Oil filters and lubricant refiners in the nature of oil refining equipment, namely, oil refining machines for engines and motors, and parts and fittings therefor
A lubricant additive dispensing apparatus comprising a tubular housing extending between a fluid supply side and a fluid discharge side, wherein each side is sealed by a respective end wall. A volume of fluid additive is stored within a fluid additive storage cavity formed within the tubular housing. Fluid enters the lubricant additive dispensing apparatus, wherein a first portion of the fluid passes therethrough and a second portion of the fluid is directed towards a piston cap attached to a compression spring. The second fluid portion applies a compression force to the piston, interacting with the generated expansion force of the spring to cause the piston cap to oscillate. The piston cap is in communication with the fluid additive, applying an oscillating pressure thereto, causing a controlled volumetric rate of dispensing of the additive into the fluid.
F01M 9/02 - Lubrication means having pertinent characteristics not provided for in, or of interest apart from, groups having means for introducing additives to lubricant
F01M 11/00 - Component parts, details, or accessories, not provided for in, or of interest apart from, groups
01 - Chemical and biological materials for industrial, scientific and agricultural use
04 - Industrial oils and greases; lubricants; fuels
07 - Machines and machine tools
Goods & Services
CHEMICAL ADDITIVES FOR LIQUIDS ASSOCIATED WITH THE USE OF INTERNAL COMBUSTION ENGINES REFINERS, NAMELY, NON-CHEMICAL ADDITIVES FOR ENGINE OIL OIL FILTERS FOR ENGINES AND MOTORS
A liquid reclamation assembly is provided for processing a lubricant or other liquid. The assembly includes a housing interior for receiving a filter subassembly. A manifold is in fluid communication with a discharge region of the filter subassembly, the manifold comprising a primary manifold passage for passage of source fluid and a series of draw ports. The cross sectional area of the primary manifold passage is greater than the total cross sectional area of the series of draw ports to create a venturi effect to draw fluid through the assembly. The filter subassembly includes a series of target filtration segment, each segment being designed for a specific reclamation process. An entry manifold governs and distributes the fluid to each of the target filtration segments. Results of an analysis of the fluid can be used to determine which target filtration segments are desired for processing the fluid. Valves within the entry manifold can direct the flow accordingly.
A lubricant reclamation system having a moisture absorbent cartridge (140). The cartridge (140) is fabricated placing a Superabsorbant Polymer (SAP) (142) within a boundary of polyester mesh (143). Moisture is extracted from a lubricant or other fluid and absorbed by the SAP. The moisture latent SAP bonds to the polyester mesh (143), potentially turning into a gel. A layer of polypropylene sorbent (144) is placed about the exterior of the boundary material (143), ensuring any moisture remains exterior to the sorbent layer (144). A resin layer can optionally be placed within a fluid flow following the discharge from polypropylene sorbent extracting aerosol from within the lubricant and as a barrier of detrimental ions with an exchange of beneficial ions. The entire cartridge can be placed within an enclosure or pouch body (162). The body (162) is designed to expand, accommodating a resultant increase in SAP volume. The cartridges can be integrated into filters comprising commonly known filtration elements.
B01D 17/022 - Separation of non-miscible liquids by contact with a preferentially wettable solid
B01D 15/08 - Selective adsorption, e.g. chromatography
B01D 15/22 - Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to the construction of the column
B01D 27/06 - Cartridge filters of the throw-away type with cartridges made of a piece of unitary material, e.g. filter paper with corrugated, folded or wound material
A lubricant additive dispensing apparatus comprising a base providing a manifold distribution to present lubricant to a series of dispensing chambers. The dispensing chambers are fabricated having a porous sidewall formed in a tubular shape. Additive is stored within a reservoir formed by the tubular shape. A delivery piston is provided proximate and in fluid communication with the manifold. The lubricant applies pressure to the delivery piston. The delivery piston applies pressure to the stored additive. The pressure forces a small volume of additive to pass through the porous sidewall, blending the additive with the flowing lubricant. The reservoir can be formed between an outer tubular member and an inner tubular member. Lubricant can pass through an interior of the inner tubular member, existing a flow discharge port located proximate an end cap assembled to a distal end of the reservoir.
F16N 25/02 - Distributing equipment with reciprocating distributing slide valve
F16N 3/08 - Oil cansOil syringes incorporating a piston-pump
F16N 9/04 - Arrangements for supplying oil or unspecified lubricant from a moving reservoir or the equivalent with reservoir on or in a reciprocating, rocking, or swinging member
A lubricant reclamation configuration includes a series of fluid inlets that distribute the fluid to a series of parallel arrangement of individual filter assemblies. A filter control valve assembly is assembled between the distribution manifold and each respective filter assembly individually controlling fluid flow between the distribution manifold and each respective filter assembly. The filter assembly processes the fluid. The processed fluid is collected and retuned to the system via a series of collection channels. The distribution manifold is preferably fabricated of a series of plates.
A lubricant reclamation system having a moisture absorbent cartridge (140). The cartridge (140) is fabricated placing a Superabsorbant Polymer (SAP) (142) within a boundary of polyester mesh (143). Moisture is extracted from a lubricant or other fluid and absorbed by the SAP. The moisture latent SAP bonds to the polyester mesh (143), potentially turning into a gel. A layer of polypropylene sorbent (144) is placed about the exterior of the boundary material (143), ensuring any moisture remains exterior to the sorbent layer (144). A resin layer can optionally be placed within a fluid flow following the discharge from polypropylene sorbent extracting aerosol from within the lubricant and as a barrier of detrimental ions with an exchange of beneficial ions. The entire cartridge can be placed within an enclosure or pouch body (162). The body (162) is designed to expand, accommodating a resultant increase in SAP volume. The cartridges can be integrated into filters comprising commonly known filtration elements.
B01D 15/00 - Separating processes involving the treatment of liquids with solid sorbentsApparatus therefor
B01D 29/00 - Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups Filtering elements therefor
B01D 36/00 - Filter circuits or combinations of filters with other separating devices