Aspects of the present disclosure relate generally to analyzing subterranean cylindrical structures using acoustic sensing. On example includes: sending first acoustic waves in the wellbore via a radial acoustic sensor; receiving first reflection waves associated with the first acoustic waves via the radial acoustic sensor; sending second acoustic waves in the wellbore via the radial acoustic sensor; receiving second reflection waves associated with the second acoustic waves via the radial acoustic sensor; processing recorded data associated with the first acoustic waves, the first reflection waves, the second acoustic waves, and the second reflection waves, wherein the first acoustic waves are associated with a first radial direction, and wherein the second acoustic waves are associated with a second radial direction, the second radial direction being opposite the first radial direction; and generating a plot for identification of one or more isolation regions in the wellbore based on the processing.
E21B 47/0224 - Determining slope or direction of the borehole, e.g. using geomagnetism using seismic or acoustic means
E21B 47/085 - Measuring diameters or related dimensions at the borehole using radiant means, e.g. acoustic, radioactive or electromagnetic
E21B 47/107 - Locating fluid leaks, intrusions or movements using acoustic means
G01V 1/44 - Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging using generators and receivers in the same well
E21B 47/14 - Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves
Aspects of the present disclosure relate generally to analyzing subterranean cylindrical structures using acoustic sensing. On example includes: sending first acoustic waves in the wellbore via a radial acoustic sensor; receiving first reflection waves associated with the first acoustic waves via the radial acoustic sensor; sending second acoustic waves in the wellbore via the radial acoustic sensor; receiving second reflection waves associated with the second acoustic waves via the radial acoustic sensor; processing recorded data associated with the first acoustic waves, the first reflection waves, the second acoustic waves, and the second reflection waves, wherein the first acoustic waves are associated with a first radial direction, and wherein the second acoustic waves are associated with a second radial direction, the second radial direction being opposite the first radial direction; and generating a plot for identification of one or more isolation regions in the wellbore based on the processing.
Implementations described and claimed herein provide systems and methods for isolation detection. In one implementation, a radial acoustic log is obtained. The radial acoustic log is captured using a radial sensor of an acoustic logging tool deployed within a first structure. The first structure disposed within a second structure in a subterranean environment. A radial symmetry is determined using the radial acoustic log. An eccentricity of the first structure relative to the second structure is determined based on the radial symmetry.
G01V 1/40 - Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
E21B 47/085 - Measuring diameters or related dimensions at the borehole using radiant means, e.g. acoustic, radioactive or electromagnetic
E21B 47/095 - Locating or determining the position of objects in boreholes or wells; Identifying the free or blocked portions of pipes by detecting acoustic anomalies, e.g. using mud-pressure pulses
4.
SYSTEMS AND METHODS FOR ANALYZING CASING BONDING IN A WELL USING DIFFERENTIAL SENSING
Implementations described and claimed herein provide systems and methods for isolation detection. In one implementation, an acoustic signal is obtained. The acoustic signal is captured at a set of acoustic receivers deployed in a structure in a subterranean surface. A differential acoustic signal is produced from the acoustic signal captured at the set of acoustic receivers. A symmetry within a portion of the structure is determined based on a value of the differential acoustic signal. At least one isolation region is detected within the structure based on the symmetry.
G01V 1/44 - Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging using generators and receivers in the same well
E21B 47/12 - Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
Implementations described and claimed herein provide systems and methods for isolation detection. In one implementation, an axial acoustic signal is obtained. The axial acoustic signal is captured using an axial sensor deployed in a structure in a subterranean surface. The axial acoustic signal is separated into a first wave region and a second wave region by applying velocity filtering. An axial symmetry of a portion of the structure is determined based on at least one of the first wave region or the second wave region.
Implementations described and claimed herein provide systems and methods for isolation detection. In one implementation, an acoustic signal is obtained. The acoustic signal is captured at a set of acoustic receivers deployed in a structure in a subterranean surface. A differential acoustic signal is produced from the acoustic signal captured at the set of acoustic receivers. A symmetry within a portion of the structure is determined based on a value of the differential acoustic signal. At least one isolation region is detected within the structure based on the symmetry.
Implementations described and claimed herein provide systems and methods for isolation detection. In one implementation, recorded data is obtained. The recorded data includes radial acoustic waves transmitted and received using a radial sensor of an acoustic logging tool deployed in a wellbore. Clockwise waves are separated from counterclockwise waves by converting the recorded data from a time domain to a frequency domain. The clockwise waves are shifted into shifted clockwise waves, and the counterclockwise waves are shifted into a shifted counterclockwise waves. A forward wave is generated by combining the shifted clockwise waves, and a reflected wave is generated by combining the shifted counterclockwise waves. One or more isolation regions are identified in the wellbore using the forward wave and the reflected wave.
G10L 25/18 - Speech or voice analysis techniques not restricted to a single one of groups characterised by the type of extracted parameters the extracted parameters being spectral information of each sub-band
G10L 25/51 - Speech or voice analysis techniques not restricted to a single one of groups specially adapted for particular use for comparison or discrimination
8.
SYSTEMS AND METHODS FOR ANALYZING CASING BONDING IN A WELL USING DIFFERENTIAL SENSING
Implementations described and claimed herein provide systems and methods for isolation detection. In one implementation, an acoustic signal is obtained. The acoustic signal is captured at a set of acoustic receivers deployed in a structure in a subterranean surface. A differential acoustic signal is produced from the acoustic signal captured at the set of acoustic receivers. A symmetry within a portion of the structure is determined based on a value of the differential acoustic signal. At least one isolation region is detected within the structure based on the symmetry.
G01V 1/44 - Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging using generators and receivers in the same well
E21B 47/12 - Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
E21B 49/00 - Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
G01V 1/00 - Seismology; Seismic or acoustic prospecting or detecting
G01V 1/40 - Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
Implementations described and claimed herein provide systems and methods for isolation detection. In one implementation, an axial acoustic signal is obtained. The axial acoustic signal is captured using an axial sensor deployed in a structure in a subterranean surface. The axial acoustic signal is separated into a first wave region and a second wave region by applying velocity filtering. An axial symmetry of a portion of the structure is determined based on at least one of the first wave region or the second wave region.
Implementations described and claimed herein provide systems and methods for isolation detection. In one implementation, a radial acoustic log is obtained. The radial acoustic log is captured using a radial sensor of an acoustic logging tool deployed within a first structure. The first structure disposed within a second structure in a subterranean environment. A radial symmetry is determined using the radial acoustic log. An eccentricity of the first structure relative to the second structure is determined based on the radial symmetry.
Implementations described and claimed herein provide systems and methods for isolation detection. In one implementation, recorded data is obtained. The recorded data includes radial acoustic waves transmitted and received using a radial sensor of an acoustic logging tool deployed in a wellbore. Clockwise waves are separated from counterclockwise waves by converting the recorded data from a time domain to a frequency domain. The clockwise waves are shifted into shifted clockwise waves, and the counterclockwise waves are shifted into a shifted counterclockwise waves. A forward wave is generated by combining the shifted clockwise waves, and a reflected wave is generated by combining the shifted counterclockwise waves. One or more isolation regions are identified in the wellbore using the forward wave and the reflected wave.
E21B 47/14 - Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves
E21B 47/10 - Locating fluid leaks, intrusions or movements
E21B 47/12 - Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
12.
Systems and methods for analyzing casing bonding in a well using ultrasound velocity filtering
Implementations described and claimed herein provide systems and methods for isolation detection. In one implementation, an axial acoustic signal is obtained. The axial acoustic signal is captured using an axial sensor deployed in a structure in a subterranean surface. The axial acoustic signal is separated into a first wave region and a second wave region by applying velocity filtering. An axial symmetry of a portion of the structure is determined based on at least one of the first wave region or the second wave region.
E21B 47/005 - Monitoring or checking of cementation quality or level
E21B 47/085 - Measuring diameters or related dimensions at the borehole using radiant means, e.g. acoustic, radioactive or electromagnetic
E21B 47/095 - Locating or determining the position of objects in boreholes or wells; Identifying the free or blocked portions of pipes by detecting acoustic anomalies, e.g. using mud-pressure pulses
G01V 1/28 - Processing seismic data, e.g. analysis, for interpretation, for correction
Implementations described and claimed herein provide systems and methods for isolation detection. In one implementation, recorded data is obtained. The recorded data includes radial acoustic waves transmitted and received using a radial sensor of an acoustic logging tool deployed in a wellbore. Clockwise waves are separated from counterclockwise waves by converting the recorded data from a time domain to a frequency domain. The clockwise waves are shifted into shifted clockwise waves, and the counterclockwise waves are shifted into a shifted counterclockwise waves. A forward wave is generated by combining the shifted clockwise waves, and a reflected wave is generated by combining the shifted counterclockwise waves. One or more isolation regions are identified in the wellbore using the forward wave and the reflected wave.
E21B 47/14 - Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves
E21B 44/00 - Automatic control systems specially adapted for drilling operations, i.e. self-operating systems which function to carry out or modify a drilling operation without intervention of a human operator, e.g. computer-controlled drilling systems; Systems specially adapted for monitoring a plurality of drilling variables or conditions
E21B 47/10 - Locating fluid leaks, intrusions or movements
E21B 47/12 - Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
14.
SYSTEMS AND METHODS FOR DETERMINING WELL CASING ECCENTRICITY
Implementations described and claimed herein provide systems and methods for isolation detection. In one implementation, a radial acoustic log is obtained. The radial acoustic log is captured using a radial sensor of an acoustic logging tool deployed within a first structure. The first structure disposed within a second structure in a subterranean environment. A radial symmetry is determined using the radial acoustic log. An eccentricity of the first structure relative to the second structure is determined based on the radial symmetry.
The invention provides a method and apparatus for assessing a condition of a fluid conduit from its interior. The method comprises providing a measurement apparatus comprising at least one wideband acoustic transducer within the fluid conduit and transmitting a wideband acoustic signal from the measurement apparatus to excite a broadside resonance in at least a portion of the fluid conduit. A wideband acoustic signal is received in the measurement apparatus due to a broadside resonant response of the fluid conduit to obtain a wideband acoustic data set; and the data set is analysed to assess the condition of the fluid conduit.
The invention provides a method and apparatus for assessing a condition of a fluid conduit from its interior. The method comprises providing a measurement apparatus comprising at least one wideband acoustic transducer within the fluid conduit and transmitting a wideband acoustic signal from the measurement apparatus to excite a broadside resonance in at least a portion of the fluid conduit. A wideband acoustic signal is received in the measurement apparatus due to a broadside resonant response of the fluid conduit to obtain a wideband acoustic data set; and the data set is analysed to assess the condition of the fluid conduit.
The invention provides a method and apparatus for assessing a condition of a fluid conduit from its interior. The method comprises providing a measurement apparatus comprising at least one wideband acoustic transducer within the fluid conduit and transmitting a wideband acoustic signal from the measurement apparatus to excite a broadside resonance in at least a portion of the fluid conduit. A wideband acoustic signal is received in the measurement apparatus due to a broadside resonant response of the fluid conduit to obtain a wideband acoustic data set; and the data set is analysed to assess the condition of the fluid conduit.