The invention relates to a family of compounds that comprise fluorescent cyanine dyes. The compounds are near infrared absorbing heptamethine cyanine dyes with a 4,4-disubstituted cyclohexyl ring as part of the polymethine chromophore. The compounds are generally hydrophilic and can be chemically linked to biomolecules, such as proteins, nucleic acids, and therapeutic small molecules. The compounds can be used for imaging in a variety of medical, biological and diagnostic applications.
C07D 403/08 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group containing two hetero rings linked by a carbon chain containing alicyclic rings
C07D 403/14 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group containing three or more hetero rings
C07D 413/14 - Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
C07D 417/14 - Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group containing three or more hetero rings
C09B 23/01 - Methine or polymethine dyes, e.g. cyanine dyes characterised by the methine chain
C09B 23/08 - Methine or polymethine dyes, e.g. cyanine dyes characterised by the methine chain containing an odd number of CH groups more than three CH groups, e.g. polycarbocyanines
G01N 33/58 - Chemical analysis of biological material, e.g. blood, urineTesting involving biospecific ligand binding methodsImmunological testing involving labelled substances
2.
ELECTROPHORESIS-MEDIATED CHARACTERIZATION OF DNA CONTENT OF ADENO-ASSOCIATED VIRUS CAPSIDS
According to aspects of methods of characterizing a population of particles putatively containing recombinant nucleic acids in a fluid sample of the present disclosure, includes extracting nucleic acids from the particles, labeling the extracted recombinant nucleic acids, separating the labeled nucleic acids by size, and comparing the separated labeled nucleic acids with a standard to determine one or more of: 1) a ratio of full viral particles to empty viral particles in the fluid sample, 2) a ratio of full viral particles or empty viral particles to partially full viral particles, and 3) a ratio of viral particles containing an intact recombinant genome to viral particles containing an incomplete recombinant genome, thereby characterizing the population of particles in the fluid sample. Optionally included are extracting proteins from the particles, labeling the extracted proteins, separating the labeled proteins according to size, and comparing the separated labeled proteins with a standard.
C12Q 1/6806 - Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
C12Q 1/70 - Measuring or testing processes involving enzymes, nucleic acids or microorganismsCompositions thereforProcesses of preparing such compositions involving virus or bacteriophage
G01N 33/50 - Chemical analysis of biological material, e.g. blood, urineTesting involving biospecific ligand binding methodsImmunological testing
An automated pipetting system includes a pipettor. The pipettor includes a pipetting channel, a first plunger mechanism operable to change a pressure in the pipetting channel to aspirate or dispense a liquid, and a second plunger mechanism operable to change the pressure in the pipetting channel to aspirate or dispense the liquid.
G01N 35/10 - Devices for transferring samples to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
G01F 11/28 - Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with stationary measuring chambers having constant volume during measurement
G01F 11/02 - Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with measuring chambers which expand or contract during measurement
4.
METHODS, COMPOSITIONS, AND KITS FOR INHIBITING FORMATION OF ADAPTER DIMERS
Methods of reducing adapter-dimers in a sequencing library are provided according to aspects of the present disclosure, including: hybridizing excess 3′ adapters to blocker oligonucleotides forming a hybridized complex, such that the excess 3′ adapters are unavailable to form adapter-dimers, the hybridized complex including: a first blocker oligonucleotide 3′ terminus adjacent to an adenylated nucleotide at the 5′ terminus of a first unligated 3′ adapter and a second blocker oligonucleotide 3′ terminus adjacent to an adenylated nucleotide at the 5′ terminus of a second unligated 3′ adapter, wherein the first blocker oligonucleotide has a 5′ portion complementary to and hybridized to the first unligated 3′ adapter, the second blocker oligonucleotide has a 5′ portion complementary to and hybridized to the second unligated 3′ adapter, and the first blocker oligonucleotide has a 3′ portion complementary to, and hybridized to, a 3′ portion of the second blocker oligonucleotide.
Methods of reducing adapter-dimers in a sequencing library are provided according to aspects of the present disclosure, including: hybridizing excess 3' adapters to blocker oligonucleotides forming a hybridized complex, such that the excess 3' adapters are unavailable to form adapter-dimers, the hybridized complex including: a first blocker oligonucleotide 3' terminus adjacent to an adenylated nucleotide at the 5' terminus of a first unligated 3' adapter and a second blocker oligonucleotide 3' terminus adjacent to an adenylated nucleotide at the 5' terminus of a second unligated 3' adapter, wherein the first blocker oligonucleotide has a 5' portion complementary to and hybridized to the first unligated 3' adapter, the second blocker oligonucleotide has a 5' portion complementary to and hybridized to the second unligated 3' adapter, and the first blocker oligonucleotide has a 3' portion complementary to, and hybridized to, a 3' portion of the second blocker oligonucleotide. The first and second blocker oligonucleotides may be the same oligonucleotide comprising a palindromic sequence which allows for self-hybridisation.
A microfluidic system may include a microfluidic chip having a non-conductive substrate and wells connected in common to a microfluidic channel within the non-conductive substrate. Each well may have a galvanic contact with a first portion at an upper surface of the sample well and a second portion that extends into the non-conductive substrate. A plurality of electrodes 114,116 may be provided as part of an electrical interface, with each electrode configured to contact a respective galvanic contact of the microfluidic chip. The electrical interface may also include at least one shared power amplifier 104 that is configured to generate a power signal (e.g., constant current, constant voltage, pulsed power signal). A selector 110 may be configured to receive the generated power signal from the shared power amplifier 104 and configured to select at least one of the plurality of electrodes 114,116 and output the received power signal thereto.
Provided herein are capillary electrophoresis methods for separating and detecting double-stranded ribonucleic acid (dsRNA) contaminants in samples of single-stranded ribonucleic acids (ssRNA) such as RNA therapies (e.g., mRNA vaccines).
Provided are improved toroidal ion traps and methods of design of such ion traps. Toroidal ion traps include an inner electrode comprising a first surface; an outer electrode at least partially circumferentially surrounding the inner electrode, the outer electrode comprising a second surface substantially facing the first surface, wherein the outer electrode is spaced apart from the first surface in a radial direction; a first end electrode comprising a third surface; a second end electrode comprising a fourth surface substantially facing the third surface; an axis of rotation extending through the inner electrode; and wherein: the first, second, third, and fourth surfaces define an ion confinement cavity and at least portions of each of the first, second, third, and fourth surfaces extend through or along iso-potential surfaces associated with a linear combination of toroidal multipoles to generate an electric field extending through slits in the first and second end electrodes.
Provided are improved toroidal ion traps and methods of design of such ion traps. Toroidal ion traps include an inner electrode comprising a first surface; an outer electrode at least partially circumferentially surrounding the inner electrode, the outer electrode comprising a second surface substantially facing the first surface, wherein the outer electrode is spaced apart from the first surface in a radial direction; a first end electrode comprising a third surface; a second end electrode comprising a fourth surface substantially facing the third surface; an axis of rotation extending through the inner electrode; and wherein: the first, second, third, and fourth surfaces define an ion confinement cavity and at least portions of each of the first, second, third, and fourth surfaces extend through or along iso-potential surfaces associated with a linear combination of toroidal multipoles to generate an electric field extending through slits in the first and second end electrodes.
An ion guide includes a plurality of lenses arranged in series along a curved central axis. Each lens includes a body and a central opening, and the central openings of the plurality of disks define a curved ion guide region. The ion guide includes an ion deflector configured to apply a radial DC electric field across the ion guide region and along the curved central axis. The ion deflector includes at least one DC voltage source that is configured to apply a positive DC voltage to at least some of the plurality of lenses and a negative DC voltage to at least some of the plurality of lenses.
Systems, apparatuses, and methods are described for 3D luminescence imaging, by identifying a preferred optical pair and optimizing a scanned image using the preferred optical pair. An optimal filter pair may be selected from a list of two or more optical filters. An acceptable threshold of information may be obtained using a subset of the list of two or more optical filters (e.g., an optimal filter pair). An imaging device may be configured with the optimal filter pair to produce a pair of luminescence images of a target sample. In addition, luminescence images may be pre-processed to reduce the time-cost of conventional processing techniques of luminescence images. One or more computing devices may generate initial prior data based on a pair of luminescence images. An output may include one or more output luminescent sources that have been refined and/or optimized from the initial prior data.
Systems, apparatuses, and methods are described for 3D luminescence imaging, by identifying a preferred optical pair and optimizing a scanned image using the preferred optical pair. An optimal filter pair may be selected from a list of two or more optical filters. An acceptable threshold of information may be obtained using a subset of the list of two or more optical filters (e.g., an optimal filter pair). An imaging device may be configured with the optimal filter pair to produce a pair of luminescence images of a target sample. In addition, luminescence images may be pre-processed to reduce the time-cost of conventional processing techniques of luminescence images. One or more computing devices may generate initial prior data based on a pair of luminescence images. An output may include one or more output luminescent sources that have been refined and/or optimized from the initial prior data.
Methods, compositions, and kits of the present disclosure for normalizing a mass amount of nucleic acids in each of a plurality of test samples are provided, for use in methods of nucleic acid analysis, such that substantially equal amounts of nucleic acids are present in the samples to be analyzed. The invention uses magnetic particles with hydroxyl functional groups.
Systems, apparatuses, and methods are described for 3D luminescence imaging, by identifying a preferred optical pair and optimizing a scanned image using the preferred optical pair. An optimal filter pair may be selected from a list of two or more optical filters. An acceptable threshold of information may be obtained using a subset of the list of two or more optical filters (e.g., an optimal filter pair). An imaging device may be configured with the optimal filter pair to produce a pair of luminescence images of a target sample. In addition, luminescence images may be pre-processed to reduce the time-cost of conventional processing techniques of luminescence images. One or more computing devices may generate initial prior data based on a pair of luminescence images. An output may include one or more output luminescent sources that have been refined and/or optimized from the initial prior data.
Methods, compositions, and kits of the present disclosure for normalizing a mass amount of nucleic acids in each of a plurality of test samples are provided, for use in methods of nucleic acid analysis, such that substantially equal amounts of nucleic acids are present in the samples to be analyzed.
An ion detector assembly comprising: a first particle shield comprising an ion entry opening for receiving an ion beam propagating along a first propagation axis; a deflector configured to generate an electric field in a deflection region that deflects the ion beam out of alignment with the first propagation axis along a deflection path; a second particle shield comprising an ion exit opening; and a detection element configured to convert and multiply the ion beam to electrons after deflection via the deflector, wherein: the first particle shield extends at an angle relative to the second particle shield, the first particle shield and the second particle shield define a corner region, and the deflector comprises: a first rear surface extending proximate to the first particle shield; a second rear surface extending proximate to the second particle shield, a vertex where the first rear surface meets the second rear surface, the vertex being disposed proximate to the corner region; and a curved deflection surface opposite the vertex and extending between the first rear surface and the second rear surface.
A Raman spectrometer 1 comprising a laser 1001 for illuminating a sample S under investigation, an auto-focusing system for focusing the laser 1001 on the sample S under investigation, and a detector 1010 for detecting Raman spectra emitted in response to illumination by the laser 1001. The auto-focusing system further comprises at least one adjustable focusing element for adjusting the location of the focus of the laser, a determination unit 1012 for determining a selected location for the focus of the laser 1001, and a control unit for adjusting the adjustable focusing element to focus the laser at said selected location determined by the determination unit 1012. The auto-focusing system is arranged under the control of software to enable determination of the selected location for the focus of the laser 1001.
A Raman spectrometer arrangement comprising a Raman spectrometer 1 having a laser 1001 for illuminating a sample S and a spectrometer accessory 4 configured to be mounted on the spectrometer, wherein the spectrometer accessory comprises a surface configured to receive the sample S. The Raman spectrometer arrangement is configured to operate in at least a first configuration and a second configuration, wherein the first configuration is such that the laser 1001 illuminates the sample S before reaching a level of the surface and the second configuration is such that the laser 1001 reaches the level of the surface before illuminating the sample S.
A system comprising a laser 1001 for illuminating a sample S under investigation, a temperature sensor 1019 for sensing the operating temperature of the laser 1001 and generating an output which is indicative of the sensed temperature, a temperature stabilisation device 1018 for controlling the operating temperature of the laser 1001, and a controller 1012 for determining a target operating temperature or temperature range for the laser based on the output of the temperature sensor 1019 and for controlling the temperature stabilisation device 1018 to drive the operating temperature of the laser 1001 towards the target operating temperature or temperature range.
This disclosure provides liquid chromatography tandem mass spectrometer (LC-MS/MS) methods and systems for detecting low levels of pesticides in a test sample. In the disclosed methods and systems, an ammonium salt is added to a mobile phase added to a liquid chromatography column or to the eluant from a liquid chromatography column. This addition improves the signal for certain pesticides by a factor of from 2 to 20, improving their detection limits in a variety of test samples.
Methods of assessing an analyte in a blood sample are provided according to aspects of the present disclosure which include: extracting the analyte from a biological sample dried on a treated support, producing an extracted sample, the treated support comprising a protein denaturant, wherein the analyte is a substrate for an enzyme present, or suspected of being present, in the biological sample, wherein the protein denaturant inhibits enzymatic activity of the enzyme on the analyte; and subjecting the extracted sample to liquid chromatography tandem mass spectrometry (LC/MS/MS), thereby assessing the analyte in the biological sample.
This disclosure provides liquid chromatography tandem mass spectrometer (LC-MS/MS) methods and systems for detecting low levels of pesticides and mycotoxins in a test sample. In the disclosed methods and systems, oxalic acid is added to a mobile phase composition of a reverse phase chromatographic separation column. This addition improves the signal for certain pesticides and mycotoxins by a factor of from 1.5 to 9, improving their detection limits in a variety of test samples.
A method for mixing liquids using an automated liquid handling system includes: aspirating liquid volumes of a first liquid and a second liquid from alternating ones of a first liquid supply (S1) and a second liquid supply (S2) into a mixing volume such that the aspirated liquid volumes form a liquid stack including a series of alternating, interfacing layers of the first and second liquids in the mixing volume; permitting the interfacing layers of the first and second liquids to mix with one another by diffusion in the mixing volume to form a mixture liquid; and dispensing the mixture liquid from the mixing volume.
B01F 31/65 - Mixers with shaking, oscillating, or vibrating mechanisms the materials to be mixed being directly submitted to a pulsating movement, e.g. by means of an oscillating piston or air column
B01F 23/45 - Mixing liquids with liquidsEmulsifying using flow mixing
G01N 1/00 - SamplingPreparing specimens for investigation
Methods and kits for depleting amplicons that correspond to undesired RNA species present in a sample are provided. The disclosed methods and kits employ a blocker that anneals with at least a portion of the undesired RNA, resulting in a duplex that is not a suitable substrate for ligating an adapter to the end of the undesired RNA.
C12Q 1/6848 - Nucleic acid amplification reactions characterised by the means for preventing contamination or increasing the specificity or sensitivity of an amplification reaction
C12Q 1/6874 - Methods for sequencing involving nucleic acid arrays, e.g. sequencing by hybridisation [SBH]
C12Q 1/6806 - Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
C12Q 1/6888 - Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
C12Q 1/6832 - Enhancement of hybridisation reaction
Sets of hybridization blockers, kits include at least one set of hybridization blockers, and methods of use thereof in massively parallel nucleic acid sequencing, are provided according to aspects of the present disclosure, each of the hybridization blockers comprising at least one Tm increasing nucleotide, the set of hybridization blockers for use in massively parallel sequencing of a plurality of nucleic acid sequencing library molecules, wherein the set of hybridization blockers efficiently blocks the complementary strand interactions between the adapter regions of different library molecules and is therefore effective to reduce the capture of non-target sequences during a capture enrichment hybridization to maximize the efficiency of the massively parallel sequencing techniques.
Sets of hybridization blockers, kits include at least one set of hybridization blockers, and methods of use thereof in massively parallel nucleic acid sequencing, are provided according to aspects of the present disclosure, each of the hybridization blockers comprising at least one Tm increasing nucleotide, the set of hybridization blockers for use in massively parallel sequencing of a plurality of nucleic acid sequencing library molecules, wherein the set of hybridization blockers efficiently blocks the complementary strand interactions between the adapter regions of different library molecules and is therefore effective to reduce the capture of non-target sequences during a capture enrichment hybridization to maximize the efficiency of the massively parallel sequencing techniques.
C40B 30/04 - Methods of screening libraries by measuring the ability to specifically bind a target molecule, e.g. antibody-antigen binding, receptor-ligand binding
C12Q 1/6806 - Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
C12Q 1/6853 - Nucleic acid amplification reactions using modified primers or templates
C12Q 1/6832 - Enhancement of hybridisation reaction
C40B 40/08 - Libraries containing RNA or DNA which encodes proteins, e.g. gene libraries
27.
FINGER-TIGHT GAS CHROMATOGRAPH (GC) COLUMN CONNECTIONS
A gas chromatograph (GC) column connection device includes a housing including first and second opposite ends, the housing including a housing bore extending therethrough between the first and second ends of the housing. The device includes: a piston in the housing bore; a ferrule at least partially in the housing bore at a second end of the piston; a biasing mechanism in the housing bore at a first end of the piston; and a retaining member in the housing bore between the first end of the housing and the biasing mechanism, with the retaining member spaced apart from the first end of the housing. The retaining member is configured to retain the biasing mechanism such that the biasing mechanism urges the piston axially toward the second end of the housing.
Spectrometers include an optical assembly with optical elements arranged to receive light from a light source and direct the light along a light path to a multi-element detector, dispersing light of different wavelengths to different spatial locations on the multi-element detector. The optical assembly includes: (i) a collimator arranged in the light path to receive the light from the light source, the collimator including a mirror having a freeform surface; (2) a dispersive sub-assembly including an echelle grating, the dispersive sub-assembly being arranged in the light path to receive light from the collimator; and (3) a Schmidt telescope arranged in the light path to receive light from the dispersive sub-assembly and focus the light to a field, the multi-element detector being arranged at the field.
Spectrometers include an optical assembly with optical elements arranged to receive light from a light source and direct the light along a light path to a multi-element detector, dispersing light of different wavelengths to different spatial locations on the multi-element detector. The optical assembly includes: (i) a collimator arranged in the light path to receive the light from the light source, the collimator including a mirror having a freeform surface; (2) a dispersive sub-assembly including an echelle grating, the dispersive sub-assembly being arranged in the light path to receive light from the collimator; and (3) a Schmidt telescope arranged in the light path to receive light from the dispersive sub-assembly and focus the light to a field, the multi-element detector being arranged at the field.
Provided herein are methods, compositions, and kits for detecting a target nucleic acid, such as from a virus, in a biological sample. More specifically, the methods, compositions, and kits described herein describe detection of target nucleic acid from a coronavirus, such as SARSCoV-2 coronavirus, with non-ionic detergents and isothermal amplification.
The invention relates to a family of compounds that comprise fluorescent cyanine dyes. The compounds are near infrared absorbing heptamethine cyanine dyes with a 4,4-disubstituted cyclohexyl ring as part of the polymethine chromophore. The compounds are generally hydrophilic and can be chemically linked to biomolecules, such as proteins, nucleic acids, and therapeutic small molecules. The compounds can be used for imaging in a variety of medical, biological and diagnostic applications.
G01N 33/569 - ImmunoassayBiospecific binding assayMaterials therefor for microorganisms, e.g. protozoa, bacteria, viruses
C09B 23/01 - Methine or polymethine dyes, e.g. cyanine dyes characterised by the methine chain
C09B 23/08 - Methine or polymethine dyes, e.g. cyanine dyes characterised by the methine chain containing an odd number of CH groups more than three CH groups, e.g. polycarbocyanines
G01N 33/58 - Chemical analysis of biological material, e.g. blood, urineTesting involving biospecific ligand binding methodsImmunological testing involving labelled substances
C07D 403/08 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group containing two hetero rings linked by a carbon chain containing alicyclic rings
C07D 403/14 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group containing three or more hetero rings
C07D 413/14 - Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
C07D 417/14 - Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group containing three or more hetero rings
09 - Scientific and electric apparatus and instruments
Goods & Services
Automatic fluid-composition control machines and instruments; DNA chips; Laboratory apparatus and computer systems for use in protein purification; Magnetic separators for scientific use; Medical laboratory research instruments for DNA analysis; Medical laboratory research instruments for RNA analysis; Medical laboratory research instruments for nucleic acid isolation; Scientific apparatus and instruments, namely, fluid handling device used for disposable bioprocessing applications and parts and fittings therefor; Scientific instruments, namely, electronic analyzers for testing and analyzing chemical and biological substances for the presence, absence, or quantity of contaminants
33.
SAMPLE INTRODUCTION DEVICES AND SYSTEMS AND METHODS OF USING THEM
Magnetic couplers and sample introduction devices including them are described. In certain configurations, a sample introduction device can include a magnetic coupler that can be used to hold down a sampling device to permit introduction of an analyte sample from the sampling device to an instrument or another component. Systems including the magnetic couplers, and methods and devices using them are also described.
Assembly fixtures to provide sample introduction devices are described. In certain configurations, the assembly fixture can be used to provide a sample introduction device that can include a magnetic coupler. For example, the magnetic coupler can be used to hold down a sampling device to permit introduction of an analyte sample from the sampling device to an instrument or another component.
Thermal isolation chambers that can be used to heat or cool a chromatography column are described. Certain configurations include at least one plate and an insulative barrier. The plate and insulative barrier can form a cyclical air flow path such that air in the cyclical air flow path can be provided to a chromatography column to remove heat from the chromatography column. The heat can be transferred to the plate. Systems including the thermal isolation chambers, and methods of using the thermal isolation chambers to perform chromatographic separations are also described.
The invention provides agents that target carbonic anhydrase, which can be used as imaging agents or therapeutic agents. The agents can be used to image tumor hypoxia as well as other physiological processes in a subject.
C07D 401/06 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
A61K 31/4439 - Non-condensed pyridinesHydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
A61K 31/444 - Non-condensed pyridinesHydrogenated derivatives thereof containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring hetero atom, e.g. amrinone
A61K 31/506 - PyrimidinesHydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
C07D 401/14 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
C07D 417/14 - Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group containing three or more hetero rings
C09B 23/01 - Methine or polymethine dyes, e.g. cyanine dyes characterised by the methine chain
C09B 23/08 - Methine or polymethine dyes, e.g. cyanine dyes characterised by the methine chain containing an odd number of CH groups more than three CH groups, e.g. polycarbocyanines
An autosampler includes a carrier for receiving a plurality of sample containers each having a top end and a visible indicium. The visible indicia are located below a top plane defined by the top ends. The autosampler includes: an optical sensor configured to read the visible indicia and to generate a corresponding output signal, and having a line of sight; a controller configured to receive the output signal; and a sampling system to withdraw a sample from the sample containers. The autosampler is operative to relatively move the optical sensor and/or the carrier such that the line of sight intersects the visible indicium of a selected one of the sample containers, wherein the line of sight extends: downward from a height above the height of the top plane; at an oblique angle to the top plane; and through a gap between the selected sample container and an adjacent sample container.
An autosampler includes a carrier for receiving a plurality of sample containers each having a top end and a visible indicium. The visible indicia are located below a top plane defined by the top ends. The autosampler includes: an optical sensor configured to read the visible indicia and to generate a corresponding output signal, and having a line of sight; a controller configured to receive the output signal; and a sampling system to withdraw a sample from the sample containers. The autosampler is operative to relatively move the optical sensor and/or the carrier such that the line of sight intersects the visible indicium of a selected one of the sample containers, wherein the line of sight extends: downward from a height above the height of the top plane; at an oblique angle to the top plane; and through a gap between the selected sample container and an adjacent sample container.
An autosampler includes a sample carrier for receiving first and second sets of sample containers each having a top end, a side wall, and a visible indicium on its side wall. The autosampler includes: an optical sensor to read the visible indicia and to generate a corresponding output signal; a controller to receive the output signal; and a sampling system to withdraw a sample. The sample carrier supports the first and second sets of sample containers at different heights such that the indicia of the sample containers of the second set are located above the top ends of the sample containers of the first set, whereby the indicia of the sample containers of the second set are exposed to the optical sensor over the top ends of the sample containers of the first set, thereby enabling the optical sensor to read the indicia of the second set of sample containers.
G01N 35/00 - Automatic analysis not limited to methods or materials provided for in any single one of groups Handling materials therefor
G01D 5/12 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using electric or magnetic means
G06K 7/10 - Methods or arrangements for sensing record carriers by electromagnetic radiation, e.g. optical sensingMethods or arrangements for sensing record carriers by corpuscular radiation
40.
AUTOSAMPLERS AND ANALYTIC SYSTEMS AND METHODS INCLUDING SAME
An autosampler includes a sample carrier for receiving first and second sets of sample containers each having a top end, a side wall, and a visible indicium on its side wall. The autosampler includes: an optical sensor to read the visible indicia and to generate a corresponding output signal; a controller to receive the output signal; and a sampling system to withdraw a sample. The sample carrier supports the first and second sets of sample containers at different heights such that the indicia of the sample containers of the second set are located above the top ends of the sample containers of the first set, whereby the indicia of the sample containers of the second set are exposed to the optical sensor over the top ends of the sample containers of the first set, thereby enabling the optical sensor to read the indicia of the second set of sample containers.
A system may include a horizontal actuator to move a tray, to which a microwell plate and a microfluidic chip may be coupled. The system may include a vertical actuator to move a support arm, to which a plurality of pipettes or pipette tips may be coupled. The system may include a rotational actuator to move an angle bracket, to which a magnet may be coupled. The system may include a heater, through which the pipettes may extend. The system may include a pump to control the flow of fluids through the pipettes. Disclosed methods include performing PCR within the described system.
Oligonucleotide primers and methods of use in producing sequencing libraries are provided according to aspects of the present disclosure which include, from 5′ to 3′, a homopolymer-hybridizing region, and an anchor region comprising 5′-(λ)nNm-3′, wherein the homopolymer-hybridizing region is a contiguous sequence of 5 to 20 elements, wherein the elements are nucleotides or Tm increasing nucleotide analogs, wherein at least 4 of the elements are Tm increasing nucleotide analogs, wherein the homopolymer-hybridizing region hybridizes to a complementary homopolymer tract of a target nucleic acid, wherein the complementary homopolymer tract comprises a contiguous sequence of complementary elements, wherein λ is any nucleotide or nucleotide analog with the proviso that λ is not a nucleotide or nucleotide analog complementary to a complementary element of the complementary homopolymer tract, and wherein N is any nucleotide or nucleotide analog.
nmmmm increasing nucleotide analogs, wherein the homopolymer- hybridizing region hybridizes to a complementary homopolymer tract of a target nucleic acid, wherein the complementary homopolymer tract comprises a contiguous sequence of complementary elements, wherein λ is any nucleotide or nucleotide analog with the proviso that λ is not a nucleotide or nucleotide analog complementary to a complementary element of the complementary homopolymer tract, and wherein N is any nucleotide or nucleotide analog.
This disclosure provides 8,9-dihydrocannabinoid derivatives, deuterated cannabinoid derivatives, and tritiated cannabinoid derivatives. The disclosure also provides compositions, methods of use, and processes of preparation of the foregoing derivatives.
C07C 39/23 - Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic, containing six-membered aromatic rings and other rings, with unsaturation outside the aromatic rings
A61K 31/397 - Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having four-membered rings, e.g. azetidine
C07D 205/04 - Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
This disclosure provides 8,9-dihydrocannabinoid derivatives, deuterated cannabinoid derivatives, and tritiated cannabinoid derivatives. The disclosure also provides compositions, methods of use, and processes of preparation of the foregoing derivatives.
C07C 37/00 - Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
C07C 37/14 - Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms by addition reactions, i.e. reactions involving at least one carbon-to-carbon unsaturated bond
C07D 205/04 - Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
A pipette tip for use with a pipettor including a pipettor shaft having a terminal end has opposed proximal and distal ends and includes a tubular body and a coupling portion. The tubular body extends between the proximal and distal ends. The tubular body define a fluid passage terminating at a proximal opening adjacent the proximal end and a distal opening adjacent the distal end. The coupling portion is located on the proximal end. The coupling portion includes an interlock feature configured to mechanically interlock with the pipettor shaft proximate the terminal end to selectively and releasably secure the pipette tip to the pipettor shaft.
Certain configurations are described of column heaters that can be used in gas chromatography applications to provide individual heating zones along a gas chromatography column (550). The column heater may comprise a plurality of inductive elements (510-530) that can be used to provide heating zones. A thermally conductive support can be used with the gas chromatography column and the inductive elements if desired. The column heater can be used to provide a travelling wave, a thermal gradient or other heating profiles.
Certain configurations are described of column heaters that can be used in gas chromatography applications to provide individual heating zones along a gas chromatography column (550). The column heater may comprise a plurality of inductive elements (510-530) that can be used to provide heating zones. A thermally conductive support can be used with the gas chromatography column and the inductive elements if desired. The column heater can be used to provide a travelling wave, a thermal gradient or other heating profiles.
A circuit, e.g., a CMOS sensor, with individually addressable transfer transistors and individually addressable reset transistors is described. Through the individually addressable transistors, pixels within different regions of interest, of the same or different size and/or the same or different exposure times, can be efficiently processed. Different regions of interest may be exposed concurrently and read out independently.
A circuit, e.g., a CMOS sensor, with individually addressable transfer transistors and individually addressable reset transistors is described. Through the individually addressable transistors, pixels within different regions of interest, of the same or different size and/or the same or different exposure times, can be efficiently processed. Different regions of interest may be exposed concurrently and read out independently.
H04N 5/345 - Extracting pixel data from an image sensor by controlling scanning circuits, e.g. by modifying the number of pixels having been sampled or to be sampled by partially reading an SSIS array
H04N 5/3745 - Addressed sensors, e.g. MOS or CMOS sensors having additional components embedded within a pixel or connected to a group of pixels within a sensor matrix, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
H04N 5/374 - Addressed sensors, e.g. MOS or CMOS sensors
H04N 5/341 - Extracting pixel data from an image sensor by controlling scanning circuits, e.g. by modifying the number of pixels having been sampled or to be sampled
A Raman spectrometer arrangement comprising a Raman spectrometer 1 having a laser 1001 for illuminating a sample S and a spectrometer accessory 4 configured to be mounted on the spectrometer, wherein the spectrometer accessory comprises a surface configured to receive the sample S. The Raman spectrometer arrangement is configured to operate in at least a first configuration and a second configuration, wherein the first configuration is such that the laser 1001 illuminates the sample S before reaching a level of the surface and the second configuration is such that the laser 1001 reaches the level of the surface before illuminating the sample S.
A Raman spectrometer 1 comprising a laser 1001 for illuminating a sample S under investigation, an auto-focusing system for focusing the laser 1001 on the sample S under investigation, and a detector 1010 for detecting Raman spectra emitted in response to illumination by the laser 1001. The auto-focusing system further comprises at least one adjustable focusing element for adjusting the location of the focus of the laser, a determination unit 1012 for determining a selected location for the focus of the laser 1001, and a control unit for adjusting the adjustable focusing element to focus the laser at said selected location determined by the determination unit 1012. The auto-focusing system is arranged under the control of software to enable determination of the selected location for the focus of the laser 1001.
A system comprising a laser 1001 for illuminating a sample S under investigation, a temperature sensor 1019 for sensing the operating temperature of the laser 1001 and generating an output which is indicative of the sensed temperature, a temperature stabilisation device 1018 for controlling the operating temperature of the laser 1001, and a controller 1012 for determining a target operating temperature or temperature range for the laser based on the output of the temperature sensor 1019 and for controlling the temperature stabilisation device 1018 to drive the operating temperature of the laser 1001 towards the target operating temperature or temperature range.
A method for amplifying a CYP21A2 gene and/or a CYP21A2 gene chimera from a sample is provided. In some embodiments, the method may comprise amplifying a product from a sample comprising human genomic DNA by PCR using a forward primer that is complementary to a sequence that is duplicated in a bimodular human RCCX locus and a reverse primer that is complementary to a sequence that occurs only once in the bimodular human RCCX locus at a position that is downstream of the CYP21A2 gene. Methods for analyzing the amplification product are also provided.
C12Q 1/6827 - Hybridisation assays for detection of mutation or polymorphism
C12Q 1/6883 - Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
55.
METHOD AND SYSTEM OF MICROFLUIDIC IMMUNOASSAY USING MAGNETIC BEADS
A microfluidic Western blot method and system including a microfluidic western blot method for immunoassay of proteins, the method including introducing a sample including the proteins onto a chip; electrophoretically separating the proteins; binding the separated proteins to beads to form protein-attached beads, the beads being magnetic; flowing the protein-attached beads into a magnetic holding region; applying a magnetic field to the magnetic holding region to fix the protein-attached beads in place within the magnetic holding region; binding primary antibodies to target proteins on the protein-attached beads; binding secondary antibodies to the bound primary antibodies; and detecting the bound secondary antibodies.
The present invention is a system and method for improving extraction of analytes from a solution by disposing a plurality of polydimethylsiloxane(PDMS) particles in a thin layer on an inner wall of an extraction vial, by increasing a surface area and volume of particles disposed to extract analytes from the solution and thereby increasing extraction capacity and speed for gas chromatography-mass spectrometry (GC-MS) anal sis.
B65D 41/00 - Caps, e.g. crown caps or crown seals, i.e. members having parts arranged for engagement with the external periphery of a neck or wall defining a pouring opening or discharge apertureProtective cap-like covers for closure members, e.g. decorative covers of metal foil or paper
The present invention is a system and method for improving extraction of analytes from a solution by disposing a plurality of polydimethylsiloxane(PDMS) particles in a thin layer on an inner wall of an extraction vial, by increasing a surface area and volume of particles disposed to extract analytes from the solution and thereby increasing extraction capacity and speed for gas chromatography-mass spectrometry (GC-MS) anal sis.
Certain configurations of an ionization source comprising a multipolar rod assembly are described. In some examples, the multipolar rod assembly can be configured to provide a magnetic field and a radio frequency field into an ion volume formed by a substantially parallel arrangement of rods of the multipolar rod assembly. The ionization source may also comprise an electron source configured to provide electrons into the ion volume of the multipolar rod assembly to ionize analyte introduced into the ion volume. Systems and methods using the ionization source are also described.
Certain configurations of an ionization source comprising a multipolar rod assembly are described. In some examples, the multipolar rod assembly can be configured to provide a magnetic field and a radio frequency field into an ion volume formed by a substantially parallel arrangement of rods of the multipolar rod assembly. The ionization source may also comprise an electron source configured to provide electrons into the ion volume of the multipolar rod assembly to ionize analyte introduced into the ion volume. Systems and methods using the ionization source are also described.
In certain embodiments, the invention relates to systems and methods for in vivo tomographic imaging of fluorescent probes and/or bioluminescent reporters, wherein a fluorescent probe and a bioluminescent reporter are spatially co-localized (e.g., located at distances equivalent to or smaller than the scattering mean free path of light) in a diffusive medium (e.g., biological tissue). Measurements obtained from bioluminescent and fluorescent modalities are combined per methods described herein.
Systems, apparatuses, and methods are described for calibrating a laser power are described. A system may include a sample to be tested and a control sample that comprises a control analyte. A user may indicate a known concentration of the control analyte to the system (e.g., by entering a concentration value into a user interface or other process). The system may perform multiple runs at different laser powers and compare the measurements of each run against expected values for the control analyte at the known concentration. From that comparison, a calibrated laser power may be computed and that computed power level can be used by the system for the running of tests on an unknown sample.
G01N 21/27 - ColourSpectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection
This disclosure provides, among other things, a method for making a cDNA library. In some embodiments the method may comprise reverse transcribing mRNA to produce DNA:mRNA hybrids, treating the DNA:mRNA hybrids with RNAseH to produce mRNA fragments, and reverse transcribing the mRNA fragments.
This disclosure provides, among other things, a method for making a cDNA library. In some embodiments the method may comprise adding a polyA tail to the longer RNA fragments but not the shorter RNA fragments in a sample by incubating the population of RNA fragments with a polyA polymerase, wherein the reaction conditions used preferentially tail only the longer fragments but not the shorter fragments.
C12Q 1/6848 - Nucleic acid amplification reactions characterised by the means for preventing contamination or increasing the specificity or sensitivity of an amplification reaction
C12P 19/34 - Polynucleotides, e.g. nucleic acids, oligoribonucleotides
A liquid handling system 10 for use with a liquid sample in a container 60 includes a probe 100 and an actuator 37. The probe 100 is configured to be inserted into the container 60 to contact the liquid sample in the container 60. The probe has a probe axis. The probe includes an elongate probe body 110 having a distal end, and an integral mixing device 140 on the probe body proximate the distal end. The actuator 37 is operable to reciprocate the probe in the container along the probe axis such that the mixing device generates mixing currents in the liquid sample.
Systems and methods use electric fields to separate bioanalytes from a substrate comprising a biological sample. Biological material, especially blood samples, are sometimes dried onto absorbent substrates. By applying an electric field across the substrate, or a portion thereof, bioanalytes from the sample are attracted to a conductor having a positive or negative charge, depending on the charges carried by the bioanalytes. The electric field can be created using two conductors in circuit with a power source, and the substrate may be positioned between the conductors.
Systems and methods use electric fields to separate bioanalytes from a substrate comprising a biological sample. Biological material, especially blood samples, are sometimes dried onto absorbent substrates. By applying an electric field across the substrate, or a portion thereof, bioanalytes from the sample are attracted to a conductor having a positive or negative charge, depending on the charges carried by the bioanalytes. The electric field can be created using two conductors in circuit with a power source, and the substrate may be positioned between the conductors.
A noise reduction filter for data signals is implemented using two orthogonal coordinates comprising intensity and differential intensity values generated from sampling and sorting the data signals. A weighting function is used to amplify or reduce different portions of a data set distribution generated using the intensity and differential intensity values. The weighting function may also include scalar constants to further enhance the capability of the noise reduction filter. The noise reduction filter can be used to reduce the noise components or increase the useful signal components of a noisy data signal, thereby increasing the signal-to-noise ratio, and also increasing spectral resolution. The noise reduction filter can also be used in special cases where the intensity and frequency spectra of the noisy data signal are overlapping. The noise reduction filter may be used in various applications including spectroscopy and image processing, among others.
A noise reduction filter for data signals is implemented using two orthogonal coordinates comprising intensity and differential intensity values generated from sampling and sorting the data signals. A weighting function is used to amplify or reduce different portions of a data set distribution generated using the intensity and differential intensity values. The weighting function may also include scalar constants to further enhance the capability of the noise reduction filter. The noise reduction filter can be used to reduce the noise components or increase the useful signal components of a noisy data signal, thereby increasing the signal-to-noise ratio, and also increasing spectral resolution. The noise reduction filter can also be used in special cases where the intensity and frequency spectra of the noisy data signal are overlapping. The noise reduction filter may be used in various applications including spectroscopy and image processing, among others.
Aspects of the present disclosure provide systems, methods, devices, and computer-readable media for interference filter correction based on angle of incidence. In some examples, a sample emits an emission spectrum that is filtered by an emission filter to provide a transmission spectrum. The emission spectrum illuminates the emission filter at multiple angles of incidence. The angles of incidence result in a spectral shifting of the transmission spectrum. Based on this spectral shifting, the intensity of the transmission spectrum is corrected. An image corresponding to the corrected intensity of the transmission spectrum may be generated.
A blood sample processor for imaging a centrifuged blood sample is provided including a transparent container with the centrifuged blood sample therein. An illumination source is position to illuminate the centrifuged blood sample at a non-right angle to the transparent container. A digital camera disposed opposite the transparent container images the centrifuged blood sample and the image is processed to determine the relative locations of component layers of the centrifuged blood sample.
A blood sample processor for imaging a centrifuged blood sample is provided including a transparent container with the centrifuged blood sample therein. An illumination source is position to illuminate the centrifuged blood sample at a non-right angle to the transparent container. A digital camera disposed opposite the transparent container images the centrifuged blood sample and the image is processed to determine the relative locations of component layers of the centrifuged blood sample.
This disclosure provides, among other things, a method for making a cDNA library. In some embodiments the method may comprise adding a polyA tail to the longer RNA fragments but not the shorter RNA fragments in a sample by incubating the population of RNA fragments with a polyA polymerase, wherein the reaction conditions used preferentially tail only the longer fragments but not the shorter fragments.
This disclosure provides, among other things, a 5′ adapter of the formula 3′*—X—(5′5′)—Y—3′, where: 3′* is a blocked 3′ end, X is a synthetic sequence, (5′5′) is an internal 5′-5′ linkage, Y is an adapter sequence, and 3′ is a hydroxylated 3′ end. In use, sequence X hybridizes to sequence X′ in a population of RNA molecules of formula R—X′, which increases the efficiency of ligation of the 5′ adapter to the nucleic acid molecules.
This disclosure provides, among other things, a method for making a cDNA library. In some embodiments the method may comprise adding a polyA tail to the longer RNA fragments but not the shorter RNA fragments in a sample by incubating the population of RNA fragments with a polyA polymerase, wherein the reaction conditions used preferentially tail only the longer fragments but not the shorter fragments.
This disclosure provides, among other things, a 5' adapter of the formula 3'*-X-(5'5')-Y-3', where: 3'* is a blocked 3' end, X is a synthetic sequence, (5'5') is an internal 5'-5' linkage, Y is an adapter sequence, and 3' is a hydroxylated 3' end. In use, sequence X hybridizes to sequence X' in a population of RNA molecules of formula R-X', which increases the efficiency of ligation of the 5' adapter to the nucleic acid molecules.
This disclosure provides, among other things, a method for making a cDNA library. In some embodiments the method may comprise adding a polyA tail to the longer RNA fragments but not the shorter RNA fragments in a sample by incubating the population of RNA fragments with a polyA polymerase, wherein the reaction conditions used preferentially tail only the longer fragments but not the shorter fragments.
C12Q 1/6848 - Nucleic acid amplification reactions characterised by the means for preventing contamination or increasing the specificity or sensitivity of an amplification reaction
G01N 21/35 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
This disclosure provides, among other things, a 5' adapter of the formula 3'*-X-(5'5')-Y-3', where: 3'* is a blocked 3' end, X is a synthetic sequence, (5'5') is an internal 5'-5' linkage, Y is an adapter sequence, and 3' is a hydroxylated 3' end. In use, sequence X hybridizes to sequence X' in a population of RNA molecules of formula R-X', which increases the efficiency of ligation of the 5' adapter to the nucleic acid molecules.
A spectrometer with an unobstructed, Schmidt reflector is described. The spectrometer may include a Schmidt corrector and a dispersive element as separate components. Alternatively, the Schmidt corrector and dispersive element may be combined into a single optical component. The spectrometer may further include a field-flattener lens.
The invention relates to a family of compounds that comprise fluorescent cyanine dyes. The compounds are near infrared absorbing heptamethine cyanine dyes with a 4,4-disubstituted cyclohexyl ring as part of the polymethine chromophore. The compounds are generally hydrophilic and can be chemically linked to biomolecules, such as proteins, nucleic acids, and therapeutic small molecules. The compounds can be used for imaging in a variety of medical, biological and diagnostic applications.
C09B 23/08 - Methine or polymethine dyes, e.g. cyanine dyes characterised by the methine chain containing an odd number of CH groups more than three CH groups, e.g. polycarbocyanines
G01N 33/58 - Chemical analysis of biological material, e.g. blood, urineTesting involving biospecific ligand binding methodsImmunological testing involving labelled substances
C07D 403/08 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group containing two hetero rings linked by a carbon chain containing alicyclic rings
G01N 33/569 - ImmunoassayBiospecific binding assayMaterials therefor for microorganisms, e.g. protozoa, bacteria, viruses
C09B 23/01 - Methine or polymethine dyes, e.g. cyanine dyes characterised by the methine chain
C07D 403/14 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group containing three or more hetero rings
C07D 413/14 - Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
C07D 417/14 - Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group containing three or more hetero rings
81.
SPECTROMETERS WITH RETRO-REFLECTIVE SURFACES AND RELATED INSTRUMENTS
The spectrometer architecture and imager described herein refer to a compact and high-throughput spectrometer. The spectrometer comprises an aperture (101), a reflecting surface (102), a dispersive element (103), an Echelle grating (104) and a single detector (105). The spectrometer reuses optical surfaces to separate wavelengths of light. For example, the reflecting surface (102) can comprise a reflective triplet telescope acting as both, a collimator and imager. By reusing optical components, the relative size of the spectrometer may be reduced. Spectrometers according to the present disclosure may be used for optical emission spectroscopy (OES).
A spectrometer with an unobstructed, Schmidt reflector is described. The spectrometer may include a Schmidt corrector and a dispersive element as separate components. Alternatively, the Schmidt corrector and dispersive element may be combined into a single optical component. The spectrometer may further include a field-flattener lens.
The spectrometer architecture and imager described herein refer to a compact and high-throughput spectrometer. The spectrometer comprises an aperture (101), a reflecting surface (102), a dispersive element (103), an Echelle grating (104) and a single detector (105). The spectrometer reuses optical surfaces to separate wavelengths of light. For example, the reflecting surface (102) can comprise a reflective triplet telescope acting as both, a collimator and imager. By reusing optical components, the relative size of the spectrometer may be reduced. Spectrometers according to the present disclosure may be used for optical emission spectroscopy (OES).
A staging assembly for a specimen imaging machine includes a manifold assembly with a housing having an inlet opening and an outlet opening. Each of a plurality of chambers has a chamber opening. Conduits put the chambers in fluid communication with the inlet opening and the outlet opening. A bottom plate extends beneath the chambers. The manifold assembly includes an attachment assembly. A staging dock includes a base, a staging dock anesthesia inlet, and a staging dock anesthesia outlet receivable by the inlet opening of the manifold assembly and including a valve. A staging dock exhaust inlet is receivable by the outlet opening of the manifold assembly. The staging dock includes a staging dock exhaust outlet. A staging dock attachment assembly is releasably attachable to the manifold attachment assembly.
An ion source can include a magnetic field generator configured to generate a magnetic field in a direction parallel to a direction of the electron beam and coincident with the electron beam. However, this magnetic field can also influence the path of ionized sample constituents as they pass through and exit the ion source. An ion source can include an electric field generator to compensate for this effect. As an example, the electric field generator can be configured to generate an electric field within the ion source chamber, such that an additional force is imparted on the ionized sample constituents, opposite in direction and substantially equal in magnitude to the force imparted on the ionized sample constituents by the magnetic field.
An ion source can include a magnetic field generator configured to generate a magnetic field in a direction parallel to a direction of the electron beam and coincident with the electron beam. However, this magnetic field can also influence the path of ionized sample constituents as they pass through and exit the ion source. An ion source can include an electric field generator to compensate for this effect. As an example, the electric field generator can be configured to generate an electric field within the ion source chamber, such that an additional force is imparted on the ionized sample constituents, opposite in direction and substantially equal in magnitude to the force imparted on the ionized sample constituents by the magnetic field.
Methods for calibrating a multispectral analysis system (1000) include calibrating the system to detect fluorescence emission from a first fluorescent entity in a biological sample (900) that includes the first fluorescent entity and a second fluorescent entity using a calibration sample, where the calibration sample features a first concentration of the first fluorescent entity and a second concentration of the second fluorescent entity, and where the first concentration is larger than the second concentration.
G01N 21/27 - ColourSpectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection
A system for preparing a test sample includes a vial holder, a needle trap connected to the vial holder, and a sample preparation station. The vial holder includes a vial chamber configured to hold a vial, a purge gas needle, and a needle trap heater. The needle trap includes a needle with the needle trap heater surrounding a distal end portion of the needle. A packing bed is disposed in the needle at the distal end portion. The sample preparation station includes a housing and a vial heater assembly including a vial heater and defining a cavity. The vial holder is configured to be received in the cavity in an installed position with the vial heater surrounding at least a portion of the vial.
Certain configurations are described herein of an optical spectrometer comprising an echelle grating and a cross disperser and instruments including such an optical spectrometer. The optical spectrometer is configured to spatially separate provided wavelengths of light to permit detection or imaging of each provided wavelength of light. Improved sensitivities and detection limits may be achieved using the optical spectrometers described herein.
G01N 21/73 - Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using plasma burners or torches
Certain configurations are described herein of an optical spectrometer comprising an echelle grating and a cross disperser and instruments including such an optical spectrometer. The optical spectrometer is configured to spatially separate provided wavelengths of light to permit detection or imaging of each provided wavelength of light. Improved sensitivities and detection limits may be achieved using the optical spectrometers described herein.
G01N 21/73 - Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using plasma burners or torches
G01J 3/18 - Generating the spectrumMonochromators using diffraction elements, e.g. grating
G01N 21/68 - Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence using high frequency electric fields
91.
Methods and compositions for improving removal of ribosomal RNA from biological samples
The invention generally relates to compositions for maximizing capture of affinity-labeled molecules on solid supports. The disclosed methods and compositions were developed to maximize depletion of ribosomal RNA from total RNA samples, which is useful to improve the quality of RNA preparations used for applications such as massively parallel sequencing. The RNA depletion method is based on using long affinity-labeled RNA molecules that are complementary to all or part of the target ribosomal RNAs, as subtractive hybridization probes.
Described herein are systems and methods for spectral unmixing of in vivo light data. The spectral unmixing separates image data according to spectra from multiple internal light sources in an effort to isolate one or more spectrum of interest. The spectral unmixing obtains images with a combination of different and known excitation and emission limits. The spectral unmixing then uses an iterative solution process to separate spectra for the multiple fluorescent light sources, and provides a spectrum and/or a spatial distribution map for at least one of the internal light sources.
A duckbill valve assembly (100) includes a duckbill valve member (130) and a spring member (160). The duckbill valve has a longitudinal axis, a lateral axis transverse to the longitudinal axis, and opposed proximal and distal ends spaced apart along the longitudinal axis. The duckbill valve defines a valve direction extending from the proximal end to the distal end. The duckbill valve includes a first port at the proximal end, and first and second opposed sidewalls. The first and second sidewalls taper inwardly toward one another in the valve direction to form a duckbill structure (144) including a slit proximate the distal end. The duckbill valve is transitionable from a closed position, wherein the slit is closed, and an open position, wherein the first and second sidewalls are laterally separated proximate the slit to form a second port. The spring member (160) includes a spring leg disposed laterally adjacent the first side wall. The spring leg exerts a spring load on the first sidewall, the spring load forcing the first and second sidewalls together to maintain the slit in the closed position. The duckbill valve assembly is configured such that, when the first and second sidewalls are displaced laterally outward to open the slit, the spring leg is displaced in the valve direction and in a laterally outward direction.
Presented herein are systems and methods for tomographic imaging of a region of interest in a subject using short-wave infrared light to provide for accurate reconstruction of absorption maps within the region of interest. The reconstructed absorption maps are representations of the spatial variation in tissue absorption within the region of interest. The reconstructed absorption maps can themselves be used to analyze anatomical properties and biological processes within the region of interest, and/or be used as input information about anatomical properties in order to facilitate data processing used to obtain images of the region of interest via other imaging modalities. For example, the reconstructed absorption maps may be incorporated into forward models that are used in tomographic reconstruction processing in fluorescence and other contrast-based tomographic imaging modalities. Incorporating reconstructed absorption maps into other tomographic reconstruction processing algorithms in this manner improves the accuracy of the resultant reconstructions.
The invention provides agents that target carbonic anhydrase, which can be used as imaging agents or therapeutic agents. The agents can be used to image tumor hypoxia as well as other physiological processes in a subject.
C07D 401/06 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
C07D 401/14 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
C07D 417/14 - Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group containing three or more hetero rings
G01N 33/58 - Chemical analysis of biological material, e.g. blood, urineTesting involving biospecific ligand binding methodsImmunological testing involving labelled substances
C09B 23/08 - Methine or polymethine dyes, e.g. cyanine dyes characterised by the methine chain containing an odd number of CH groups more than three CH groups, e.g. polycarbocyanines
A61K 31/4439 - Non-condensed pyridinesHydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
A61K 31/444 - Non-condensed pyridinesHydrogenated derivatives thereof containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring hetero atom, e.g. amrinone
A61K 31/506 - PyrimidinesHydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
96.
SYSTEMS AND METHODS FOR 3D RECONSTRUCTION OF ANATOMICAL ORGANS AND INCLUSIONS USING SHORT-WAVE INFRARED (SWIR) PROJECTION TOMOGRAPHY
Presented herein are systems and methods for tomographic imaging of a region of interest in a subject using short-wave infrared light to provide for accurate reconstruction of absorption maps within the region of interest. The reconstructed absorption maps are representations of the spatial variation in tissue absorption within the region of interest. The reconstructed absorption maps can themselves be used to analyze anatomical properties and biological processes within the region of interest, and/or be used as input information about anatomical properties in order to facilitate data processing used to obtain images of the region of interest via other imaging modalities. For example, the reconstructed absorption maps may be incorporated into forward models that are used in tomographic reconstruction processing in fluorescence and other contrast-based tomographic imaging modalities. Incorporating reconstructed absorption maps into other tomographic reconstruction processing algorithms in this manner improves the accuracy of the resultant reconstructions.
A gas chromatographic system includes a gas chromatographic (GC) subsystem and an autosampler. The autosampler includes a carrier including a plurality of seats and a plurality of sample holders disposed in respective ones of the seats. Each of the sample holders includes: a container defining a chamber configured to hold a sample; and visible indicium on the container; wherein the container is positioned in its seat such that the visible indicium is visible. The autosampler further includes an optical sensor, a controller, at least one mirror, and a sampling system. The optical sensor is configured to read the visible indicia and to generate an output signal corresponding thereto. The controller is configured to receive the output signal. The at least one mirror is arranged and configured to simultaneously reflect images of the visible indicia of a set of the sample holders in the seats to the optical sensor. The sampling system is configured to extract an analyte from at least one of the sample holders and transfer the extracted analyte to the GC subsystem.
G01N 35/02 - Automatic analysis not limited to methods or materials provided for in any single one of groups Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
Described herein are systems and methods for the automated adjustment of flour property measurement equipment such as dough rheometers. The systems and methods allow measurements of flour and dough to be performed on different rheometers with consistent results, regardless of the manufacturer or location of the rheometers. The systems and methods described herein allow a second rheometer, for example, that is deployed in the field to provide results that are consistent with a first dough rheometer, for example, that may be at a different location, or the same location but of the same or different manufacturer. The systems and methods can be used to calibrate, remotely and in real-time, dough rheometers that are deployed in various locations.
G01N 11/14 - Investigating flow properties of materials, e.g. viscosity or plasticityAnalysing materials by determining flow properties by moving a body within the material by using rotary bodies, e.g. vane
A gas chromatographic system includes a gas chromatographic (GC) subsystem and an autosampler. The autosampler includes a carrier including a plurality of seats and a plurality of sample holders disposed in respective ones of the seats. Each of the sample holders includes: a container defining a chamber configured to hold a sample; and visible indicium on the container; wherein the container is positioned in its seat such that the visible indicium is visible. The autosampler further includes an optical sensor, a controller, at least one mirror, and a sampling system. The optical sensor is configured to read the visible indicia and to generate an output signal corresponding thereto. The controller is configured to receive the output signal. The at least one mirror is arranged and configured to simultaneously reflect images of the visible indicia of a set of the sample holders in the seats to the optical sensor. The sampling system is configured to extract an analyte from at least one of the sample holders and transfer the extracted analyte to the GC subsystem.
G01N 35/02 - Automatic analysis not limited to methods or materials provided for in any single one of groups Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
Presented herein are systems and methods that allow for vertebral centrums of individual vertebrae to be identified and segmented within a 3D image of a subject (e.g., a CT or microCT image). In certain embodiments, the approaches described herein identify, within a graphical representation of an individual vertebra in a 3D image of a subject, multiple discrete and differentiable regions, one of which corresponds to a vertebral centrum of the individual vertebra. The region corresponding to the vertebral centrum may be automatically or manually (e.g., via a user interaction) classified as such. Identifying vertebral centrums in this manner facilitates streamlined quantitative analysis of 3D images for osteological research, notably, providing a basis for rapid and consistent evaluation of vertebral centrum morphometric attributes.