A disinfectant method and device of the present disclosure produces a disinfectant smoke, mist, or fog (referred to as "smoke" for brevity"). The smoke mainly contains reaction products of an initiator compound, sometimes with an additional disinfectant agent. A composition for the non-pyrotechnic generation of disinfectant-containing smoke is provided that includes an initiator and a disinfectant agent. Some versions of the composition also include a monomer that polymerizes exothermically. A non-pyrotechnic method of generating disinfectant-containing smoke is provided, which includes initiating a frontal reaction (FR) in a composition for the non-pyrotechnic generation of disinfectant-containing smoke, and generating disinfectant smoke. A method of disinfecting an area is provided, involving initiating an FR to generate disinfectant smoke, and exposing the area to the smoke for a period of time sufficient to achieve disinfection. A non-pyrotechnic smoke generator for generating a disinfectant smoke is provided, including the smoke-generating composition having at least one of a heat source or a light source positioned to initiate an FR.
A pesticide application method and device of the present disclosure produces a non-incendiary, organic-polymerization based pesticide smoke producing reaction. The smoke mainly comprises pesticide and reaction products of the initiator compound. A composition for the non-pyrotechnic generation of pesticide-containing smoke is provided that includes an initiator, and a pesticide agent. Some versions of the composition also include a monomer that polymerizes exothermically. A non-pyrotechnic method of generating pesticide-containing smoke is provided, which includes initiating a frontal reaction (FR) in a composition for the non-pyrotechnic generation of pesticide-containing smoke, and generating smoke comprising the pesticide agent. A method of applying a pesticide to an area is provided, involving initiating an FR to generate pesticide-containing smoke, and exposing the area to the smoke for a period of time sufficient to kill pests. A non-pyrotechnic smoke generator for generating a pesticide-containing smoke is provided, including the smoke-generating composition and an initiation source.
A disinfectant method and device produces a disinfectant smoke. The smoke contains reaction products of the initiator compound, sometimes with an additional disinfectant agent. A composition for the non-pyrotechnic generation of the smoke includes a monomer that exothermically polymerizes, an initiator, and a disinfectant agent. A non-pyrotechnic method of generating disinfectant-containing smoke is provided, which includes initiating a frontal polymerization reaction (FPR) in a composition for the non-pyrotechnic generation of disinfectant-containing smoke, and generating disinfectant smoke. A method of disinfecting an area is provided, involving initiating an FPR to generate disinfectant smoke, and exposing the area to the smoke for a period of time sufficient to achieve disinfection. A non-pyrotechnic smoke generator for generating a disinfectant smoke is provided, including the smoke-generating composition comprising and one of either a heat source or a light source positioned to heat or illuminate the composition.
A method for detecting the presence of foreign fluids on surface comprises estimating an expected polarization response for a foreign fluid desired to be detected. Oil from an oil spill is one such foreign fluid. A polarimeter records raw image data of a surface (e.g., the surface of water) to obtain polarized images of the surface. IR and polarization data products are computed from the polarized images. The IR and polarization data products are converted to multi-dimensional data set to form multi-dimensional imagery. Contrast algorithms are applied to the multi-dimensional imagery to form enhanced contrast images, from which foreign fluids can be automatically detected.
2 are obtained by weighted subtraction of the polarized image to form Stokes images. DoLP is computed from the Stokes images, and facial recognition algorithms are applied to the DoLP image. A system for enhancing images for facial recognition comprises a polarimeter configured to record polarized image data of a subject's face, a signal processing unit and logic configured to receive and store in memory the image data from the polarimeter, calculate Stokes parameters from the image data, and compute a DoLP image from the Stokes parameters.
In a method of determining the position of an object, raw image data of the sky is recorded using a celestial imaging unit. The last known position, orientation, date, and time data of the object are obtained, and the position of a celestial body is measured. A latitude and longitude of the object is determined by matching the measured celestial body position to the expected celestial body position based on the input parameters.
G01S 5/16 - Position-fixing by co-ordinating two or more direction or position-line determinationsPosition-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves
G01S 5/02 - Position-fixing by co-ordinating two or more direction or position-line determinationsPosition-fixing by co-ordinating two or more distance determinations using radio waves
H04N 7/18 - Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
8.
Polarization-based mapping and perception method and system
In a method of using a polarimeter for improved mapping and perception of objects on the ground, the polarimeter records raw image data to obtain polarized images of an area. The raw image data is processed to form processed images. The processed images are enhanced, and objects are detected and tracked. The polarimeter may be in a vehicle on the ground or in the air.
In a method of detecting objects behind substantially transparent surfaces, a polarimeter with pixelated polarizer array architecture records raw image data of a surface and obtains polarized images. Glare is reduced in the polarized images to form enhanced contrast images. The glare reduction method selects optimal pixels from a subset of a super pixels of polarizing filters and displays the optimal pixels.
G02F 1/01 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour
In a method of determining the position of an object, raw image data of the sky is recorded using a celestial imaging unit. The last known position, orientation, date, and time data of the object are obtained, and the position of a celestial body is measured. A latitude and longitude of the object is determined by matching the measured celestial body position to the expected celestial body position based on the input parameters. A system for determining a new position of an object comprises a celestial imaging unit configured to record image data of the sky, a signal processing unit, and a signal processing unit configured to receive and store in memory the image data received from the celestial imaging unit. The signal processing unit filters the image to find the positions of celestial objects in the sky. The signal processing unit is further configured to use roll and pitch from an IMU, and date and time from a clock to determine the object's position (latitude and longitude).
G01S 5/16 - Position-fixing by co-ordinating two or more direction or position-line determinationsPosition-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves
G01S 3/786 - Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
H04N 7/18 - Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
G06T 7/70 - Determining position or orientation of objects or cameras
G06K 9/00 - Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
G06K 9/46 - Extraction of features or characteristics of the image
G01S 5/02 - Position-fixing by co-ordinating two or more direction or position-line determinationsPosition-fixing by co-ordinating two or more distance determinations using radio waves
G01S 3/783 - Systems for determining direction or deviation from predetermined direction using amplitude comparison of signals derived from static detectors or detector systems
42 - Scientific, technological and industrial services, research and design
Goods & Services
Engineering services in the field of custom and novel optical imaging systems used for test, detection, inspection, tracking, and guidance; engineering services in the fields of polarimeter design and calibration, optical system design and development, optics, electro-optical design, opto-mechanical design, printed circuit board design, and sensor prototype development and data collection; development of algorithms and digital image processing services in the nature of enhancing photographic images in the field of optical imaging systems
A short wave infrared polarimeter comprising a pixelated polarizer array and an Indium-Gallium-Arsenide (“InGaAs”) focal plane array. The short wave infrared polarimeter optionally includes a micro-lens array and/or an aperture layer.
G01J 5/58 - Radiation pyrometry, e.g. infrared or optical thermometry using absorptionRadiation pyrometry, e.g. infrared or optical thermometry using extinction effect
A method for detecting the presence of foreign fluids on surface comprises estimating an expected polarization response for a foreign fluid desired to be detected. Oil from an oil spill is one such foreign fluid. A polarimeter records raw image data of a surface (e.g., the surface of water) to obtain polarized images of the surface. IR and polarization data products are computed from the polarized images. The IR and polarization data products are converted to multi-dimensional data set to form multi-dimensional imagery. Contrast algorithms are applied to the multi-dimensional imagery to form enhanced contrast images, from which foreign fluids can be automatically detected.
09 - Scientific and electric apparatus and instruments
Goods & Services
systems for autonomously detecting oil on water using polarimetric imaging consisting primarily of polarimeters, system processing units in the nature of computer central processing units, electrical annunciators, displays, and computer software for detection of oil on water; systems for providing autonomous alarms for detection of oil on water using polarimetric imaging consisting primarily of polarimeters, system processing units in the nature of computer central processing units, annunciators, displays, and computer software for detection of oil on water; systems for detecting foreign fluids on surfaces using polarimetric imaging consisting primarily of polarimeters, system processing units in the nature of computer central processing units, electrical annunciators, displays, and computer software detection of foreign fluids on surfaces; polarimeters for detecting oil on water
A smoke producing method and device of the present disclosure produces a non-incendiary, organic-polymerization based, smoke-producing reaction. Some versions of the smoke are effective carriers for capsaicinoid compounds. The method of generating smoke comprises initiating a frontal polymerization reaction by heating a composition comprising a monomer compound that exothermically polymerizes upon initiation with an initiator compound and an initiator compound that initiates polymerization of the monomer compound. The polymerization of the monomer compound is exothermic, and in one embodiment the concentration of initiator compound is at least five percent of the concentration of monomer compound. The smoke mainly comprises thermal decomposition products of the initiator compound.
In a method for determining orientation of an object, raw image data of the sky is recorded using a sky polarimeter. One or more of Stokes parameters (S0, S1, S2), degree of linear polarization (DoLP), and angle of polarization (AoP) are calculated from the image data to produce a set of processed images. Last known position and time data of the object are obtained, and a known Sun azimuth and elevation are calculated using the last known position and time data. Roll and pitch of the object are found, and the roll and pitch data are used to find a zenith in the processed images. The yaw/heading of the object is determined using the difference between a polarization angle at the zenith and a calculated Sun azimuth.
G01S 5/02 - Position-fixing by co-ordinating two or more direction or position-line determinationsPosition-fixing by co-ordinating two or more distance determinations using radio waves
G01S 5/16 - Position-fixing by co-ordinating two or more direction or position-line determinationsPosition-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves
G06K 9/00 - Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
G06K 9/46 - Extraction of features or characteristics of the image
G06T 7/70 - Determining position or orientation of objects or cameras
H04N 7/18 - Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
G01S 3/783 - Systems for determining direction or deviation from predetermined direction using amplitude comparison of signals derived from static detectors or detector systems
G01S 3/786 - Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
17.
POLARIZATION-BASED DETECTION AND MAPPING METHOD AND SYSTEM
A method for detecting and tracking aerial objects and vehicles comprises recording raw image data using a polarimeter to obtain polarized images of the sky. The images are then corrected for non-uniformity, optical distortion, and registration. IR and polarization data products are computed, and the resultant data products are converted to a multi-dimensional data set for exploitation. Contrast enhancement algorithms are applied to the multi-dimensional imagery to form enhanced object images. The enhanced object images may then be displayed to a user, and/or an annunciator may announce the presence of an object.
G01J 4/04 - Polarimeters using electric detection means
G01J 5/58 - Radiation pyrometry, e.g. infrared or optical thermometry using absorptionRadiation pyrometry, e.g. infrared or optical thermometry using extinction effect
A short wave infrared polarimeter comprising a pixelated polarizer array and an Indium-Gallium-Arsenide (“InGaAs”) focal plane array. The short wave infrared polarimeter optionally includes a micro-lens array and/or an aperture layer.
G01J 5/58 - Radiation pyrometry, e.g. infrared or optical thermometry using absorptionRadiation pyrometry, e.g. infrared or optical thermometry using extinction effect
19.
Traffic monitoring and reporting system and method
A system and method for monitoring vehicle traffic and collecting data indicative of pedestrian right of way violations by vehicles is provided. The system comprises memory and logic for monitoring traffic intersections and recording evidence indicating that vehicles have violated pedestrian right of way. Two sensor modalities collecting video data and radar data of the intersection under observation are employed in one embodiment of the system. The violation evidence can be accessed remotely by a traffic official for issuing of traffic citations.
A method for detecting and tracking aerial objects and vehicles comprises recording raw image data using a polarimeter to obtain polarized images of the sky. The images are then corrected for non-uniformity, optical distortion, and registration. IR and polarization data products are computed, and the resultant data products are converted to a multi-dimensional data set for exploitation. Contrast enhancement algorithms are applied to the multi-dimensional imagery to form enhanced object images. The enhanced object images may then be displayed to a user, and/or an annunciator may announce the presence of an object.
A method using Infrared Imaging Polarimetry for detecting the presence of foreign fluids on water comprises estimating an expected polarization response for a foreign fluid desired to be detected. Oil from an oil spill is one such foreign fluid. An optimal position of a polarimeter to take images of the water's surface is determined from the expected polarization response. The polarimeter is positioned at the optimal position and records raw image data of the water's surface to obtain polarized images of the area. The polarized images are corrected, and IR and polarization data products are computed. The IR and polarization data products are converted to multi-dimensional data set to form multi-dimensional imagery. Contrast algorithms are applied to the multi-dimensional imagery to form enhanced contrast images, from which foreign fluids can be automatically detected.
A short wave infrared polarimeter comprising a pixelated polarizer array and an Indium-Gallium-Arsenide ("InGaAs") focal plane array, such that interlaced images of different polarization states are collected in a single image and are used to compute intensity and polarized images of the scene. The short wave infrared polarimeter optionally includes a micro-lens array and/or an aperture layer.
G01J 4/04 - Polarimeters using electric detection means
G01J 5/10 - Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
G01J 5/58 - Radiation pyrometry, e.g. infrared or optical thermometry using absorptionRadiation pyrometry, e.g. infrared or optical thermometry using extinction effect
2, DoLP, and AoP from the image data, detecting obscurants and filtering the obscurants from the image data to produce a filtered image, obtaining last known position/orientation data of the object, finding the Sun and zenith in the filtered image, and determining the roll, pitch, yaw, latitude and longitude of the object using the filtered image.
G06K 9/00 - Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
G01S 5/16 - Position-fixing by co-ordinating two or more direction or position-line determinationsPosition-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves
G01S 3/786 - Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
G01S 5/02 - Position-fixing by co-ordinating two or more direction or position-line determinationsPosition-fixing by co-ordinating two or more distance determinations using radio waves
G06T 7/70 - Determining position or orientation of objects or cameras
H04N 7/18 - Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
G06K 9/46 - Extraction of features or characteristics of the image
26.
Pedestrian right of way monitoring and reporting system and method
A system and method for monitoring vehicle traffic and collecting data indicative of pedestrian right of way violations by vehicles is provided. The system comprises memory and logic for monitoring traffic intersections and recording evidence indicating that vehicles have violated pedestrian right of way. Two sensor modalities collecting video data and radar data of the intersection under observation are employed in one embodiment of the system. The violation evidence can be accessed remotely by a traffic official for issuing of traffic citations.
A method using Long Wave Infrared Imaging Polarimetry for improved mapping and perception of a roadway or path and for perceiving or detecting obstacles comprises recording raw image data using a polarimeter to obtain polarized images of the roadway or area. The images are then corrected for non-uniformity, optical distortion, and registration. IR and polarization data products are computed, and the resultant data products are converted to a multi-dimensional data set for exploitation. Contrast enhancement algorithms are applied to the multi-dimensional imagery to form enhanced object images. The enhanced object images may then be displayed to a user, and/or an annunciator may announce the presence of an object. Further, the vehicle may take evasive action based upon the presence of an object in the roadway.
2 are obtained by weighted subtraction of the polarized image to form Stokes images. DoLP is computed from the Stokes images, and facial recognition algorithms are applied to the DoLP image. A system for enhancing images for facial recognition comprises a polarimeter configured to record polarized image data of a subject's face, a signal processing unit and logic configured to receive and store in memory the image data from the polarimeter, calculate Stokes parameters from the image data, and compute a DoLP image from the Stokes parameters.
A method using Long Wave Infrared Imaging Polarimetry for improved mapping and perception of a roadway or path and for perceiving or detecting obstacles comprises recording raw image data using a polarimeter to obtain polarized images of the roadway or area. The images are then corrected for non-uniformity, optical distortion, and registration. IR and polarization data products are computed, and the resultant data products are converted to a multi-dimensional data set for exploitation. Contrast enhancement algorithms are applied to the multi-dimensional imagery to form enhanced object images. The enhanced object images may then be displayed to a user, and/or an annunciator may announce the presence of an object. Further, the vehicle may take evasive action based upon the presence of an object in the roadway.
A method using Infrared Imaging Polarimetry for detecting the presence of foreign fluids on water comprises estimating an expected polarization response for a foreign fluid desired to be detected. Oil from an oil spill is one such foreign fluid. An optimal position of a polarimeter to take images of the water's surface is determined from the expected polarization response. The polarimeter is positioned at the optimal position and records raw image data of the water's surface to obtain polarized images of the area. The polarized images are corrected, and IR and polarization data products are computed. The IR and polarization data products are converted to multi-dimensional data set to form multi-dimensional imagery. Contrast algorithms are applied to the multi-dimensional imagery to form enhanced contrast images, from which foreign fluids can be automatically detected.
G01N 21/35 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
31.
Wide-area real-time method for detecting foreign fluids on water surfaces
A method using Infrared Imaging Polarimetry for detecting the presence of foreign fluids on water comprises estimating an expected polarization response for a foreign fluid desired to be detected. Oil from an oil spill is one such foreign fluid. An optimal position of a polarimeter to take images of the water's surface is determined from the expected polarization response. The polarimeter is positioned at the optimal position and records raw image data of the water's surface to obtain polarized images of the area. The polarized images are corrected, and IR and polarization data products are computed. The IR and polarization data products are converted to multi-dimensional data set to form multi-dimensional imagery. Contrast algorithms are applied to the multi-dimensional imagery to form enhanced contrast images, from which foreign fluids can be automatically detected.
A long wave infrared imaging polarimeter (LWIP) is disclosed including a pixilated polarizing array (PPA) in close proximity to a microbolometer focal plane array (MFPA), along with an alignment engine for aligning and bonding the PPA and MFPA and method for assembly.
G01J 5/58 - Radiation pyrometry, e.g. infrared or optical thermometry using absorptionRadiation pyrometry, e.g. infrared or optical thermometry using extinction effect
A method for enhancing an image for facial recognition comprises capturing an image of the face with a polarizer and correcting the polarized image for non-uniformity. Stokes Parameters S0, S1, S2 are obtained by weighted subtraction of the polarized image to form Stokes images. DoLP is computed from the Stokes images, and facial recognition algorithms are applied to the DoLP image. A system for enhancing images for facial recognition comprises a polarimeter configured to record polarized image data of a subject's face, a signal processing unit and logic configured to receive and store in memory the image data from the polarimeter, calculate Stokes parameters from the image data, and compute a DoLP image from the Stokes parameters.
2, DoLP, and AoP from the image data, detecting obscurants and filtering the obscurants from the image data to produce a filtered image, obtaining last known position/orientation data of the object, finding the Sun and zenith in the filtered image, and determining the roll, pitch, yaw, latitude and longitude of the object using the filtered image.
G06K 9/00 - Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
G01S 3/786 - Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
G01S 3/783 - Systems for determining direction or deviation from predetermined direction using amplitude comparison of signals derived from static detectors or detector systems
G01S 5/02 - Position-fixing by co-ordinating two or more direction or position-line determinationsPosition-fixing by co-ordinating two or more distance determinations using radio waves
G01S 5/16 - Position-fixing by co-ordinating two or more direction or position-line determinationsPosition-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves
A method and system for determining a new orientation and/or position of an object comprises a sky polarimeter configured to record image data of the sky. a signal processing unit, and logic configured to receive and store in memory the image data received from the sky polarimeter. The logic calculates the Stokes parameters (SO, S1, S2,), DoLP, and AoP from the image data, detects obscurants and filters the obscurants (such as clouds and trees) from the image data to produce a filtered image. The logic is further configured to find the Sun and zenith in the filtered image, and to determine the roll, pitch, yaw, latitude and longitude of the object using the filtered image.
09 - Scientific and electric apparatus and instruments
Goods & Services
Polarimetric sensors for recording polarized images of celestial light and determining location, orientation or position, in the fields of navigation and guidance
38.
Pedestrian right of way monitoring and reporting system and method
A system and method for monitoring vehicle traffic and collecting data indicative of pedestrian right of way violations by vehicles is provided. The system comprises memory and logic for monitoring traffic intersections and recording evidence indicating that vehicles have violated pedestrian right of way. Two sensor modalities collecting video data and radar data of the intersection under observation are employed in one embodiment of the system. The violation evidence can be accessed remotely by a traffic official for issuing of traffic citations.
A system and method for monitoring vehicle traffic and collecting data indicative of pedestrian right of way violations by vehicles is provided. The system comprises memory and logic for monitoring traffic intersections and recording evidence indicating that vehicles; have violated pedestrian right of way. Two sensor modalities collecting video data and radar data of the intersection; under observation are employed in one embodiment of the system. The violation, evidence can be accessed remotely by a traffic official for issuing of traffic citations.
A long wave infrared imaging polarimeter (LWIP) is disclosed including a pixilated polarizing array (PPA) in close proximity to a microbolometer focal plane array (MFPA), along with an alignment engine for aligning and bonding the PPA and MFPA and method for assembly.
G01J 5/58 - Radiation pyrometry, e.g. infrared or optical thermometry using absorptionRadiation pyrometry, e.g. infrared or optical thermometry using extinction effect
42 - Scientific, technological and industrial services, research and design
Goods & Services
engineering services in the fields of polarimeter design and calibration, optical system design and development, optics, electro-optical design, opto-mechanical design, printed circuit board design, and sensor prototype development
42 - Scientific, technological and industrial services, research and design
Goods & Services
engineering services in the field of Long-Wavelength Infrared (LWIR) imaging sensors, systems and technology; software engineering services in the field of LWIR imaging
43.
System for measuring the concentration of an additive in a mixture
An apparatus and method for determining a concentration of an additive in a mixture is provided. The apparatus for determining the concentration of an additive in a mixture comprises a distillation system, a filtration system, a detection system and a fluid transportation system. An alternative apparatus is a portable apparatus comprising a distillation system, a filtration system, a detection system and a fluid transportation system removably coupled to a portable container. A method for determining the concentration of the additive in the mixture includes concentrating the additive in the mixture, removing the additive from a fraction of the mixture and measuring a spectral signature of both the non-additive fraction of the mixture and the mixture. A spectral signature value of the non-additive fraction of the mixture to the mixture is determined and then compared to spectral signatures of a plurality of reference mixtures containing known concentrations of the additive.
G01N 21/00 - Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
G01N 21/31 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
G01N 21/3577 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water
G01N 21/17 - Systems in which incident light is modified in accordance with the properties of the material investigated
A smoke producing method and device of the present disclosure produces a non-incendiary, organic-polymerization based, smoke-producing reaction. The limited of generating smoke comprises Initiating a frontal polymerization reaction by heating a composition comprising a monomer compound that exothermically polymerizes upon initiation with an initiator compound and an initiator compound that initiates polymerization of the monomer compound present at a mass concentration that is at least five percent of the mass concentration of the monomer compound. The polymerization of the monomer compound is exothermic, and in one embodiment the concentration of initiator compound is at least five percent of the concentration of monomer compound. The smoke mainly comprises thermal decomposition products of the initiator compound.
A flame detection apparatus is provided that provides low cost fire detection with improved false alarm discrimination and that includes at least two optical sensors, each configured with a Long Wave Pass IR filter with distinct minimum responsive wavelengths and arrayed to broadly sample the MWIR band.
A system for displaying three-dimensional images and video utilizing flat panel technology, such as liquid crystal technology, wherein the left and right images are separated by polarization and the user wears polarized glasses (114) to view the display. A first display (106), which may be any display technology, is used to generated an intensity modulated images. The second display (110) is used to modulate the polarization of the intensity modulated image. A light spreading device (112) is used to spread the light to minimize Moire effects resulting from the use of two displays. In one embodiment, the light spreader is a diffuser (112). In another embodiment, the light spreader is a micro lens array.
G02F 1/133 - Constructional arrangementsOperation of liquid crystal cellsCircuit arrangements
G02F 1/1347 - Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells