The invention relates to stabilized chlorinated polyvinyl chloride (CPVC) polymer formulations, and the stabilizers used therein. The stabilization is achieved through the use of a sulfide containing organotin species in conjunction with co-stabilizers and organic extenders which provide increased thermal stability relative to traditional organotin stabilizers.
C08L 27/24 - Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers modified by chemical after-treatment halogenated
C08L 91/00 - Compositions of oils, fats or waxes; Compositions of derivatives thereof
2.
TIN-BASED STABILIZERS FOR POST-HALOGENATED POLYMERS
The invention relates to stabilized chlorinated polyvinyl chloride (CPVC) polymer formulations, and the stabilizers used therein. The stabilization is achieved through the use of a sulfide containing organotin species in conjunction with co-stabilizers and organic extenders which provide increased thermal stability relative to traditional organotin stabilizers.
C08L 27/24 - Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers modified by chemical after-treatment halogenated
A novel Low Free 2-MercaptoEthanol Ester has been used to prepare Alkyl Tin Reverse Ester Stabilizers as well as used to enhance the thermal performance of those Alkyl Tin Reverse Ester Stabilizers or Alkyl Tin Thioglycolate Stabilizers or Alkyl Tin Mercaptides for PVC applications where odor during PVC compounding, processing, or of the final PVC article has prevented widespread use of Alkyl Tin Reverse Ester Stabilizers. Additional enhancements have been found in cellular PVC production wherein stabilizers including the novel Low Free 2-MercaptoEthanol Ester result in lower density foams, and allow for lower melt density, which improves injection molding cycle times.
The present invention relates to stabilizer composition for halogen-containing polymer. It has recently been found that tin-based thermal stabilizers with a bridging alkyl group between two tin centers are effective stabilizers while having effectively double the molecular weight of the corresponding non-alkyl bridged stabilizer. It is expected that ongoing experimentation will confirm that the alkyl bridged stabilizers have much lower volatility which leads to greater retention of the stabilizer in the finished article.
C08L 27/06 - Homopolymers or copolymers of vinyl chloride
C08L 27/24 - Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers modified by chemical after-treatment halogenated
5.
ALKYL-BRIDGED TIN-BASED THERMAL STABILIZERS FOR HALOGENATED RESINS AND SYNTHESIS AND USES THEROF
The present invention relates to stabilizer composition for halogen-containing polymer. It has recently been found that tin-based thermal stabilizers with a bridging alkyl group between two tin centers are effective stabilizers while having effectively double the molecular weight of the corresponding non-alkyl bridged stabilizer. It is expected that ongoing experimentation will confirm that the alkyl bridged stabilizers have much lower volatility which leads to greater retention of the stabilizer in the finished article.
C08L 27/06 - Homopolymers or copolymers of vinyl chloride
C08L 27/24 - Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers modified by chemical after-treatment halogenated
6.
Alkyl-bridged tin-based thermal stabilizers for halogenated resins and synthesis and uses thereof
The present invention relates to stabilizer composition for halogen-containing polymer. It has recently been found that tin-based thermal stabilizers with a bridging alkyl group between two tin centers are effective stabilizers while having effectively double the molecular weight of the corresponding non-alkyl bridged stabilizer. It is expected that ongoing experimentation will confirm that the alkyl bridged stabilizers have much lower volatility which leads to greater retention of the stabilizer in the finished article.
C08L 27/06 - Homopolymers or copolymers of vinyl chloride
C08L 27/24 - Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers modified by chemical after-treatment halogenated
A novel Low Free 2-MercaptoEthanol Ester has been used to prepare Alkyl Tin Reverse Ester Stabilizers as well as used to enhance the thermal performance of those Alkyl Tin Reverse Ester Stabilizers or Alkyl Tin Thioglycolate Stabilizers or Alkyl Tin Mercaptides for PVC applications where odor during PVC compounding, processing, or of the final PVC article has prevented widespread use of Alkyl Tin Reverse Ester Stabilizers.
C07C 323/12 - Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated
A novel Low Free 2-MercaptoEthanol Ester has been used to prepare Alkyl Tin Reverse Ester Stabilizers as well as used to enhance the thermal performance of those Alkyl Tin Reverse Ester Stabilizers or Alkyl Tin Thioglycolate Stabilizers or Alkyl Tin Mercaptides for PVC applications where odor during PVC compounding, processing, or of the final PVC article has prevented widespread use of Alkyl Tin Reverse Ester Stabilizers. Additional enhancements have been found in cellular PVC production wherein stabilizers including the novel Low Free 2-MercaptoEthanol Ester result in lower density foams, and allow for lower melt density, which improves injection molding cycle times.
C07C 323/12 - Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated
A novel Low Free 2-MercaptoEthanol Ester has been used to prepare Alkyl Tin Reverse Ester Stabilizers as well as used to enhance the thermal performance of those Alkyl Tin Reverse Ester Stabilizers or Alkyl Tin Thioglycolate Stabilizers or Alkyl Tin Mercaptides for PVC applications where odor during PVC compounding, processing, or of the final PVC article has prevented widespread use of Alkyl Tin Reverse Ester Stabilizers. Additional enhancements have been found in cellular PVC production wherein stabilizers including the novel Low Free 2-MercaptoEthanol Ester result in lower density foams, and allow for lower melt density, which improves injection molding cycle times.
C07C 323/12 - Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated
A novel Low Free 2-MercaptoEthanol Ester has been used to prepare Alkyl Tin Reverse Ester Stabilizers as well as used to enhance the thermal performance of those Alkyl Tin Reverse Ester Stabilizers or Alkyl Tin Thioglycolate Stabilizers or Alkyl Tin Mercaptides for PVC applications where odor during PVC compounding, processing, or of the final PVC article has prevented widespread use of Alkyl Tin Reverse Ester Stabilizers.
C07C 323/12 - Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated
A novel Low Free 2-MercaptoEthanol Ester has been used to prepare Alkyl Tin Reverse Ester Stabilizers as well as used to enhance the thermal performance of those Alkyl Tin Reverse Ester Stabilizers or Alkyl Tin Thioglycolate Stabilizers or Alkyl Tin Mercaptides for PVC applications where odor during PVC compounding, processing, or of the final PVC article has prevented widespread use of Alkyl Tin Reverse Ester Stabilizers.
C07C 323/12 - Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated
A liquid organotin heat stabilizer for clear, opaque and/or colored calendered rigid Polyvinyl Chloride (PVC) comprising octyltin mercaptide and methyltin mercaptide. Octyltin mercaptide is used to develop good early color in a clear, opaque or colored calendered rigid PVC film application. Methyltin mercaptide is used to improve the long term heat stability (reduced burning) of the clear, opaque or colored rigid calendered PVC films. Ranges from 50% to 75% octyltin mercaptide, and from 50% to 25% methyltin mercaptide have application. Preferred ranges are 60% to 64% octyltin mercaptide and 40% to 36% methyltin mercaptide. Most preferred is 62% octyltin mercaptide and 38% methyltin mercaptide.
The present invention relates to the thermal stabilization of halogen containing polymer compositions. More particularly the invention relates to a tin stabilizer composition for chlorine containing polymers, and more specifically a composition comprising a mono alkyltin compound as major compound of the tin stabilizer composition and a co-stabilizer.
The present invention relates as well to the use of a mono alkyl tin compound as major compound of the tin stabilizer and a co-stabilizer as heat stabilizers for processing chlorine containing polymer composition.
The invention provides a process for producing monoalkyltin trihalide or a mixture of monoalkyltin trihalide and dialkyltin dihalide by: (a) contacting dialkyltin dihalide with an alkylation agent and, optionally, tin tetrahalide, to form a tetraalkyltin mixture comprising tetraalkyltin, trialkyltin halide, and dialkyltin dihalide; (b) reacting the tetraalkyltin mixture with tin tetrahalide to form a monoalkyltin trihalide mixture comprising monoalkyltin trihalide, dialkyltin dihalide and optionally triaklyltin halide; (c) processing the monoalkyltin trihalide mixture to separately recover the monoalkyltin trihalide and a dialkyltin dihalide stream optionally containing trialkyltin halide; and (d) recycling at least a portion of the dialkyltin dihalide stream recovered in step (c) to the contacting step (a).
The density of rigid foamed articles made by the thermal decomposition of a blowing agent in a vinyl chloride polymer is reduced by the use of a tin based blowing agent activator(s). The tin based activator also reduces the activation temperature of a chemical blowing agent, allowing for more optimal evolution of gas during plastic processing. Dibutyl tin oxide or tin maleates are superior activators of vinyl chloride polymer blowing agents.
C08J 9/06 - Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
C08J 9/00 - Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
16.
High purity monoalkyltin compounds and uses thereof
The present invention relates to high purity monoalkyltin compounds, more specifically to alkyltin compound compositions containing monoalkyltin as major compound, and minor quantities of di- and/or trialkyltin compounds. The present invention also relates to the preparation processes of such high purity monoalkyltin compounds, as well as to the uses of said monoalkyltin compounds as chlorine-containing polymer-stabilizers, glass coating chemicals and catalysts, as well as articles comprising at least one polymer matrix and a high purity monoalkyltin compound.
The invention relates to the use of polycyclic aromatic hydrocarbons (PAHs) such as naphthalene and its alkyl, aryl, or heteroatom substituted analogs, that act as catalysts in the presence of an alkali metal (Li, K, Na) for the reduction of electron-deficient and electron-rich triaryl phosphines to their corresponding alkali metal diaryl phosphide salts. The process is also useful for the catalysis of triaryl phosphine chalcogen adducts such as the sulfides, oxides, and selenides, diaryl(halo)phosphines, triaryl phosphine-borane adducts, and tetra-aryl bis(phosphines) that can also be reduced to their corresponding alkali metal diaryl phosphide salts. The invention also relates to small molecule PAHs and polymer tethered PAHs naphthenics.
A modified clay may be made by contacting a clay with an unsaturated cationic compound and an alkoxyamine, or an adduct thereof. The resulting pre-activated clay, which contains a cationic alkoxyamine bound to the clay, may be further treated with a monomer to provide a polymer that is bound to the clay, thereby forming a nanocomposite material. The nanocomposite material may in turn be blended with another polymer prepared from the same or a different monomer.
The present invention relates to a process for the production of monoalkyltin trihalides of the formula RSnHal3, in which R = alkyl or cycloalkyl and Hal = Cl, Br or I. Said process comprises contacting the corresponding alkene or cycloalkene, stannous halide SnHal2, hydrogen halide HHal and optionally Sn metal, in the presence of at least one transition metal-based catalyst, thereafter isolating the monoalkyltin trihalides from the medium. The present invention also relates to a process for the production of dialkyltin dihalides of the formula R2SnHal2 from monoalkyltin trihalides of the formula RsnHal3', in which R = alkyl or cycloalkyl and Hal= Cl, Br or I. Said process comprises contacting monoalkyltin trihalides RsnHal3 and Sn metal, optionally thereafter isolating the dialkyltin dihalides R2SnHal2 from the medium.