An apparatus, method and system is provided for treating sewage sludge by dewatering the sewage sludge, heating the sewage sludge being treated to destroy pathogens, and then reducing volatile solids in the sewage sludge being treated through biochemical decomposition to produce a treated biosolids product that meets government regulations for pathogen reduction and vector attraction reduction.
C02F 11/127 - Treatment of sludgeDevices therefor by de-watering, drying or thickening by mechanical de-watering by centrifugation
C02F 11/145 - Treatment of sludgeDevices therefor by de-watering, drying or thickening with addition of chemical agents using inorganic substances using calcium compounds
Process for treating sludge includes a first segment in which a batch of sludge and lime are mixed with the addition of supplement heat to achieve an elevated processing temperature and a second segment in which the mixer is maintained at a lower temperature to dry the interior of the mixing device after processing the batch.
C02F 11/145 - Treatment of sludgeDevices therefor by de-watering, drying or thickening with addition of chemical agents using inorganic substances using calcium compounds
C02F 11/18 - Treatment of sludgeDevices therefor by thermal conditioning
3.
Fluidized bed pellet reactor water softener and process for softening water
As pellets grow from seed/sand in a fluidized bed pellent reactor, the weight of the reactor is measured and the density of the contents of the reactor is calculated, and the input flow of untreated water, water treatment chemical, and seed/sand are adjusted to provide improved removal of water hardness while reducing fine particulates in the outflow of softened water from the reactor.
A method and apparatus is provided for treating water with already-slaked lime to arrive at a lime slurry that is in a solution or suspension, and delivering the thus treated water to a separating device which separates grit particles therefrom, to recover a high quality lime/water solution or suspension. An automated system controls the addition of lime and water to a lime mixing vessel. An acid wash system is provided which comprises an automated method and apparatus for removing scale buildup, for delivering an acid wash solution to the lime mixing vessel, the lime slurry holding tank and/or the delivery system, or any of them, thereby dissolving the scale buildup.
A fine grit classifier for removing grit from a milk of lime slurry includes a settling tank for receiving the milk of lime slurry, means for creating turbulence inside the tank to promote grit settling, a launder for collecting milk of lime slurry from an upper portion of the settling tank and directing milk of lime slurry to an outlet, and an auger for transporting settled grit from the lower portion of the settling tank and discharging the settled grit.
As pellets grow from seed/sand in a fluidized bed pellent reactor, the weight of the reactor is measured and the density of the contents of the reactor is calculated, and the input flow of untreated water, water treatement chemical, and seed/sand are adjusted to provide improved removal of water hardness while reducing fine particulates in the outflow of softened water from the reactor.
A sludge handling system includes a bin from which treated sewage sludge is discharged. A rotabable discharge device includes an arm for scraping the inside of the bin and a frusto-conical chute from which sludge is discharged through a gate to a waiting truck. A stationary scoop is provided mounted on the gate to scrape the interior wall of the chute of adhering sludge.
An apparatus, method and system is provided for treating sewage sludge by dewatering the sewage sludge, heating the sewage sludge being treated to destroy pathogens, and then reducing volatile solids in the sewage sludge being treated through biochemical decomposition to produce a treated biosolids product that meets government regulations for pathogen reduction and vector attraction reduction.
C02F 11/145 - Treatment of sludgeDevices therefor by de-watering, drying or thickening with addition of chemical agents using inorganic substances using calcium compounds
C02F 11/18 - Treatment of sludgeDevices therefor by thermal conditioning
An apparatus, method and system is provided for treating sewage sludge by dewatering the sewage sludge, heating the sewage sludge being treated to destroy pathogens, and then reducing volatile solids in the sewage sludge being treated through biochemical decomposition to produce a treated biosolids product that meets government regulations for pathogen reduction and vector attraction reduction.
A method and apparatus is provided for water filtration of a milk of lime solution that contains water, impurities, and grit particles, in which the milk of lime solution enters a vessel, and wherein turbulence is created in the vessel, by which larger grit particles settle out of the milk of lime solution, to form a bed of grit particles in the lower end of the vessel, such that grit particles and impurities are filtered from the lime-treated water that comprises a milk of lime solution, with water then being drawn off, that may be discharged out one or more dosing locations and/or recycled back for further filtration, as may be desired.
Process and apparatus is disclosed for providing a chemical reaction between calcium oxide containing grit particles to produce calcium hydroxide and heat, capturing the heat of hydration and using it to preheat water initially at ambient temperature, to rise to an elevated temperature to increase the amount of lime present in the water to a supersaturated lime suspension level, with the chemical reaction running to completion, followed by cooling. Heat from a water jacket may be used to raise the temperature in the lime slaker. A process and apparatus is also provided for dissolving scale on internal surfaces of a lime slaker, a lime aging tank, grit separation device and piping and dosing sub-systems, by adding acid into the system with rinse water. A pressurized delivery system that is substantially closed to the atmosphere delivers treating doses of slaked lime slurry under sufficient pressure conditions to maintain a relatively constant back pressure, by means of valving.
A method and apparatus is provided for treating water with already-slaked lime to arrive at a lime slurry that is in a solution or suspension, and delivering the thus treated water to a separating device which separates grit particles therefrom, to recover a high quality lime/water solution or suspension. An automated system controls the addition of lime and water to a lime mixing vessel.
An acid wash system is provided which comprises an automated method and apparatus for removing scale buildup, for delivering an acid wash solution to the lime mixing vessel, the lime slurry holding tank and/or the delivery system, or any of them, thereby dissolving the scale buildup.
Process and apparatus is disclosed for providing a chemical reaction between calcium oxide containing grit particles to produce calcium hydroxide and heat, capturing the heat of hydration and using it to preheat water initially at ambient temperature, to rise to an elevated temperature to increase the amount of lime present in the water to a supersaturated lime suspension level, with the chemical reaction running to completion, followed by cooling. Heat from a water jacket may be used to raise the temperature in the lime slaker.
Process and apparatus is disclosed for providing a chemical reaction between calcium oxide containing grit particles to produce calcium hydroxide and heat, capturing the heat of hydration and using it to preheat water initially at ambient temperature, to rise to an elevated temperature to increase the amount of lime present in the water to a supersaturated lime suspension level, with the chemical reaction running to completion, followed by cooling. Heat from a water jacket may be used to raise the temperature in the lime slaker.
A lime stabilization system for treatment of sewage sludge, and method is provided in which dewatered sludge and lime are provided to a mixer. Lime and sludge are mixed to raise the pH during which volatiles are driven off with or without supplemental heat. A forced air draft prevents steam from backing up into the lime supply. The sludge goes to a discharge station via a transfer apparatus, and air containing any dust, odors, steam or ammonia is cleaned via a scrubber. The system is computer-controlled via gravimetric load cells and/or volumetric means. The system includes computer controlled means for dissolving scale resulting from exposure of surfaces to lime, using acid, water or combinations thereof.
A lime stabilization system and method is provided in which thickened liquid sludge and lime are separately delivered, under controlled conditions, to a reaction tank and mixed therein to a predetermined pH, controlled via a programmable logic computer. The weight of liquid sludge in the reaction tank is controlled from the computer via load cells that measure the weight of such liquid sludge in the reaction tank. The computer monitors the amount of liquid sludge and lime delivered to the reaction tank, for mixing therein to a desired pH, for a predetermined amount of time, and the resultant mix is discharged from the reaction tank, to a holding tank, for return to the land.
A method and apparatus is provided for the automated discharge of treated sewage sludge to trucks, via inventory management by tracking the flow of sludge from bins in which it is located to trucks, on a first-in/first-out basis, including automated truck positioning, automated precision truck loading and monitoring and controlling the various interrelated components via a PLC computer program.
Process and apparatus is provided for making a solution of sodium carbonate (soda ash) and water by which the soda ash is delivered in dry, particulate form to a silo, while air is being exhausted from the silo, dehumidifying air from the silo and discontinuing the dehumidifying of air while soda ash is being delivered to the silo, delumping soda ash in the silo, and then delivering water to a mixing vessel and transferring particulate soda ash to the treating vessel, in which it is mixed and the resulting solution is then discharged. The solution can be delivered to a storage tank or vessel and then to either a single or multiple outlet dosing station and/or some of the solution can be returned to a storage silo.
Process and apparatus is disclosed for providing a chemical reaction between calcium oxide containing grit particles to produce calcium hydroxide and heat, capturing the heat of hydration and using it to preheat water initially at ambient temperature, to rise to an elevated temperature to increase the amount of lime present in the water to a supersaturated lime suspension level, with the chemical reaction running to completion, followed by cooling. Heat from a water jacket may be used to raise the temperature in the lime slaker. A process and apparatus is also provided for dissolving scale on internal surfaces of a lime slaker, a lime aging tank, grit separation device and piping and dosing sub-systems, by adding acid into the system with rinse water. A pressurized delivery system that is substantially closed to atmosphere delivers treating dosing under sufficient pressure conditions to maintain a relatively constant back pressure, by means of valving.
A method and apparatus is provided for water filtration of a milk of lime solution that contains water, impurities, and grit particles, in which the milk of lime solution enters a vessel, and wherein turbulence is created in the vessel, by which larger grit particles settle out of the milk of lime solution, to form a bed of grit particles in the lower end of the vessel, such that grit particles and impurities are filtered from the lime-treated water that comprises a milk of lime solution, with water then being drawn off, that may be discharged out one or more dosing locations and/or recycled back for further filtration, as may be desired.
C02F 1/38 - Treatment of water, waste water, or sewage by centrifugal separation
B01D 21/26 - Separation of sediment aided by centrifugal force
B04C 7/00 - Apparatus not provided for in group , or Multiple arrangements not provided for in one of the groups , , or Combinations of apparatus covered by two or more of the groups , , or
B01D 36/02 - Combinations of filters of different kinds
B01D 24/36 - Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof with the filter bed fluidised during the filtration
A sewage sludge silo is provided, having a central discharge arm for discharging sludge via a central discharge opening, by means of the discharge arm sweeping across a preferably sloped silo floor, with the discharge arm having upper and lower ends, with the lower end extending forward of the upper end in transverse generally vertical cross-section, as the discharge arm moves in a forward direction across the silo floor. The silo floor can be of multi-layer construction, with one of the layers being molded to facilitate a sloped configuration for the silo floor. The movement of a silo discharge arm can be computer controlled to adjust the speed of the discharge arm to maintain a predetermined or substantially constant rate of discharge of sludge from the silo, with such control being facilitated by appropriate sensor mechanisms.
G01F 11/20 - Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with measuring chambers moved during operation of the valve type, i.e. the separating being effected by fluid-tight or powder-tight movements wherein the measuring chamber rotates or oscillates
B01D 21/18 - Construction of the scrapers or the driving mechanisms for settling tanks
C02F 1/38 - Treatment of water, waste water, or sewage by centrifugal separation
A sewage sludge silo is provided, having a central discharge arm for discharging sludge via a central discharge opening, by means of the discharge arm sweeping across a preferably sloped silo floor, with the discharge arm having upper and lower ends, with the lower end extending forward of the upper end in transverse generally vertical cross-section, as the discharge arm moves in a forward direction across the silo floor. The silo floor can be of multi-layer construction, with one of the layers being molded to facilitate a sloped configuration for the silo floor. The movement of a silo discharge arm can be computer controlled to adjust the speed of the discharge arm to maintain a predetermined or substantially constant rate of discharge of sludge from the silo, with such control being facilitated by appropriate sensor mechanisms.
A method and apparatus is provided for the automated discharge of treated sewage sludge to trucks, via inventory management by tracking the flow of sludge from bins in which it is located to trucks, on a first-in/first-out basis, including automated truck positioning, automated precision truck loading and monitoring and controlling the various interrelated components via a PLC computer program.
A sludge handling system includes at least one bin that receives sewage sludge at an upper end thereof, and that has sloped side wall(s) at the lower end thereof, for directing sewage sludge toward a generally central discharge opening. A rotating discharge device is provided in the form of a thin foil or blade that is rotationally driven to scrape along the sloped side wall(s) of the bin, scraping sludge therefrom, to keep the sludge from adhering to sloped portions of the bin, and to direct sludge out the discharge opening. The rotating discharge device is mounted on and carried by a generally cylindrical rotating table that is motor-driven. A generally cylindrical seal is also carried by the rotating table, and slides along the inside of a sludge discharge chute, at the discharge opening of the bin.
Treated sewage sludge containing a flocculant is discharged from bottom of a bin, with the discharge being facilitated by heating sloped walls of the bin an amount sufficient to increase the ability of the sludge to slide along sloped bin walls. The flocculant in the sludge includes a polymeric material which, when heated to a sufficient temperature effects a phase separation of the polymeric material from water, decreasing the viscosity of the polymeric material, facilitating its sliding along the sloped walls. The heating of the polymeric material in the flocculant enables the sloped walls of the bin to be flatter than they would otherwise be, allowing an enhanced volume of sludge to be present in the bin. A programmable logic computer controls the provision of heat to the sloped walls, as well as controlling an openable closure at the bottom of the bin and/or controlling the rotation of a displacement device in the bin.
A sludge handling system includes at least one bin that receives sewage sludge at an upper end thereof, and that has sloped side wall(s) at the lower end thereof, for directing sewage sludge toward a generally central discharge opening. A rotating discharge device is provided in the form of a thin foil or blade that is rotationally driven to scrape along the sloped side wall(s) of the bin, scraping sludge therefrom, to keep the sludge from adhering to sloped portions of the bin, and to direct sludge out the discharge opening. The rotating discharge device is mounted on and carried by a generally cylindrical rotating table that is motor-driven. A generally cylindrical seal is also carried by the rotating table, and slides along the inside of a sludge discharge chute, at the discharge opening of the bin.
A method and apparatus is provided for the automated discharge of treated sewage sludge to trucks, via inventory management by tracking the flow of sludge from bins in which it is located to trucks, on a first-in/first-out basis, including automated truck positioning, automated precision truck loading and monitoring and controlling the various interrelated components via a PLC computer program.
G06F 7/00 - Methods or arrangements for processing data by operating upon the order or content of the data handled
G06F 17/00 - Digital computing or data processing equipment or methods, specially adapted for specific functions
B01D 21/24 - Feed or discharge mechanisms for settling tanks
B01D 21/26 - Separation of sediment aided by centrifugal force
B01D 21/01 - Separation of suspended solid particles from liquids by sedimentation using flocculating agents
B01D 35/00 - Filtering devices having features not specifically covered by groups , or for applications not specifically covered by groups Auxiliary devices for filtrationFilter housing constructions
28.
Process and apparatus for treating water with hydrated lime slurry and for dissolving scale
A method and apparatus is provided for treating water with already-slaked lime to arrive at a lime slurry that is in a solution or suspension, and delivering the thus treated water to a separating device which separates grit particles therefrom, to recover a high quality lime/water solution or suspension. An automated system controls the addition of lime and water to a lime mixing vessel.
An acid wash system is provided which comprises an automated method and apparatus for removing scale buildup, for delivering an acid wash solution to the lime mixing vessel, the lime slurry holding tank and/or the delivery system, or any of them, thereby dissolving the scale buildup.
Process and apparatus is disclosed for providing a chemical reaction between calcium oxide containing grit particles to produce calcium hydroxide and heat, capturing the heat of hydration and using it to preheat water initially at ambient temperature, to rise to an elevated temperature to increase the amount of lime present in the water to a supersaturated lime suspension level, with the chemical reaction running to completion, followed by cooling. Heat from a water jacket may be used to raise the temperature in the lime slaker. A process and apparatus is also provided for dissolving scale on internal surfaces of a lime slaker, a lime aging tank, grit separation device and piping and dosing sub-systems, by adding acid into the system with rinse water. A pressurized delivery system that is substantially closed to atmosphere delivers treating dosing under sufficient pressure conditions to maintain a relatively constant back pressure, by means of valving.
A method and apparatus is provided for conveying lime slurry, removing and controlling the amount of grit, and feeding lime slurry, wherein the lime slurry moves through a recirculation loop, and wherein gravity removal of grit from the lime slurry takes place.
An apparatus, method and system is provided for treating sewage sludge by heating the same in a container to drive off pathogens and/or pasteurize the sewage sludge while the material is tumbled in the container, and with moisture gases being evaporated therefrom and drawn off from the container. There is provided at least one weight-responsive member on which the container is mounted, and a control is provided connected to the one or more weight-responsive member whereby the solids content of the treated material can be determined by measuring the difference in weight of material in the container, before and after moisture is drawn off from the material and prior to its discharge from the drum. The control is preferably effected by means of a computer.
An apparatus, method and system is provided for treating sewage sludge by heating the same in a container to drive off pathogens and/or pasteurize the sewage sludge while the material is tumbled in the container, and with moisture gases being evaporated therefrom and drawn off from the container. After treatment the treated sludge is discharged from the container. There is provided at least one weight-responsive member on which the container is mounted, and a control is provided connected to the one or more weight-responsive member whereby the solids content of the treated material can be determined by measuring the difference in weight of material in the container, before and after moisture is drawn off from the material and prior to its discharge from the drum. The control is preferably effected by means of a computer.
An apparatus, method and system is provided for treating sewage sludge by heating the same in a container to drive off pathogens and/or pasteurize the sewage sludge while the material is tumbled in the container and with moisture gases being evaporated therefrom and drawn off from the container. After treatment the treated sludge is discharged from the container. There is provided at least one weight-responsive member on which the container is mounted, and a control is provided connected to the one or more weight-responsive member whereby the solids content of the treated material can be determined by measuring the difference in weight of material in the container, before and after moisture is drawn off from the material and prior to its discharge from the drum. The control is preferably effected by means of a computer.