Sealing gas systems and related methods are provided. The sealing gas system includes a machine having a first end, a bearing carrier, and a shaft seal vent, wherein the machine receives a sealing gas flow; and at least one processor, wherein the at least one processor includes or is in communication with a temperature controller for detecting a temperature of a vent gas flow at the shaft seal vent; wherein the at least one processor and/or the temperature controller are configured to detect a process gas flow through the shaft seal vent based on the detected temperature of the vent gas flow at the shaft seal vent.
G01M 3/28 - Investigating fluid tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables, or tubesInvestigating fluid tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipe joints or sealsInvestigating fluid tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for valves
F24F 11/49 - Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring ensuring correct operation, e.g. by trial operation or configuration checks
F24F 11/30 - Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
G01M 3/32 - Investigating fluid tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators
Sealing gas systems and related methods are provided. The sealing gas system includes a machine having a first end, a bearing carrier, and a shaft seal vent, wherein the machine receives a sealing gas flow; and at least one processor, wherein the at least one processor includes or is in communication with a temperature controller for detecting a temperature of a vent gas flow at the shaft seal vent; wherein the at least one processor and/or the temperature controller are configured to detect a process gas flow through the shaft seal vent based on the detected temperature of the vent gas flow at the shaft seal vent.
F01D 11/08 - Preventing or minimising internal leakage of working fluid, e.g. between stages for sealing space between rotor blade tips and stator
F01D 17/08 - Arrangement of sensing elements responsive to condition of working fluid, e.g. pressure
F01D 21/12 - Shutting-down of machines or engines, e.g. in emergencyRegulating, controlling, or safety means not otherwise provided for responsive to temperature
An improved high performance inducer for a pump assembly includes a set of primary blades and splitter blades to achieve a vapor-to-liquid ratio up to 1:1. Minimum back pressure is provided at the leading edge to aid in getting fluid into the blades where the vapor component of the pumped fluid is removed. A hub increases in diameter over the axial extent of the helical blades, thereby resulting in a decreasing depth of the blades between the inlet and outlet of the inducer. A substantial improvement in removing fluid from a storage reservoir is obtained resulting in a substantial savings in shipping costs.