A planar inverted-F antenna has a first planar radiating element, a first feed element electrically connected to a first area of the first planar radiating element, and a first ground element electrically connected to a second area of the first planar radiating element. The first planar radiating element is a multi-band radiating element configured to operate at a plurality of frequency bands including at least one frequency band at which location signals are communicated and multiple frequency bands at which wireless broadband signals are communicated. The first planar radiating element supports, within a single radiating element, communication of location signals and communication of wireless broadband signals. In certain embodiments, the first planar radiating element has a first substantially L-shaped region, a second substantially L-shaped region inverted with respect to, and forming a continuation of, the first region, and a third region forming a continuation of the first or second region.
A collar has a band having oppositely disposed first and second surfaces. Acoustic concentrators project from the first surface in a projection direction and are configured to penetrate fur in a portion of an animal to place the band in communication with the animal. Acoustic sensors functionally associated with the acoustic concentrators are configured to measure at least one first bioparameter by detecting vibrations corresponding to the at least one first bioparameter, and generate signals representing the at least one first bioparameter. Non-acoustic sensors are associated with the band and are configured to measure one or more second bioparameters associated with the animal, and generate signals representing the one or more second bioparameters. AGC circuitry adjusts signal gain of the signals representing the at least one first bioparameter. A processing subsystem determines a condition of the animal based at least in part by processing signals received from the AGC circuitry.
An acoustically enhanced collar for monitoring vital signs of a pet animal, may comprise an elastic band having a working surface configured to wrap around a neck of a pet animal and an oppositely faced rear surface, at least one sensor element situated along a circumference of the band and configured to measure at least one bioparameter from the following bioparameters: temperature, heart rate, respiration rate, movement; at least one acoustic concentrator projecting as a bump toward the neck from the working surface on a first side of the at least one sensor element; at least one acoustic concentrator projecting as a bump toward the portion from the working surface on a second side of the at least one sensor element and acoustic balancers projecting from the rear surface at least partly behind the acoustic concentrators. Preferably, the acoustic concentrators and balancers have a base end having an “X”shape.
A system for monitoring vital signs of a pet animal comprises an annular band, an accelerometer configured to measure at least one of resting patterns, activity patterns, movement patterns, position patterns relating to, for example the pet animal relieving itself, lameness and scratching, and a non-accelerometer sensor configured to measure at least one of the following non-accelerometer-measured bioparameters of the pet animal: temperature, pulse rate, respiration rate. One or more processors are configured to receive sensor output data and reference data concerning the measured bioparameters of the pet animal or of a population of the pet animal, and determine a suspicion of a specific medical condition by: (i) scoring at least two bioparameters and comparing a cumulative score to a threshold cumulative score or to a threshold cumulative range; or (ii) identifying an abnormal pattern. The processor(s) may send an alert if at least one specific medical condition is suspected.
A system for- monitoring vital signs of an animal such as a horse comprises a band on leg{s) or a neck, an accelerometer configured to measure at least one of resting patterns, activity patterns, movement patterns, position patterns, lameness, kicking, stomping, lifting leg, pawing,, and a non-accelerometer sensor configured to measure at least one of the following non-accelerometer-measured bioparameters of the animal: temperature, pulse rate, respiration rate. One or more processors are configured to receive sensor output data and reference data concerning the measured bioparameters of for example a horse, or of a population of the horse, and determine a suspicion of a specific medical condition by: (i) scoring at least two bioparameters and comparing a cumulative score to a threshold cumulative score or to a threshold cumulative range; or (ii) identifying an abnormal pattern. The processor(s) may send an alert if at least one specific medical condition is suspected.
A system for monitoring vital signs of a pet animal comprises an annular band, an accelerometer configured to measure at least one of resting patterns, activity patterns, movement patterns, position patterns relating to, for example the pet animal relieving itself, lameness and scratching, and a non-accelerometer sensor configured to measure at least one of the following non-accelerometer-measured bioparameters of the pet animal: temperature, pulse rate, respiration rate. One or more processors are configured to receive sensor output data and reference data concerning the measured bioparameters of the pet animal or of a population of the pet animal, and determine a suspicion of a specific medical condition by: (i) scoring at least two bioparameters and comparing a cumulative score to a threshold cumulative score or to a threshold cumulative range; or (ii) identifying an abnormal pattern. The processor(s) may send an alert if at least one specific medical condition is suspected.
A system, device and method monitoring whether a core temperature of a warm-blooded pet animal is within a normal range for the pet animal comprises a sensing assembly including (i) a skin temperature sensor positioned such that a sensing surface of the skin temperature sensor faces the animal, the skin temperature sensor configured to produce a skin temperature output, (ii) an ambient temperature sensor spaced away from the animal and configured to produce an ambient temperature output, and (iii) an accelerometer for sensing an acceleration of the pet animal and producing an acceleration output; and a processor for receiving the outputs, calculating an activity level from the acceleration data and determining whether the core temperature of the pet animal is within the norma! range based on a pre-defined function relating the skin temperature Ts, the ambient temperature TA, and the activity level of the pet animal.
An acoustically enhanced collar for monitoring vital signs of a pet animal, may comprise an elastic band having a working surface configured to wrap around a neck of a pet animal and an oppositely faced rear surface, at least one sensor element situated along a circumference of the band and configured to measure at least one bioparameter from the following bioparameters: temperature, heart rate, respiration rate, movement; at least one acoustic concentrator projecting as a bump toward the neck from the working surface on a first side of the at least one sensor element; at least one acoustic concentrator projecting as a bump toward the portion from the working surface on a second side of the at least one sensor element and acoustic balancers projecting from the rear surface at least partly behind the acoustic concentrators. Preferably, the acoustic concentrators and balancers have a base end having an "X"shape.
An acoustically enhanced collar for monitoring vital signs of a pet animal, may comprise an elastic band having a working surface configured to wrap around a neck of a pet animal and an oppositely faced rear surface, at least one sensor element situated along a circumference of the band and configured to measure at least one bioparameter from the following bioparameters: temperature, heart rate, respiration rate, movement; at least one acoustic concentrator projecting as a bump toward the neck from the working surface on a first side of the at least one sensor element; at least one acoustic concentrator projecting as a bump toward the portion from the working surface on a second side of the at least one sensor element and acoustic balancers projecting from the rear surface at least partly behind the acoustic concentrators. Preferably, the acoustic concentrators and balancers have a base end having an “X” shape.
A system for monitoring vital signs of a pet animal comprises an annular band, an accelerometer configured to measure at least one of resting patterns, activity patterns, movement patterns, position patterns relating to, for example the pet animal relieving itself, lameness and scratching, and a non-accelerometer sensor configured to measure at least one of the following non-accelerometer-measured bioparameters of the pet animal: temperature, pulse rate, respiration rate. One or more processors are configured to receive sensor output data and reference data concerning the measured bioparameters of the pet animal or of a population of the pet animal, and determine a suspicion of a specific medical condition by: (i) scoring at least two bioparameters and comparing a cumulative score to a threshold cumulative score or to a threshold cumulative range; or (ii) identifying an abnormal pattern. The processor(s) may send an alert if at least one specific medical condition is suspected.
A collar for pet animals may have sensor elements remotely actuatable to measure vital signs of the animal (such as respiration, pulse, temperature and movement) and a processor that can interpret the results of multiple vital sign readings. A two way communication device alerts the pet owner, veterinarian or authorities. A veterinarian can remotely take a particular vital sign measurement when alerted. The sensor elements embedded in the collar's band has at least one elastic pin extending toward the animal's neck to gather data processed on the collar or remotely. To improve STN ratio, an elastic layer may absorb noise from friction due to movement of the animal's head. The collar may adjust the tightness of the band for taking vital sign readings. For example pump may injects air through a tubular compertment running along the circumference of the band. A safety mechanism may release the collar.