaging in a variety of medical, biological and diagnostic applications.
C09B 23/08 - Methine or polymethine dyes, e.g. cyanine dyes characterised by the methine chain containing an odd number of CH groups more than three CH groups, e.g. polycarbocyanines
G01N 33/58 - Chemical analysis of biological material, e.g. blood, urineTesting involving biospecific ligand binding methodsImmunological testing involving labelled substances
C07D 403/08 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group containing two hetero rings linked by a carbon chain containing alicyclic rings
G01N 33/569 - ImmunoassayBiospecific binding assayMaterials therefor for microorganisms, e.g. protozoa, bacteria, viruses
C09B 23/01 - Methine or polymethine dyes, e.g. cyanine dyes characterised by the methine chain
C07D 403/14 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group containing three or more hetero rings
C07D 413/14 - Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
C07D 417/14 - Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group containing three or more hetero rings
54.
SPECTROMETERS WITH RETRO-REFLECTIVE SURFACES AND RELATED INSTRUMENTS
The spectrometer architecture and imager described herein refer to a compact and high-throughput spectrometer. The spectrometer comprises an aperture (101), a reflecting surface (102), a dispersive element (103), an Echelle grating (104) and a single detector (105). The spectrometer reuses optical surfaces to separate wavelengths of light. For example, the reflecting surface (102) can comprise a reflective triplet telescope acting as both, a collimator and imager. By reusing optical components, the relative size of the spectrometer may be reduced. Spectrometers according to the present disclosure may be used for optical emission spectroscopy (OES).
A spectrometer with an unobstructed, Schmidt reflector is described. The spectrometer may include a Schmidt corrector and a dispersive element as separate components. Alternatively, the Schmidt corrector and dispersive element may be combined into a single optical component. The spectrometer may further include a field-flattener lens.
The spectrometer architecture and imager described herein refer to a compact and high-throughput spectrometer. The spectrometer comprises an aperture (101), a reflecting surface (102), a dispersive element (103), an Echelle grating (104) and a single detector (105). The spectrometer reuses optical surfaces to separate wavelengths of light. For example, the reflecting surface (102) can comprise a reflective triplet telescope acting as both, a collimator and imager. By reusing optical components, the relative size of the spectrometer may be reduced. Spectrometers according to the present disclosure may be used for optical emission spectroscopy (OES).
A staging assembly for a specimen imaging machine includes a manifold assembly with a housing having an inlet opening and an outlet opening. Each of a plurality of chambers has a chamber opening. Conduits put the chambers in fluid communication with the inlet opening and the outlet opening. A bottom plate extends beneath the chambers. The manifold assembly includes an attachment assembly. A staging dock includes a base, a staging dock anesthesia inlet, and a staging dock anesthesia outlet receivable by the inlet opening of the manifold assembly and including a valve. A staging dock exhaust inlet is receivable by the outlet opening of the manifold assembly. The staging dock includes a staging dock exhaust outlet. A staging dock attachment assembly is releasably attachable to the manifold attachment assembly.
An ion source can include a magnetic field generator configured to generate a magnetic field in a direction parallel to a direction of the electron beam and coincident with the electron beam. However, this magnetic field can also influence the path of ionized sample constituents as they pass through and exit the ion source. An ion source can include an electric field generator to compensate for this effect. As an example, the electric field generator can be configured to generate an electric field within the ion source chamber, such that an additional force is imparted on the ionized sample constituents, opposite in direction and substantially equal in magnitude to the force imparted on the ionized sample constituents by the magnetic field.
An ion source can include a magnetic field generator configured to generate a magnetic field in a direction parallel to a direction of the electron beam and coincident with the electron beam. However, this magnetic field can also influence the path of ionized sample constituents as they pass through and exit the ion source. An ion source can include an electric field generator to compensate for this effect. As an example, the electric field generator can be configured to generate an electric field within the ion source chamber, such that an additional force is imparted on the ionized sample constituents, opposite in direction and substantially equal in magnitude to the force imparted on the ionized sample constituents by the magnetic field.
Methods for calibrating a multispectral analysis system (1000) include calibrating the system to detect fluorescence emission from a first fluorescent entity in a biological sample (900) that includes the first fluorescent entity and a second fluorescent entity using a calibration sample, where the calibration sample features a first concentration of the first fluorescent entity and a second concentration of the second fluorescent entity, and where the first concentration is larger than the second concentration.
G01N 21/27 - ColourSpectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection
A system for preparing a test sample includes a vial holder, a needle trap connected to the vial holder, and a sample preparation station. The vial holder includes a vial chamber configured to hold a vial, a purge gas needle, and a needle trap heater. The needle trap includes a needle with the needle trap heater surrounding a distal end portion of the needle. A packing bed is disposed in the needle at the distal end portion. The sample preparation station includes a housing and a vial heater assembly including a vial heater and defining a cavity. The vial holder is configured to be received in the cavity in an installed position with the vial heater surrounding at least a portion of the vial.
Certain configurations are described herein of an optical spectrometer comprising an echelle grating and a cross disperser and instruments including such an optical spectrometer. The optical spectrometer is configured to spatially separate provided wavelengths of light to permit detection or imaging of each provided wavelength of light. Improved sensitivities and detection limits may be achieved using the optical spectrometers described herein.
G01N 21/73 - Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using plasma burners or torches
Certain configurations are described herein of an optical spectrometer comprising an echelle grating and a cross disperser and instruments including such an optical spectrometer. The optical spectrometer is configured to spatially separate provided wavelengths of light to permit detection or imaging of each provided wavelength of light. Improved sensitivities and detection limits may be achieved using the optical spectrometers described herein.
G01N 21/73 - Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using plasma burners or torches
G01J 3/18 - Generating the spectrumMonochromators using diffraction elements, e.g. grating
G01N 21/68 - Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence using high frequency electric fields
64.
DUCKBILL VALVE ASSEMBLIES AND APPARATUS AND METHODS INCLUDING SAME
A duckbill valve assembly (100) includes a duckbill valve member (130) and a spring member (160). The duckbill valve has a longitudinal axis, a lateral axis transverse to the longitudinal axis, and opposed proximal and distal ends spaced apart along the longitudinal axis. The duckbill valve defines a valve direction extending from the proximal end to the distal end. The duckbill valve includes a first port at the proximal end, and first and second opposed sidewalls. The first and second sidewalls taper inwardly toward one another in the valve direction to form a duckbill structure (144) including a slit proximate the distal end. The duckbill valve is transitionable from a closed position, wherein the slit is closed, and an open position, wherein the first and second sidewalls are laterally separated proximate the slit to form a second port. The spring member (160) includes a spring leg disposed laterally adjacent the first side wall. The spring leg exerts a spring load on the first sidewall, the spring load forcing the first and second sidewalls together to maintain the slit in the closed position. The duckbill valve assembly is configured such that, when the first and second sidewalls are displaced laterally outward to open the slit, the spring leg is displaced in the valve direction and in a laterally outward direction.
Presented herein are systems and methods for tomographic imaging of a region of interest in a subject using short-wave infrared light to provide for accurate reconstruction of absorption maps within the region of interest. The reconstructed absorption maps are representations of the spatial variation in tissue absorption within the region of interest. The reconstructed absorption maps can themselves be used to analyze anatomical properties and biological processes within the region of interest, and/or be used as input information about anatomical properties in order to facilitate data processing used to obtain images of the region of interest via other imaging modalities. For example, the reconstructed absorption maps may be incorporated into forward models that are used in tomographic reconstruction processing in fluorescence and other contrast-based tomographic imaging modalities. Incorporating reconstructed absorption maps into other tomographic reconstruction processing algorithms in this manner improves the accuracy of the resultant reconstructions.
The invention provides agents that target carbonic anhydrase, which can be used as imaging agents or therapeutic agents. The agents can be used to image tumor hypoxia as well as other physiological processes in a subject.
C07D 401/06 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
C07D 401/14 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
C07D 417/14 - Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group containing three or more hetero rings
G01N 33/58 - Chemical analysis of biological material, e.g. blood, urineTesting involving biospecific ligand binding methodsImmunological testing involving labelled substances
C09B 23/08 - Methine or polymethine dyes, e.g. cyanine dyes characterised by the methine chain containing an odd number of CH groups more than three CH groups, e.g. polycarbocyanines
A61K 31/4439 - Non-condensed pyridinesHydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
A61K 31/444 - Non-condensed pyridinesHydrogenated derivatives thereof containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring hetero atom, e.g. amrinone
A61K 31/506 - PyrimidinesHydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
67.
SYSTEMS AND METHODS FOR 3D RECONSTRUCTION OF ANATOMICAL ORGANS AND INCLUSIONS USING SHORT-WAVE INFRARED (SWIR) PROJECTION TOMOGRAPHY
Presented herein are systems and methods for tomographic imaging of a region of interest in a subject using short-wave infrared light to provide for accurate reconstruction of absorption maps within the region of interest. The reconstructed absorption maps are representations of the spatial variation in tissue absorption within the region of interest. The reconstructed absorption maps can themselves be used to analyze anatomical properties and biological processes within the region of interest, and/or be used as input information about anatomical properties in order to facilitate data processing used to obtain images of the region of interest via other imaging modalities. For example, the reconstructed absorption maps may be incorporated into forward models that are used in tomographic reconstruction processing in fluorescence and other contrast-based tomographic imaging modalities. Incorporating reconstructed absorption maps into other tomographic reconstruction processing algorithms in this manner improves the accuracy of the resultant reconstructions.
A gas chromatographic system includes a gas chromatographic (GC) subsystem and an autosampler. The autosampler includes a carrier including a plurality of seats and a plurality of sample holders disposed in respective ones of the seats. Each of the sample holders includes: a container defining a chamber configured to hold a sample; and visible indicium on the container; wherein the container is positioned in its seat such that the visible indicium is visible. The autosampler further includes an optical sensor, a controller, at least one mirror, and a sampling system. The optical sensor is configured to read the visible indicia and to generate an output signal corresponding thereto. The controller is configured to receive the output signal. The at least one mirror is arranged and configured to simultaneously reflect images of the visible indicia of a set of the sample holders in the seats to the optical sensor. The sampling system is configured to extract an analyte from at least one of the sample holders and transfer the extracted analyte to the GC subsystem.
G01N 35/02 - Automatic analysis not limited to methods or materials provided for in any single one of groups Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
Described herein are systems and methods for the automated adjustment of flour property measurement equipment such as dough rheometers. The systems and methods allow measurements of flour and dough to be performed on different rheometers with consistent results, regardless of the manufacturer or location of the rheometers. The systems and methods described herein allow a second rheometer, for example, that is deployed in the field to provide results that are consistent with a first dough rheometer, for example, that may be at a different location, or the same location but of the same or different manufacturer. The systems and methods can be used to calibrate, remotely and in real-time, dough rheometers that are deployed in various locations.
G01N 11/14 - Investigating flow properties of materials, e.g. viscosity or plasticityAnalysing materials by determining flow properties by moving a body within the material by using rotary bodies, e.g. vane
A gas chromatographic system includes a gas chromatographic (GC) subsystem and an autosampler. The autosampler includes a carrier including a plurality of seats and a plurality of sample holders disposed in respective ones of the seats. Each of the sample holders includes: a container defining a chamber configured to hold a sample; and visible indicium on the container; wherein the container is positioned in its seat such that the visible indicium is visible. The autosampler further includes an optical sensor, a controller, at least one mirror, and a sampling system. The optical sensor is configured to read the visible indicia and to generate an output signal corresponding thereto. The controller is configured to receive the output signal. The at least one mirror is arranged and configured to simultaneously reflect images of the visible indicia of a set of the sample holders in the seats to the optical sensor. The sampling system is configured to extract an analyte from at least one of the sample holders and transfer the extracted analyte to the GC subsystem.
G01N 35/02 - Automatic analysis not limited to methods or materials provided for in any single one of groups Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
Presented herein are systems and methods that allow for vertebral centrums of individual vertebrae to be identified and segmented within a 3D image of a subject (e.g., a CT or microCT image). In certain embodiments, the approaches described herein identify, within a graphical representation of an individual vertebra in a 3D image of a subject, multiple discrete and differentiable regions, one of which corresponds to a vertebral centrum of the individual vertebra. The region corresponding to the vertebral centrum may be automatically or manually (e.g., via a user interaction) classified as such. Identifying vertebral centrums in this manner facilitates streamlined quantitative analysis of 3D images for osteological research, notably, providing a basis for rapid and consistent evaluation of vertebral centrum morphometric attributes.
Described herein are systems and methods for the automated adjustment of flour property measurement equipment such as dough rheometers. The systems and methods allow measurements of flour and dough to be performed on different rheometers with consistent results, regardless of the manufacturer or location of the rheometers. The systems and methods described herein allow a second rheometer, for example, that is deployed in the field to provide results that are consistent with a first dough rheometer, for example, that may be at a different location, or the same location but of the same or different manufacturer. The systems and methods can be used to calibrate, remotely and in real-time, dough rheometers that are deployed in various locations.
G01N 11/14 - Investigating flow properties of materials, e.g. viscosity or plasticityAnalysing materials by determining flow properties by moving a body within the material by using rotary bodies, e.g. vane
B29B 7/28 - Component parts, details or accessoriesAuxiliary operations for measuring, controlling or regulating, e.g. viscosity control
73.
SYSTEMS AND METHODS FOR AUTOMATED DETECTION AND SEGMENTATION OF VERTEBRAL CENTRUM(S) IN 3D IMAGES
Presented herein are systems and methods that allow for vertebral centrums of individual vertebrae to be identified and segmented within a 3D image of a subject (e.g., a CT or microCT image). In certain embodiments, the approaches described herein identify, within a graphical representation of an individual vertebra in a 3D image of a subject, multiple discrete and differentiable regions, one of which corresponds to a vertebral centrum of the individual vertebra. The region corresponding to the vertebral centrum may be automatically or manually (e.g., via a user interaction) classified as such. Identifying vertebral centrums in this manner facilitates streamlined quantitative analysis of 3D images for osteological research, notably, providing a basis for rapid and consistent evaluation of vertebral centrum morphometric attributes.
This disclosure provides quantitative, rapid, and reliable LCMS/MS methods for analyzing panels of pesticides and mycotoxins in various samples, including very hydrophobic and chlorinated compounds normally analyzed on a GCMS/MS system. The methods can be carried out using a single instrument and can detect and quantify levels of the pesticides and mycotoxins that are well below action limits specified by U.S. states (e.g., California) and other countries (e.g., Canada) for these compounds in cannabis products.
This disclosure provides quantitative, rapid, and reliable LCMS/MS methods for analyzing panels of pesticides and mycotoxins in various samples, including very hydrophobic and chlorinated compounds normally analyzed on a GCMS/MS system. The methods can be carried out using a single instrument and can detect and quantify levels of the pesticides and mycotoxins that are well below action limits specified by U.S. states (e.g., California) and other countries (e.g., Canada) for these compounds in cannabis products.
A system may include a horizontal actuator to move a tray, to which a microwell plate and a microfluidic chip may be coupled. The system may include a vertical actuator to move a support arm, to which a plurality of pipettes or pipette tips may be coupled. The system may include a rotational actuator to move an angle bracket, to which a magnet may be coupled. The system may include a heater, through which the pipettes may extend. The system may include a pump to control the flow of fluids through the pipettes.
A drying device comprising a regenerable desiccant medium that is effective to adsorb water without absorption of gaseous analyte species in an introduced ambient air stream is described. The drying device can be used with a thermal desorption device to remove water vapor from gaseous analyte species prior to analysis of the gaseous analyte species. Systems including a drying device are also described.
78.
RAPID, HIGH DYNAMIC RANGE IMAGE ACQUISITION WITH A CHARGE-COUPLED DEVICE (CCD) CAMERA
Presented herein are systems and methods that provide for fast image acquisition with a CCD camera for tomographic imaging by synchronizing illumination with the image acquisition sequence of the CCD camera. The systems and methods described herein allow images to be acquired with a CCD camera using short image acquisition times that would otherwise result in the introduction of severe artifacts into the acquired images. This unique capability is achieved by selectively illuminating the one or more object(s) to be imaged during specific phases of the CCD camera that are used to acquire an image. Reducing the time required to acquire artifact-free images in this manner allows for rapid imaging with a CCD camera. This capability is of particular relevance to tomographic imaging approaches, in which multiple images of one or more objects are acquired and used to produce a single tomographic image.
Presented herein are systems and methods that provide for fast image acquisition with a CCD camera for tomographic imaging by synchronizing illumination with the image acquisition sequence of the CCD camera. The systems and methods described herein allow images to be acquired with a CCD camera using short image acquisition times that would otherwise result in the introduction of severe artifacts into the acquired images. This unique capability is achieved by selectively illuminating the one or more object(s) to be imaged during specific phases of the CCD camera that are used to acquire an image. Reducing the time required to acquire artifact-free images in this manner allows for rapid imaging with a CCD camera. This capability is of particular relevance to tomographic imaging approaches, in which multiple images of one or more objects are acquired and used to produce a single tomographic image.
80.
METHODS FOR SEQUENTIALLY PREPARING DIFFERENT TEST SAMPLES FROM A SINGLE DRIED BLOOD SAMPLE
Provided are processes for the use of a single dried blood sample for the preparation of test samples including targets of differing structures. The processes allow the same dried blood sample to be used for preparation of a first test sample including a non-nucleic acid target, and the same dried blood sample to be subsequently processed for preparation of a test sample that includes a nucleic acid target whereby the processes preserve the ability of the nucleic acid to be detected in subsequent detection assays following prior isolation of non-nucleic acid targets.
C07D 401/08 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing alicyclic rings
C07D 403/08 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group containing two hetero rings linked by a carbon chain containing alicyclic rings
C07D 403/14 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group containing three or more hetero rings
C07D 409/08 - Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing alicyclic rings
A61K 31/403 - Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
A61K 31/473 - QuinolinesIsoquinolines ortho- or peri-condensed with carbocyclic ring systems, e.g. acridines, phenanthridines
82.
SYSTEMS AND METHODS FOR EMULATING SCINTILLATION EVENTS USING AN ELECTRONIC TEST SOURCE
Presented herein are systems and methods that provide for calibration and/or testing of liquid scintillation counters (LSCs) using an electronic test source. In certain embodiments, the electronic test source described herein provides for emission of emulated radioactive event test pulses that emulate light pulses produced by a scintillator as a result of radioactive decay of a variety of different kinds of radioactive emitters (e.g., beta, alpha, and gamma emitters). Additionally, in certain embodiments, the systems and methods described herein provide for the emission of emulated background light (e.g., luminescence and after-pulses) from the electronic test source. The emulated radioactive event test pulses and, optionally, emulated background light can be used for the calibration and/or testing of LSCs, in place of hazardous radioactive material and/or volatile chemicals. Accordingly, the systems and methods described herein dramatically improve the calibration and/or testing of liquid scintillation counters.
Presented herein are systems and methods that provide for calibration and/or testing of liquid scintillation counters (LSCs) using an electronic test source. In certain embodiments, the electronic test source described herein provides for emission of emulated radioactive event test pulses that emulate light pulses produced by a scintillator as a result of radioactive decay of a variety of different kinds of radioactive emitters (e.g., beta, alpha, and gamma emitters). Additionally, in certain embodiments, the systems and methods described herein provide for the emission of emulated background light (e.g., luminescence and after-pulses) from the electronic test source. The emulated radioactive event test pulses and, optionally, emulated background light can be used for the calibration and/or testing of LSCs, in place of hazardous radioactive material and/or volatile chemicals. Accordingly, the systems and methods described herein dramatically improve the calibration and/or testing of liquid scintillation counters.
According to embodiments of the technology, an automated thermal desorption system includes a sample tube including a chamber to contain an analyte, visible indicia on the sample tube, a thermal desorption apparatus, and a sample tube monitoring system. The thermal desorption apparatus is configured to receive the sample tube and includes a heating device. The heating device is configured to heat the sample tube in the thermal desorption apparatus and thereby desorb the analyte from the sample tube. The sample tube monitoring system includes: an optical sensor configured to read the visible indicia on the sample tube and to generate an output signal corresponding thereto; and a controller configured to receive the output signal corresponding to the visible indicia from the optical sensor and to determine an orientation of the sample tube with respect to the thermal desorption apparatus based on the output signal.
G01N 1/22 - Devices for withdrawing samples in the gaseous state
G01N 35/02 - Automatic analysis not limited to methods or materials provided for in any single one of groups Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
Presented herein are systems and methods for tomographic imaging that provide for rapid illumination of multiple excitation locations across a large field of view by one or more beams of excitation light from one or more excitation sources. The approaches described herein utilize a galvanometer optical scanner to scan a beam of excitation light through a plurality of locations across a scan region corresponding to the field of view to be imaged. In certain embodiments, the systems and methods described herein utilize beams of excitation light with specifically tailored shapes to maintain small spot sizes across the large scan region. The ability to scan over a large region while still maintaining small spot sizes provided by the approaches described herein allows for accurate, high-resolution tomographic imaging of large or multiple subjects, thereby expanding the capabilities of tomographic imaging systems.
Presented herein are systems and methods for tomographic imaging that provide for rapid illumination of multiple excitation locations across a large field of view by one or more beams of excitation light from one or more excitation sources. The approaches described herein utilize a galvanometer optical scanner to scan a beam of excitation light through a plurality of locations across a scan region corresponding to the field of view to be imaged. In certain embodiments, the systems and methods described herein utilize beams of excitation light with specifically tailored shapes to maintain small spot sizes across the large scan region. The ability to scan over a large region while still maintaining small spot sizes provided by the approaches described herein allows for accurate, high-resolution tomographic imaging of large or multiple subjects, thereby expanding the capabilities of tomographic imaging systems.
Presented herein are systems and methods for registering one or more images of one or more subjects based on the automated generation of artificial landmarks. An artificial landmark is a point within an image that is associated with a specific physical location of the imaged region. The artificial landmarks are generated in an automated and robust fashion along the bones of a subject's skeleton that are represented in the image (e.g. graphically). The automatically generated artificial landmarks are used to correct distortion in a single image or to correct distortion in and/or co-register multiple images of a series of images (e.g. recorded at different time points). The artificial landmark generation approach described herein thereby facilitates analysis of images used, for example, for monitoring the progression of diseases such as pulmonary diseases.
G16H 30/40 - ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
G16H 50/50 - ICT specially adapted for medical diagnosis, medical simulation or medical data miningICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
88.
SYSTEMS AND METHODS FOR ANALYSIS OF HETEROTOPIC OSSIFICATION IN 3D IMAGES
Presented herein are systems and methods that facilitate automated segmentation of 3D images of subjects to distinguish between regions of heterotopic ossification (HO) normal skeleton, and soft tissue. In certain embodiments, the methods identify discrete, differentiable regions of a 3D image of subject (e.g., a CT or microCT image) that may then be either manually or automatically classified as either HO or normal skeleton.
Presented herein are systems and methods that facilitate automated segmentation of 3D images of subjects to distinguish between regions of heterotopic ossification (HO) normal skeleton, and soft tissue. In certain embodiments, the methods identify discrete, differentiable regions of a 3D image of subject (e.g., a CT or microCT image) that may then be either manually or automatically classified as either HO or normal skeleton.
An example system includes an electron ionization ion source and a mass analyzer. The electron ion source is configured, during operation of the system, to create from sample molecules a beam of ions extending along an ion beam axis. The system also includes a collision cooling chamber comprising a gas manifold and an electric field generator. The cooling chamber defines an entrance aperture and an exit aperture on respective opposing ends of the cooling chamber, the entrance aperture of the cooling chamber being in axial alignment with the ion beam axis. The cooling chamber is configured, during operation of the system, to generate a radio frequency (RF) field within the cooling chamber using the electric field generator, and receive collision gas through the gas manifold to pressurize the cooling chamber.
Certain configurations are described herein of an instrument comprising a passive cooling device which includes, in part, a loop thermosyphon configured to thermally couple to a component of the instrument to be cooled. In some instances, the cooling device can cool a transistor, transistor pair, an interface or other components of the instalment.
H01J 49/04 - Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locksArrangements for external adjustment of electron- or ion-optical components
Certain configurations are described herein of an instrument comprising a passive cooling device which includes, in part, a loop thermosyphon configured to thermally couple to a component of the instrument to be cooled. In some instances, the cooling device can cool a transistor, transistor pair, an interface or other components of the instalment.
H01J 49/04 - Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locksArrangements for external adjustment of electron- or ion-optical components
A rugged SPME system and method for up-taking analytes, allowing injection of liquid samples in the field, providing better quantitation and reproducibility, and having higher capacity than other SPME devices that use a fiber, wherein the embodiments include a SPME stainless steel coiled wire sampler that may wick a liquid sample into the coil to thereby deliver a consistent quantity of liquid to an analyzer.
The invention relates to a family of compounds that comprise fluorescent cyanine dyes. The compounds are near infrared absorbing heptamethine cyanine dyes with a 4,4-disubstituted cyclohexyl ring as part of the polymethine chromophore. The compounds are generally hydrophilic and can be chemically linked to biomolecules, such as proteins, nucleic acids, and therapeutic small molecules. The compounds can be used for imaging in a variety of medical, biological and diagnostic applications.
A61B 10/00 - Instruments for taking body samples for diagnostic purposesOther methods or instruments for diagnosis, e.g. for vaccination diagnosis, sex determination or ovulation-period determinationThroat striking implements
A61B 5/00 - Measuring for diagnostic purposes Identification of persons
A61B 8/00 - Diagnosis using ultrasonic, sonic or infrasonic waves
G01N 33/569 - ImmunoassayBiospecific binding assayMaterials therefor for microorganisms, e.g. protozoa, bacteria, viruses
C09B 23/01 - Methine or polymethine dyes, e.g. cyanine dyes characterised by the methine chain
C09B 23/08 - Methine or polymethine dyes, e.g. cyanine dyes characterised by the methine chain containing an odd number of CH groups more than three CH groups, e.g. polycarbocyanines
G01N 33/58 - Chemical analysis of biological material, e.g. blood, urineTesting involving biospecific ligand binding methodsImmunological testing involving labelled substances
C07D 403/08 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group containing two hetero rings linked by a carbon chain containing alicyclic rings
C07D 403/14 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group containing three or more hetero rings
C07D 413/14 - Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
C07D 417/14 - Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group containing three or more hetero rings
95.
CONNECTORS AND CONNECTOR ASSEMBLIES AND DEVICES AND INSTRUMENTS INCLUDING THEM
Certain configurations of connectors and connector assemblies are described herein. In some instances, the connector may comprise an internal locking member configured to rotate circumferentially between a first position to couple the connector to a component and a second position to release the connector from the component. If desired, the internal locking member may also provide for longitudinal movement to enhance a fluid tight seal.
F16L 37/24 - Couplings of the quick-acting type in which the connection is made by inserting one member axially into the other and rotating it to a limited extent, e.g. with bayonet-action
F16L 37/08 - Couplings of the quick-acting type in which the connection between abutting or axially-overlapping ends is maintained by locking members
F16L 37/10 - Couplings of the quick-acting type in which the connection between abutting or axially-overlapping ends is maintained by locking members using a rotary external sleeve or ring on one part
96.
SYSTEMS AND METHODS FOR RADIATION DETECTION WITH IMPROVED EVENT TYPE DISCRIMINATION
Described herein are radiation detection systems and methods that provide improved discrimination between different types of radioactive events. The use of multiple discriminator settings based on pulse curve shape, rather than a single setting, is surprisingly found to improve discrimination between alpha and beta events. Results demonstrate significantly lowered % spill with minimal loss of efficiency due to the enhanced discrimination. These systems and methods are particularly important in the detection of extremely low-level alpha and beta events, and in the identification and quantification of isotopes with difficult-to-distinguish pulse shapes.
G01T 1/178 - Circuit arrangements not adapted to a particular type of detector for measuring specific activity in the presence of other radioactive substances, e.g. natural, in the air or in liquids such as rain-water
G01T 1/204 - Measuring radiation intensity with scintillation detectors the detector being a liquid
97.
SAMPLING PUMPS AND CLOSED LOOP CONTROL OF SAMPLING PUMPS TO LOAD TRAPS
Certain configurations of devices and systems which are configured to draw a selected volume of an air sample into a trap are described. In some examples, the devices and systems comprise a pump and a mass flow sensor to draw a selected volume of the air sample through a trap even where variable restriction occurs.
Certain configurations of devices and systems which are configured to draw a selected volume of an air sample into a trap are described. In some examples, the devices and systems comprise a pump and a mass flow sensor to draw a selected volume of the air sample through a trap even where variable restriction occurs.
A system and method for performing field-portable GC/MS measurements for the rapid sampling and measurement of high temperature boiling semi-volatile organic compounds in environmental samples, wherein other column bundles have cold spots that may prevent high temperature boiling semi-volatile components from eluting the GC column, this new design may eliminate those cold spots on the GC column.
UNIVERSITY OF CENTRAL FLORIDA RESEARCH FOUNDATION, INC. (USA)
Inventor
Meganck, Jeff
Frenkel, Michael
Katsevich, Alexander
Abstract
Described herein are systems and methods for automated completion, combination, and completion by combination of sinograms. In certain embodiments, sinogram completion is based on a photographic (e.g. spectral or optical) acquisition and a CT acquisition (e.g., micro CT). In other embodiments, sinogram completion is based on two CT acquisitions. The sinogram to be completed may be truncated due to a detector crop (e.g., a center-based crop or an offset based crop). The sinogram to be completed may be truncated due to a subvolume crop (e.g., based on low resolution image projected onto sinogram).