Methods and materials to fabricate laminated variable transmission devices are disclosed, particularly the laminates of electrochromic devices where the electrolytic interlayer is deposited by 3d printing (or also called additive manufacturing process). Printing may be used to form both an interlayer and a sealant located at the perimeter of the interlayer. A lamination process to form the EC device combines the assembly of a protective film using a third substrate is also disclosed.
B29D 11/00 - Producing optical elements, e.g. lenses or prisms
B29K 75/00 - Use of polyureas or polyurethanes as moulding material
B32B 17/10 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin
B33Y 80/00 - Products made by additive manufacturing
2.
INSULATED GLASS UNIT UTILIZING ELECTROCHROMIC ELEMENTS WITH MULTIPE LOW-E COATINGS
Methods and materials to fabricate electrochromic including electrochemical devices are disclosed. In particular, emphasis is placed on the composition, fabrication and incorporation of electrolytic sheets in these devices. Composition, fabrication and incorporation of redox materials and sealants suitable for these devices are also disclosed. Incorporation of EC devices in insulated glass system (IGU) windows is also disclosed.
G02F 1/1516 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising organic material
3.
INSULATED GLASS UNIT UTILIZING ELECTROCHROMIC ELEMENTS
This disclosure includes insulated glass units for use in windows of buildings and other applications which have high energy efficiency and use an electrochromic element so that the solar light transmission properties of these windows are configured to be changed by applying an electrical voltage. This disclosure includes an insulated glass unit (IGU) having a single sealed cavity formed between (a) an electrochromic (EC) element and (b) a second element that is a transparent element or is a privacy element configured to reversibly change its optical state from clear transparent state to an opaque state by application of an electrical voltage, wherein the said cavity is filled with a gas, wherein at least one of the surfaces of elements (a) and (b) is coated with a low-emissivity (Low-E) coating.
The present invention relates to the methods of recycling electrochromic devices and also designing such devices while keeping recyclability in perspective. Recyclability includes recovering of certain materials for re-use within the same application or other applications. Using recycling reduces or eliminates waste stream quantities to be disposed of and/or reduces toxicity of these waste streams.
This disclosure provides compositions of electrochromic dyes, functionalized electrochromic dyes and dye macromers which may be incorporated into electrochromic devices with tailored optical properties. The disclosure provides electrochromic devices and electrochromic materials which do not use halogenated anions. This disclosure also provides EC compositions and devices for controlling color.
G02F 1/1516 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising organic material
6.
Method to fabricate laminate devices using printed interlayers
Methods and materials to fabricate laminated devices are disclosed, particularly the laminates where the interlayer is deposited by 3d printing (or also called additive manufacturing process). In particular, emphasis is placed on the fabrication of electrooptical devices, including electrochromic, thermochromic and liquid crystal devices. In the electrochromic devices at least the electrolytic interlayer or optionally some of the other layers are deposited by this process, and for the other two the interlayer contains thermochromic and the liquid crystalline material respectively. In one embodiment printing is used to form both an interlayer and a sealant located at the perimeter of the interlayer. Laminated glass and plastic objects using this invention have many applications including their use in windows for building and transportation.
B29D 11/00 - Producing optical elements, e.g. lenses or prisms
B29C 51/08 - Deep-drawing or matched-mould forming, i.e. using mechanical means only
B29C 64/118 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
B29C 65/02 - Joining of preformed partsApparatus therefor by heating, with or without pressure
This disclosure provides compositions of electrochromic dyes, functionalized electrochromic dyes and dye macromers which may be incorporated into electrochromic devices with tailored optical properties. The disclosure provides an electrochromic dye with an attached functionalization group wherein the said dye colors by at least one of oxidation and reduction and contains at least two moieties wherein a first moiety is electrochromic and a second moiety is an electrochromic moiety, an electron donating moiety, or an electron receiving moiety and wherein the functionalization group. This disclosure also provides EC compositions and devices for controlling color.
G02F 1/1516 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising organic material
G02F 1/1503 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect caused by oxidation-reduction reactions in organic liquid solutions, e.g. viologen solutions
Methods and materials to fabricate electrochromic including electrochemical devices are disclosed. In particular, emphasis is placed on the composition, fabrication and incorporation of electrolytic sheets in these devices. Composition, fabrication and incorporation of redox materials and sealants suitable for these devices are also disclosed. Incorporation of EC devices in insulated glass system (IGU) windows is also disclosed.
Methods and materials to fabricate laminated devices are disclosed, particularly the laminates where the interlayer is deposited by 3d printing (or also called additive manufacturing process). In particular, emphasis is placed on the fabrication of electrooptical devices, including electrochromic, thermochromic and liquid crystal devices. In the electrochromic devices at least the electrolytic interlayer or optionally some of the other layers are deposited by this process, and for the other two the interlayer contains thermochromic and the liquid crystalline material respectively. In one embodiment printing is used to form both an interlayer and a sealant located at the perimeter of the interlayer. Laminated glass and plastic objects using this invention have many applications including their use in windows for building and transportation.
G02F 1/15 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect
G02F 1/161 - GasketsSpacersSealing of cellsFilling or closing of cells
B33Y 80/00 - Products made by additive manufacturing
G02F 1/1516 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising organic material
G02F 1/1514 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
B33Y 70/00 - Materials specially adapted for additive manufacturing
This disclosure provides compositions of electrochromic dyes, functionalized electrochromic dyes and dye macromers which may be incorporated into electrochromic devices with tailored optical properties. The disclosure provides an electrochromic dye with an attached functionalization group wherein the said dye colors by at least one of oxidation and reduction and contains at least two moieties wherein a first moiety is electrochromic and a second moiety is an electrochromic moiety, an electron donating moiety, or an electron receiving moiety and wherein the functionalization group.
G02F 1/1516 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising organic material
C07D 215/00 - Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
C07D 219/10 - Nitrogen atoms attached in position 9
C07D 409/00 - Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
G02F 1/1503 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect caused by oxidation-reduction reactions in organic liquid solutions, e.g. viologen solutions
Methods and materials to fabricate electrochromic including electrochemical devices are disclosed. In particular, emphasis is placed on the composition, fabrication and incorporation of electrolytic sheets in these devices. Composition, fabrication and incorporation of redox layers and sealants suitable for these devices are also disclosed. Incorporation of EC devices in insulated glass system (IGU) windows is also disclosed.
G02F 1/133 - Constructional arrangementsOperation of liquid crystal cellsCircuit arrangements
G02F 1/161 - GasketsSpacersSealing of cellsFilling or closing of cells
G02F 1/15 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect
H01B 1/12 - Conductors or conductive bodies characterised by the conductive materialsSelection of materials as conductors mainly consisting of other non-metallic substances organic substances
B32B 7/12 - Interconnection of layers using interposed adhesives or interposed materials with bonding properties
C09J 153/00 - Adhesives based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bondsAdhesives based on derivatives of such polymers
G02F 1/1516 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising organic material
E06B 9/24 - Screens or other constructions affording protection against light, especially against sunshineSimilar screens for privacy or appearance
G02F 1/1335 - Structural association of cells with optical devices, e.g. polarisers or reflectors
B32B 17/10 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin
G02F 1/1503 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect caused by oxidation-reduction reactions in organic liquid solutions, e.g. viologen solutions
C08G 18/24 - Catalysts containing metal compounds of tin
C08G 18/73 - Polyisocyanates or polyisothiocyanates acyclic
G02F 1/1523 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
H01M 10/0565 - Polymeric materials, e.g. gel-type or solid-type
The present invention relates to the methods of recycling electrochromic devices and also designing such devices while keeping recyclability in perspective. Recyclability includes recovering of certain materials for re-use within the same application or other applications. Using recycling reduces or eliminates waste stream quantities to be disposed of and/or reduces toxicity of these waste streams.
Methods and materials to fabricate electrochromic including electrochemical devices are disclosed. In particular, emphasis is placed on the composition, fabrication and incorporation of electrolytic sheets in these devices. Composition, fabrication and incorporation of redox layers and sealants suitable for these devices are also disclosed. Incorporation of EC devices in insulated glass system (IGU) windows is also disclosed.
G02F 1/1516 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising organic material
E06B 3/67 - Units comprising two or more parallel glass or like panes in spaced relationship, the panes being permanently secured together, e.g. along the edges characterised by additional arrangements or devices for heat or sound insulation
G02F 1/161 - GasketsSpacersSealing of cellsFilling or closing of cells
G02F 1/15 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect
E06B 9/24 - Screens or other constructions affording protection against light, especially against sunshineSimilar screens for privacy or appearance
The present invention relates to the methods of recycling electrochromic devices and also designing such devices while keeping recyclability in perspective. Recyclability includes recovering of certain materials for re-use within the same application or other applications. Using recycling reduces or eliminates waste stream quantities to be disposed of and/or reduces toxicity of these waste streams.
Methods and materials to fabricate electrochromic including electrochemical devices are disclosed. In particular, emphasis is placed on the composition, fabrication and incorporation of electrolytic sheets in these devices. Composition, fabrication and incorporation of redox layers and sealants suitable for these devices are also disclosed. Incorporation of EC devices in insulated glass system (IGU) windows is also disclosed.
G02F 1/1516 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising organic material
E06B 9/24 - Screens or other constructions affording protection against light, especially against sunshineSimilar screens for privacy or appearance
G02F 1/161 - GasketsSpacersSealing of cellsFilling or closing of cells
B32B 7/12 - Interconnection of layers using interposed adhesives or interposed materials with bonding properties
B32B 17/10 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin
C09J 153/00 - Adhesives based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bondsAdhesives based on derivatives of such polymers
G02F 1/1503 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect caused by oxidation-reduction reactions in organic liquid solutions, e.g. viologen solutions
G02F 1/15 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect
G02F 1/1523 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
H01B 1/12 - Conductors or conductive bodies characterised by the conductive materialsSelection of materials as conductors mainly consisting of other non-metallic substances organic substances
H01M 10/0565 - Polymeric materials, e.g. gel-type or solid-type
16.
Insulated glass unit utilizing electrochromic elements
Methods and materials to fabricate electrochromic including electrochemical devices are disclosed. In particular, emphasis is placed on the composition, fabrication and incorporation of electrolytic sheets in these devices. Composition, fabrication and incorporation of redox layers and sealants suitable for these devices are also disclosed. Incorporation of EC devices in insulated glass system (IGU) windows is also disclosed.
G02F 1/15 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect
G02F 1/1516 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising organic material
E06B 9/24 - Screens or other constructions affording protection against light, especially against sunshineSimilar screens for privacy or appearance
G02F 1/161 - GasketsSpacersSealing of cellsFilling or closing of cells
B32B 7/12 - Interconnection of layers using interposed adhesives or interposed materials with bonding properties
B32B 17/10 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin
C09J 153/00 - Adhesives based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bondsAdhesives based on derivatives of such polymers
G02F 1/1503 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect caused by oxidation-reduction reactions in organic liquid solutions, e.g. viologen solutions
G02F 1/1523 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
H01B 1/12 - Conductors or conductive bodies characterised by the conductive materialsSelection of materials as conductors mainly consisting of other non-metallic substances organic substances
H01M 10/0565 - Polymeric materials, e.g. gel-type or solid-type
Methods and materials to fabricate electrochromic including electrochemical devices are disclosed. In particular, emphasis is placed on the composition, fabrication and incorporation of electrolytic sheets in these devices. Composition, fabrication and incorporation of redox layers and sealants suitable for these devices are also disclosed. Incorporation of EC devices in insulated glass system (IGU) windows is also disclosed.
G02F 1/15 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect
G02F 1/1516 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising organic material
E06B 9/24 - Screens or other constructions affording protection against light, especially against sunshineSimilar screens for privacy or appearance
G02F 1/161 - GasketsSpacersSealing of cellsFilling or closing of cells
B32B 7/12 - Interconnection of layers using interposed adhesives or interposed materials with bonding properties
B32B 17/10 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin
C09J 153/00 - Adhesives based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bondsAdhesives based on derivatives of such polymers
G02F 1/1503 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect caused by oxidation-reduction reactions in organic liquid solutions, e.g. viologen solutions
G02F 1/1523 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
H01B 1/12 - Conductors or conductive bodies characterised by the conductive materialsSelection of materials as conductors mainly consisting of other non-metallic substances organic substances
H01M 10/0565 - Polymeric materials, e.g. gel-type or solid-type
An integrated window structure having opposing substrates that sandwich an electrochromic coating, a dye layer and an ion-isolating mechanism. In some embodiments, this is a selective ion-conductive layer and other embodiments incorporate nanostructures and polymers to tether the dye ions; these methods prevent dye ions from transporting into the electrochromic layer during redox activity. Control and systems to integrate the electrochromic elements in windows is provided.
E06B 9/24 - Screens or other constructions affording protection against light, especially against sunshineSimilar screens for privacy or appearance
G02F 1/15 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect
An integrated window structure having opposing substrates that sandwich an electrochromic coating, a dye layer and an ion-isolating mechanism. In some embodiments, this is a selective ion-conductive layer and other embodiments incorporate nanostructures and polymers to tether the dye ions; these methods prevent dye ions from transporting into the electrochromic layer during redox activity. Control and systems to integrate the electrochromic elements in windows is provided.
G02F 1/15 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect
G02F 1/01 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour
G02F 1/163 - Operation of electrochromic cells, e.g. electrodeposition cellsCircuit arrangements therefor
E06B 3/66 - Units comprising two or more parallel glass or like panes in spaced relationship, the panes being permanently secured together, e.g. along the edges
An integrated window structure having opposing substrates that sandwich an electrochromic coating, a dye layer and an ion-isolating mechanism. In some embodiments, this is a selective ion-conductive layer and other embodiments incorporate nanostructures and polymers to tether the dye ions; these methods prevent dye ions from transporting into the electrochromic layer during redox activity. Control and systems to integrate the electrochromic elements in windows is provided.
G02F 1/15 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect
Chromatic systems and structures are presented that operate without external electrical supply, which enable changes in color or transparency of a substrate material, such as glass. Various configurations provide a mechanism to activate an oxidation-reduction reaction in a chromatic material, so as to change from transparent to opaque or from one color to another. These structures may be used in applications from windows for buildings and homes, camera lenses, automotive displays and windows, mobile device displays, and other applications where chromatic change is desired.
G02F 1/163 - Operation of electrochromic cells, e.g. electrodeposition cellsCircuit arrangements therefor
G09G 3/38 - Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix by control of light from an independent source using electrochromic devices
G02F 1/15 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect
Chromatic systems and structures are presented that operate without external electrical supply, which enable changes in color or transparency of a substrate material, such as glass. Various configurations provide a mechanism to activate an oxidation-reduction reaction in a chromatic material, so as to change from transparent to opaque or from one color to another. These structures may be used in applications from windows for buildings and homes, camera lenses, automotive displays and windows, mobile device displays, and other applications where chromatic change is desired.