A system for the production of synthetic fuel, the system including a catalytic dual fluidized bed (DFB) configured to produce, from a DFB feedgas, a DFB product containing synthesis gas; and a Fischer-Tropsch (FT) synthesis apparatus fluidly connected with the catalytic DFB, wherein the FT synthesis apparatus includes an FT synthesis reactor configured to produce, from an FT feedgas, an FT overhead and a liquid FT product containing FT wax, wherein the FT feedgas contains at least a portion of the DFB product; and a product separator downstream of and fluidly connected with the FT synthesis reactor, wherein the product separator is configured to separate, from the FT overhead, an FT tailgas and an LFTL product containing LFTL. A method of producing synthetic fuel is also provided.
A method of gasification by introducing a feed material to be subjected to gasification into a dual fluidized bed gasifier comprising a pyrolyzer fluidly connected with a combustor such that a circulation stream comprising a heat transfer material can be continuously circulated between the pyrolyzer, in which the temperature of the circulation stream is reduced, and the combustor, in which the temperature of the circulation stream is increased, wherein the pyrolyzer is operable to convert at least a portion of the feed material into a gasifier product gas comprising hydrogen and carbon monoxide, and wherein the combustor is operable to increase the temperature of the circulation stream via combustion of char introduced thereto with the circulation stream and at least one supplemental fuel. A system for carrying out the method is also provided.
C10J 3/00 - Production of gases containing carbon monoxide and hydrogen, e.g. synthesis gas or town gas, from solid carbonaceous materials by partial oxidation processes involving oxygen or steam
B01J 8/18 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with fluidised particles
C10G 2/00 - Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
3.
SYSTEM AND METHOD FOR PRODUCTION OF FISCHER-TROPSCH SYNTHESIS PRODUCTS AND POWER
A method for generation of power and Fischer-Tropsch synthesis products by producing synthesis gas comprising hydrogen and carbon monoxide, producing Fischer-Tropsch synthesis products and Fischer-Tropsch tailgas from a first portion of the synthesis gas, and generating power from a second portion of the synthesis gas, from at least a portion of the Fischer-Tropsch tailgas, or from both. The method may also comprise conditioning at least a portion of the synthesis gas and/or upgrading at least a portion of the Fischer-Tropsch synthesis products. A system for carrying out the method is also provided.
C10G 2/00 - Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
C01B 3/12 - Production of hydrogen or of gaseous mixtures containing hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
C10J 3/00 - Production of gases containing carbon monoxide and hydrogen, e.g. synthesis gas or town gas, from solid carbonaceous materials by partial oxidation processes involving oxygen or steam
C07C 1/04 - Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of carbon from carbon monoxide with hydrogen
F01K 25/00 - Plants or engines characterised by use of special working fluids, not otherwise provided forPlants operating in closed cycles and not otherwise provided for
A method of producing synthesis gas by introducing a feed material to be gasified into a gasification apparatus comprising at least one fluidized component operable as a fluidized bed, wherein the gasification apparatus is configured to convert at least a portion of the feed material into a gasifier product gas comprising synthesis gas; and maintaining fluidization of the at least one fluidized component by introducing a fluidization gas thereto, wherein the fluidization gas comprises at least one component other than steam. A system for producing synthesis gas is also provided.
C10J 3/00 - Production of gases containing carbon monoxide and hydrogen, e.g. synthesis gas or town gas, from solid carbonaceous materials by partial oxidation processes involving oxygen or steam
C10G 2/00 - Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
B01J 8/18 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with fluidised particles
An apparatus including at least one seal pot having at least one penetration through a surface other than the top of the seal pot, each of the at least one penetrations being configured for introduction, into the at least one seal pot, of solids from a separator upstream of the at least one seal pot; a substantially non-circular cross section; or both at least one penetration through a surface other than the top of the seal pot and a substantially non-circular cross section.
C10J 3/00 - Production of gases containing carbon monoxide and hydrogen, e.g. synthesis gas or town gas, from solid carbonaceous materials by partial oxidation processes involving oxygen or steam
C10G 2/00 - Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
C10L 3/00 - Gaseous fuelsNatural gasSynthetic natural gas obtained by processes not covered by subclasses , Liquefied petroleum gas
B01J 8/18 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with fluidised particles
An iron-based Fischer-Tropsch catalyst comprising magnetite and characterized by integrable X-ray diffraction reflections corresponding to (311), (511), (440), and (400), such that the relative intensity of the (400) reflection to the (300) reflection is less than about 39%. A method of preparing an activated iron-based Fischer-Tropsch catalyst by providing a precipitated catalyst comprising oxides including at least iron oxide; and activating the precipitated catalyst to provide the activated iron-based Fischer-Tropsch catalyst, wherein activating the precipitated catalyst comprises exposing the precipitated catalyst to an activation gas and increasing the temperature from a first temperature to a second temperature at a ramp rate, whereby the ratio of the intensity of the (400) reflection of the activated iron-based Fischer-Tropsch catalyst to the intensity of the (311) reflection thereof is less than 38%.
A system configured for the production of at least one product selected from the group consisting of syngas, Fischer-Tropsch synthesis products, power, and chemicals, the system comprising a dual fluidized bed gasification apparatus and at least one apparatus selected from power production apparatus configured to produce power from the gasification product gas, partial oxidation reactors configured for oxidation of at least a portion of the product gas, tar removal apparatus configured to reduce the amount of tar in the product gas, Fischer-Tropsch synthesis apparatus configured to produce Fischer-Tropsch synthesis products from at least a portion of the product gas, chemical production apparatus configured for the production of at least one non-Fischer-Tropsch product from at least a portion of the product gas, and dual fluidized bed gasification units configured to alter the composition of the product gas. Methods of operating the system are also provided.
C10G 2/00 - Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
C07C 1/04 - Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of carbon from carbon monoxide with hydrogen
F02C 3/28 - Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension using a separate gas producer for gasifying the fuel before combustion
A system configured for the production of at least one product selected from the group consisting of syngas, Fischer-Tropsch synthesis products, power, and chemicals, the system comprising a dual fluidized bed gasification apparatus and at least one apparatus selected from power production apparatus configured to produce power from the gasification product gas, partial oxidation reactors configured for oxidation of at least a portion of the product gas, tar removal apparatus configured to reduce the amount of tar in the product gas, Fischer-Tropsch synthesis apparatus configured to produce Fischer-Tropsch synthesis products from at least a portion of the product gas, chemical production apparatus configured for the production of at least one non-Fischer-Tropsch product from at least a portion of the product gas, and dual fluidized bed gasification units configured to alter the composition of the product gas. Methods of operating the system are also provided.
C10G 2/00 - Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
C07C 1/04 - Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of carbon from carbon monoxide with hydrogen
F02C 3/28 - Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension using a separate gas producer for gasifying the fuel before combustion
A system configured for the production of at least one product selected from the group consisting of syngas, Fischer-Tropsch synthesis products, power, and chemicals, the system comprising a dual fluidized bed gasification apparatus and at least one apparatus selected from power production apparatus configured to produce power from the gasification product gas, partial oxidation reactors configured for oxidation of at least a portion of the product gas, tar removal apparatus configured to reduce the amount of tar in the product gas, Fischer-Tropsch synthesis apparatus configured to produce Fischer-Tropsch synthesis products from at least a portion of the product gas, chemical production apparatus configured for the production of at least one non-Fischer-Tropsch product from at least a portion of the product gas, and dual fluidized bed gasification units configured to alter the composition of the product gas. Methods of operating the system are also provided.
C10J 3/46 - Gasification of granular or pulverulent fuels in suspension
C10G 2/00 - Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
B01J 19/00 - Chemical, physical or physico-chemical processes in generalTheir relevant apparatus
C07C 1/04 - Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of carbon from carbon monoxide with hydrogen
A system configured for the production of at least one product selected from the group consisting of syngas, Fischer-Tropsch synthesis products, power, and chemicals, the system comprising a dual fluidized bed gasification apparatus and at least one apparatus selected from power production apparatus configured to produce power from the gasification product gas, partial oxidation reactors configured for oxidation of at least a portion of the product gas, tar removal apparatus configured to reduce the amount of tar in the product gas, Fischer-Tropsch synthesis apparatus configured to produce Fischer-Tropsch synthesis products from at least a portion of the product gas, chemical production apparatus configured for the production of at least one non-Fischer-Tropsch product from at least a portion of the product gas, and dual fluidized bed gasification units configured to alter the composition of the product gas. Methods of operating the system are also provided.
C10G 2/00 - Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
C10J 3/84 - Gas withdrawal means with means for removing dust or tar from the gas
C07C 1/04 - Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of carbon from carbon monoxide with hydrogen
A system configured for the production of at least one product selected from the group consisting of syngas, Fischer-Tropsch synthesis products, power, and chemicals, the system comprising a dual fluidized bed gasification apparatus and at least one apparatus selected from power production apparatus configured to produce power from the gasification product gas, partial oxidation reactors configured for oxidation of at least a portion of the product gas, tar removal apparatus configured to reduce the amount of tar in the product gas, Fischer-Tropsch synthesis apparatus configured to produce Fischer-Tropsch synthesis products from at least a portion of the product gas, chemical production apparatus configured for the production of at least one non-Fischer-Tropsch product from at least a portion of the product gas, and dual fluidized bed gasification units configured to alter the composition of the product gas. Methods of operating the system are also provided.
C10G 2/00 - Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
C07C 1/04 - Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of carbon from carbon monoxide with hydrogen
F02C 3/28 - Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension using a separate gas producer for gasifying the fuel before combustion
12.
INTEGRATED BIOREFINERY FOR PRODUCTION OF LIQUID FUELS
A method for reforming a carbonaceous feedstock comprising the steps of reforming the feedstock produce a first synthesis gas, subjecting a portion of the first synthesis gas to catalytic conversion, separating from the synthesis gas conversion product at least one byproduct, and utilizing at least a portion of the at least one byproduct during reforming of additional carbonaceous material. A system for carrying out the method is also provided. The method and system may be used to produce a liquid fuel.
C01B 3/38 - Production of hydrogen or of gaseous mixtures containing hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
C01B 3/50 - Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
C10G 2/00 - Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
C10J 3/00 - Production of gases containing carbon monoxide and hydrogen, e.g. synthesis gas or town gas, from solid carbonaceous materials by partial oxidation processes involving oxygen or steam
13.
INTEGRATED BIOREFINERY FOR PRODUCTION OF LIQUID FUELS
A method for reforming a carbonaceous feedstock comprising the steps of reforming the feedstock produce a first synthesis gas, subjecting a portion of the first synthesis gas to catalytic conversion, separating from the synthesis gas conversion product at least one byproduct, and utilizing at least a portion of the at least one byproduct during reforming of additional carbonaceous material. A system for carrying out the method is also provided. The method and system may be used to produce a liquid fuel.
C10G 2/00 - Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
C07C 1/04 - Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of carbon from carbon monoxide with hydrogen
C01B 3/02 - Production of hydrogen or of gaseous mixtures containing hydrogen
B01J 19/00 - Chemical, physical or physico-chemical processes in generalTheir relevant apparatus
14.
BIOFUEL PRODUCTION BY CO-FEEDING FISCHER-TROPSCH WAX AND BIOMASS DERIVED OIL INTO UPGRADER
A system for the production of at least one biofuel, biofuel additive or biochemical and including FT production apparatus comprising at least one FT reactor configured for the production of FT hydrocarbons from synthesis gas; and upgrading apparatus fluidly connected with the FT production apparatus and configured to receive, via one or more inlets, a first component comprising FT hydrocarbons and a second component comprising biomass oil and decrease the degree of unsaturation thereof via hydrogenation. A method of producing a biofuel or biochemical by introducing a first component comprising FT hydrocarbons and a second component comprising at least one triglyceride into an upgrading apparatus configured to receive the first component and the second component and decrease the degree of unsaturation thereof via hydrogenation, and extracting upgraded product comprising at least one component selected from the group consisting of fuels and chemicals from the upgrading apparatus.
C10G 2/00 - Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
C07C 1/04 - Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of carbon from carbon monoxide with hydrogen
B01J 19/00 - Chemical, physical or physico-chemical processes in generalTheir relevant apparatus
C10L 1/04 - Liquid carbonaceous fuels essentially based on blends of hydrocarbons
A method of forming a Fischer-Tropsch catalyst by providing at least one metal nitrate solution, combining each of the at least one metal nitrate solutions with a precipitating agent whereby at least one catalyst precipitate is formed, and incorporating a strong base during precipitation, subsequent precipitation, or both during and subsequent precipitation. Catalysts produced via the disclosed method are also provided.
C10G 2/00 - Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
B01J 19/00 - Chemical, physical or physico-chemical processes in generalTheir relevant apparatus
C07C 1/04 - Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of carbon from carbon monoxide with hydrogen
16.
PROTECTED FISCHER-TROPSCH CATALYST AND METHODS OF MAKING AND USING SAME
A method of providing a protected Fischer-Tropsch catalyst by providing catalyst particles functional for catalyzing the Fischer-Tropsch synthesis reaction, combining the catalyst particles with a protective material such that the catalyst particles are coated with the protective material, and shaping the combination comprising catalyst and protective material to provide the protected catalyst. A method for providing protected Fischer-Tropsch catalyst by fluidizing a bed of catalyst particles having FT functionality, reducing the catalyst particles by contacting the catalyst particles with reducing gas under reducing conditions, activating the reduced catalyst particles by contacting the reduced catalyst particles with an activation gas under activation conditions, combining the activated catalyst, under inert or carbiding atmosphere, with molten wax, whereby the catalyst particles are coated with wax and shaping the wax-coated catalyst particles to provide the protected catalyst. Catalysts produced via the methods are also provided.
C10G 2/00 - Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
B01J 19/00 - Chemical, physical or physico-chemical processes in generalTheir relevant apparatus
C07C 1/04 - Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of carbon from carbon monoxide with hydrogen
17.
PROTECTED FISCHER-TROPSCH CATALYST AND METHOD OF PROVIDING SAME TO A FISCHER-TROPSCH PROCESS
A method of preparing a spray dried catalyst by combining spray dried catalyst particles with wax so the spray dried catalyst particles are coated with wax, yielding wax coated catalyst particles, and shaping the wax coated catalyst to provide shaped wax coated catalyst. A method of activating Fischer-Tropsch catalyst particles containing oxides by contacting the catalyst particles with a reducing gas in an activation vessel to produce an activated catalyst, wherein contacting is performed in the absence of a liquid medium under activation conditions. A system for activating a Fischer-Tropsch catalyst containing an activation reactor configured to introduce an activation gas to a fixed or fluidized bed of the Fischer-Tropsch catalyst in the absence of a liquid medium and at least one separation device configured to separate a gas stream comprising entrained catalyst fines having an average particle size below a desired cutoff size from the activation reactor.
B01J 8/18 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with fluidised particles
18.
SLURRY BED FISCHER-TROPSCH CATALYSTS WITH SILICA/ALUMINA STRUCTURAL PROMOTERS
A method of producing a Fischer-Tropsch catalyst by preparing a nitrate solution, wherein preparing comprises forming at least one metal slurry and combining the at least one metal slurry with a nitric acid solution; combining the nitrate solution with a basic solution to form a precipitate; promoting the precipitate to form a promoted mixture, wherein promoting comprises combining the precipitate with (a) silicic acid and one or more selected from the group consisting of non-crystalline silicas, crystalline silicas, and sources of kaolin or (b) at least one selected from non-crystalline silicas and sources of kaolin, in the absence of silicic acid; and spray drying the promoted mixture to produce catalyst having a desired particle size. Catalyst produced by the disclosed method is also described.
B01J 23/78 - Catalysts comprising metals or metal oxides or hydroxides, not provided for in group of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups with alkali- or alkaline earth metals or beryllium
A thermal conversion process comprising: pyrolizing or gasifying a carbonaceous feedstock to produce a first synthesis gas having a first H2:CO ratio of less than a minimum value or greater than a maximum value; providing enriched oxygen; and subjecting the first synthesis gas to partial oxidation in the presence of at least a portion of the enriched oxygen to produce a conditioned synthesis gas having a desired ratio of H2:CO in the range of from the minimum value to the maximum value. A method of producing FT product liquids by providing a conditioned synthesis gas according to the process and producing FT product liquids by subjecting the conditioned synthesis gas to FT reaction under FT operating conditions. A system for carrying out the methods is also provided.
A system, for production of high-quality syngas, comprising a first dual fluidized bed loop having a fluid bed conditioner operable to produce high quality syngas comprising a first percentage of components other than CO and H2 from a gas feed, wherein the conditioner comprises an outlet for a first catalytic heat transfer stream comprising a catalytic heat transfer material and having a first temperature, and an inlet for a second catalytic heat transfer stream comprising catalytic heat transfer material and having a second temperature greater than the first temperature; a fluid bed combustor operable to combust fuel and oxidant, wherein the fluid bed combustor comprises an inlet connected with the outlet for a first catalytic heat transfer stream of the conditioner, and an outlet connected with the inlet for a second catalytic heat transfer stream of the conditioner; and a catalytic heat transfer material.
C01B 3/44 - Production of hydrogen or of gaseous mixtures containing hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts using moving solid particles using the fluidised bed technique
B01J 8/26 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with fluidised particles according to "fluidised-bed" technique with two or more fluidised beds, e.g. reactor and regeneration installations
A system for activating Fischer-Tropsch catalyst comprising a reactor having an outlet for overhead gas and operable under conditions whereby a catalyst in a volume of liquid carrier comprising Fischer-Tropsch diesel, hydrocracking recycle oil, or a combination thereof may be activated in the presence of an activation gas; a condenser comprising an inlet fluidly connected to the reactor outlet for overhead gas and comprising a condenser outlet for condensed liquids; and a separation unit comprising an inlet fluidly connected to the condenser outlet and a separator outlet for a stream comprising primarily Fischer-Tropsch diesel; and a recycle line fluidly connecting the separator outlet, a hydrocracking unit, or both to the reactor, whereby Fischer-Tropsch diesel recovered from reactor overhead gas, hydrocracking recycle oil, or a combination thereof may serve as liquid carrier for catalyst in the reactor. A method for activating Fischer-Tropsch catalyst is also provided.
A method of activating an iron Fischer-Tropsch catalyst by introducing an inert gas into a reactor comprising a slurry of the catalyst at a first temperature, increasing the reactor temperature from the first temperature to a second temperature at a first ramp rate, wherein the second temperature is in the range of from about 150°C to 250°C, introducing synthesis gas having a ratio of H2:CO to the reactor at a space velocity, and increasing the reactor temperature from the second temperature to a third temperature at a second ramp rate, wherein the third temperature is in the range of from about 270°C to 300°C. The iron Fischer-Tropsch catalyst may be a precipitated unsupported iron catalyst, production of which is also provided.
B01J 15/00 - Chemical processes in general for reacting gaseous media with non-particulate solids, e.g. sheet materialApparatus specially adapted therefor
23.
MULTIPLE GASIFIERS MANIFOLDED TO MULTIPLE FISCHER-TROPSCH REACTORS WITH OPTIONAL RECYCLE TO THE REACTORS
A method of producing synthesis gas via gasification in a Fischer-Tropsch plant, the method including providing a number of gasifiers, the number of gasifiers provided being at least one more than the base number required to provide 100% plant capacity of synthesis gas when each gasifier is operated at 100% gasifier capacity. A method of continually producing synthesis gas via gasification of a carbonaceous feed in a Fischer-Tropsch plant by providing a number of gasifiers, the number of gasifiers provided being at least one more than the base number required to provide 100% plant capacity of synthesis gas when each gasifier is operated at 100% gasifier capacity; and adjusting the amount of synthesis gas produced by adjusting the number of online gasifiers, the flow rate of carbonaceous feed to each gasifier, or a combination thereof. A system for carrying out the method is also provided.
A system for separating liquids from solids comprising an immobilization unit comprising an immobilization vessel containing a bed of magnetizable material and a magnet configured to produce a magnetic field within the immobilization vessel, wherein the immobilization vessel further comprises an immobilization vessel outlet and an immobilization vessel inlet for a fluid comprising liquid and metal-containing particles. A method for separating solid particles from liquid by introducing a fluid comprising liquid and a first concentration of solid particles into an immobilization unit comprising an immobilization vessel and at least one magnet configured to produce high density magnetic flux lines within the immobilization vessel and/or a high field gradient at or near the surface of the magnetizable material when powered, wherein the immobilization vessel contains therein a bed of magnetizable material; and removing from the immobilization unit a product having reduced particle concentration.
B01J 8/00 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes
B01J 19/00 - Chemical, physical or physico-chemical processes in generalTheir relevant apparatus
25.
STRENGTHENING IRON FISCHER-TROPSCH CATALYST BY CO-FEEDING IRON NITRATE AND PRECIPITATING AGENT OR SEPARATELY PRECIPITATING FROM FERROUS NITRATE AND FERRIC NITRATE SOLUTIONS
A method of producing a catalyst precursor comprising iron phases by co-feeding a ferrous nitrate solution and a precipitation agent into a ferric nitrate solution to produce a precipitation solution having a desired ferrous:ferric nitrate ratio and from which catalyst precursor precipitates; co-feeding a ferric nitrate solution and a precipitation agent into a ferrous nitrate solution to produce a precipitation solution having a desired ferrous:ferric nitrate ratio and from which catalyst precursor precipitates; or precipitating a ferrous precipitate from a ferrous nitrate solution by contacting the ferrous nitrate solution with a first precipitation agent; precipitating a ferric precipitate from ferric nitrate solution by contacting the ferric nitrate solution with a second precipitation agent and combining the ferrous and ferric precipitates to form the catalyst precursor, wherein the ratio of ferrous:ferric precipitates is a desired ratio.
A method of producing stable ferrous nitrate solution by dissolving iron in nitric acid to form a ferrous nitrate solution and maintaining the solution at a first temperature for a first time period, whereby the Fe(II) content of the ferrous nitrate solution changes by less than about 2% over a second time period. A method of producing stable Fe(II)/Fe(III) nitrate solution comprising ferrous nitrate and ferric nitrate and having a desired ratio of ferrous iron to ferric iron, including obtaining a stable ferrous nitrate solution; dissolving iron in nitric acid to form a ferric nitrate solution; maintaining the ferric nitrate solution at a second temperature for a third time period; and combining amounts of stable ferrous nitrate solution and ferric nitrate solution to produce the stable Fe(II)/Fe(III) nitrate solution. A method of preparing an iron catalyst is also described.
A pesticide or herbicide formulation comprising an effective amount of a pesticide or herbicide in a carrier or solvent fluid, wherein the carrier or solvent fluid comprises a Fischer-Tropsch hydrocarbon produced via Fischer-Tropsch conversion of synthesis gas. A method of producing a pesticide or herbicide formulation by combining an amount of an herbicide or pesticide and a biodegradable solvent to form a pesticide or herbicide solution. A method of producing a pesticide or herbicide formulation by converting synthesis gas into Fischer-Tropsch products in the presence of a Fischer-Tropsch catalyst and combining at least one Fischer-Tropsch product with a pesticide or herbicide to create the formulation.
A01N 25/02 - Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of applicationSubstances for reducing the noxious effect of the active ingredients to organisms other than pests containing liquids as carriers, diluents or solvents
A01P 1/00 - DisinfectantsAntimicrobial compounds or mixtures thereof
A method of producing fuel by converting an alcohol stream comprising at least one alcohol into synthesis gas; providing a first synthesis gas stream, wherein at least a portion of the first synthesis gas stream comprises synthesis gas obtained from the alcohol conversion; converting a feed comprising synthesis gas via Fischer-Tropsch into a Fischer-Tropsch product comprising hydrocarbons, wherein at least a portion of the feed comprises synthesis gas from the first synthesis gas stream; and converting at least a portion of the Fischer-Tropsch product into fuel. A diesel fuel comprising hydrocarbons formed by Fischer-Tropsch conversion of synthesis gas derived from an alcohol stream comprising at least one alcohol.
A method of utilizing hydrogen in synthesis gas production by forming synthesis gas from one or more carbonaceous materials, the synthesis gas comprising hydrogen and carbon monoxide; separating a hydrogen-rich product and a hydrogen-lean product from the synthesis gas to yield an adjusted synthesis gas product; and activating a hydrocarbon synthesis catalyst with at least a portion of the hydrogen-lean product. A system for carrying out the method is also provided, the system including at least one hydrogen extraction unit and an activation reactor operable to activate hydrocarbon synthesis catalyst, wherein the activation reactor comprises an inlet fluidly connected with the at least one hydrogen extraction unit whereby at least a portion of a hydrogen-lean gas stream, at least a portion of a hydrogen-rich gas stream, or at least a portion of both may be introduced into the activation reactor.
C01B 3/56 - Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solidsRegeneration of used solids
C01B 3/40 - Production of hydrogen or of gaseous mixtures containing hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
B01J 23/89 - Catalysts comprising metals or metal oxides or hydroxides, not provided for in group of the iron group metals or copper combined with noble metals
B01D 53/02 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by adsorption, e.g. preparative gas chromatography
30.
INTEGRATION OF AN INTEGRATED GASIFICATION COMBINED CYCLE POWER PLANT AND COAL TO LIQUID FACILITY
A novel method of combing the CTL fuel plant and IGCC electrical plant by sharing the systems of coal intake, coal preparation, gas separation, and water units is described herein. This configuration allows for the combined facility to offer advantages in efficiencies of production, operational flexibility, scalability, and reliability by a multi-path integration of the processing units.
C10J 3/00 - Production of gases containing carbon monoxide and hydrogen, e.g. synthesis gas or town gas, from solid carbonaceous materials by partial oxidation processes involving oxygen or steam
F02B 43/08 - Plants characterised by the engines using gaseous fuel generated in the plant from solid fuel, e.g. wood
C10G 1/00 - Production of liquid hydrocarbon mixtures from oil shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
F02C 3/28 - Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension using a separate gas producer for gasifying the fuel before combustion
C10J 1/00 - Production of fuel gases by carburetting air or other gases
31.
MAGNETIC SEPARATION COMBINED WITH DYNAMIC SETTLING FOR FISCHER-TROPSCH PROCESSES
A system for separating particulate from a fluid stream having an inlet solids content, the system comprising: a magnetic dynamic settling vessel comprising at least one magnetic field inside the vessel and/or one magnetized component; at least one inlet for introduction of the fluid stream having a starting solids content; at least one exit for a stream comprising a solids content not greater than the inlet solids content; at least one exit for a fluid stream comprising a solids content not less than the inlet solids content; and a vertical feed conduit extending at least 70% of the distance from the at least one fluid inlet to the at least one exit for a fluid stream comprising a solids content not less than the inlet solids content. A method for separating particulate from a fluid stream having an inlet solids content is also provided.
A catalytic reaction system comprising: a catalytic reactor fluidly connected with at least two slurry loops, wherein the reactor comprises at least as many reactor product outlets and at least as many slurry return inlets as slurry loops; wherein each slurry loop comprises a separation system comprising a separation system inlet, a separation system product outlet, and a concentrated catalyst slurry outlet; a slurry offtake fluidly connecting the separation system inlet with one of the reactor product outlets; and a slurry return fluidly connecting the separation system outlet with one of the slurry return inlets. The system may comprise at least three slurry loops. The system may comprise at least four slurry loops. A method for converting synthesis gas into liquid hydrocarbons via the catalytic reaction system in also disclosed.
A catalyst loading system comprising: a vessel comprising at least one gas distribution nozzle at or near the bottom of the vessel, a top fluid distributor located at or near the top of the vessel, a catalyst inlet through which catalyst is introduced into the vessel, a first contact point at which catalyst introduced into the vessel first contacts the contents of the vessel, and a discharge outlet whereby catalyst exits the vessel. Methods of preparing catalyst slurry for introduction into a downstream reactor or in-situ activation within the vessel utilizing the catalyst loading system are also disclosed.
B01J 8/22 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid
B01J 8/26 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with fluidised particles according to "fluidised-bed" technique with two or more fluidised beds, e.g. reactor and regeneration installations
B01J 8/00 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes
B01J 19/26 - Nozzle-type reactors, i.e. the distribution of the initial reactants within the reactor is effected by their introduction or injection through nozzles
B01J 19/00 - Chemical, physical or physico-chemical processes in generalTheir relevant apparatus
34.
PROMOTED, ATTRITION RESISTANT, SILICA SUPPORTED PRECIPITATED IRON CATALYST
A catalyst support solution for improving the attrition resistance of a Fischer-Tropsch catalyst, the solution comprising: crystalline silica and at least one chemical promoter selected from alkali metal bases, wherein the support solution has a pH of greater than or equal to about 7. A structurally promoted catalyst comprising: crystalline silica; at least one basic chemical promoter; and iron; wherein the catalyst comprises SiO2:Fe in a ratio of from about 2:100 to about 24:100. A method of producing a structurally promoted precipitated iron catalyst, the method comprising: forming the structural support solution described above; stirring the support solution for a time to dissolve the silica in the solution; adding the support solution to a precipitated iron catalyst slurry to form an attrition resistant catalyst slurry; and drying the attrition resistant catalyst slurry to yield the structurally promoted precipitated iron catalyst.
C07C 1/04 - Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of carbon from carbon monoxide with hydrogen
35.
BUSINESS INTEGRATION OF INTEGRATED GASIFICATION COMBINED CYCLE POWER PLANT AND COAL TO LIQUID FUEL PLANT
C10G 1/00 - Production of liquid hydrocarbon mixtures from oil shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
C10J 1/00 - Production of fuel gases by carburetting air or other gases
C10J 3/00 - Production of gases containing carbon monoxide and hydrogen, e.g. synthesis gas or town gas, from solid carbonaceous materials by partial oxidation processes involving oxygen or steam
F02C 3/28 - Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension using a separate gas producer for gasifying the fuel before combustion
A method of strengthening a precipitated unsupported iron catalyst by: preparing a precipitated unsupported iron catalyst containing copper and potassium; adding a solution comprising a structural promoter to the previously prepared catalyst; drying the mixture; and calcining the dried catalyst. A method for preparing an iron catalyst, the method comprising: precipitating a catalyst precursor comprising iron phases selected from hydroxides, oxides, and carbonates; adding a promoter to the catalyst precursor to yield a promoted precursor; drying the promoted precursor to yield dried catalyst; and calcining the dried catalyst, wherein the catalyst further comprises copper and potassium. A method of preparing a strengthened precipitated iron catalyst comprising: co-precipitating iron, copper, magnesium, and aluminum; washing the precipitate; alkalizing the precipitate; and drying the precipitate to yield a dried catalyst precursor. The dried catalyst precursor may be calcined and treated with a gas comprising carbon monoxide.
B01J 23/78 - Catalysts comprising metals or metal oxides or hydroxides, not provided for in group of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups with alkali- or alkaline earth metals or beryllium
C07C 27/06 - Processes involving the simultaneous production of more than one class of oxygen-containing compounds by reduction of oxygen-containing compounds by hydrogenation of oxides of carbon
37.
PRECIPITATED IRON CATALYST FOR HYDROGENATION OF CARBON MONOXIDE
A method of producing an iron catalyst for catalyzing the hydrogenation of carbon monoxide is disclosed. The method comprises using a reduced amount of acid for iron dissolution compared to certain previous methods. The resulting acidic iron mixture is heated without boiling to obtain a nitrate solution having a Fe2+ : Fe3+ ratio in the range of about 0.01% : 99.99% to about 100% : 0% (wt:wt). Iron phases are precipitated at a lower temperature compared to certain previous methods. The recovered catalyst precursor is dried and sized to form particles having a size distribution between 10 microns and 100 microns. In embodiments, the Fe2+ : Fe3+ ratio in the nitric acid solution may be in the range of from about 3% : 97% to about 30% : 70% (wt:wt) and the calcined catalyst may comprise a maghemite:hematite ratio of about 1% : 99% to about 70% : 30%.
B01J 23/78 - Catalysts comprising metals or metal oxides or hydroxides, not provided for in group of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups with alkali- or alkaline earth metals or beryllium
A method for transforming at least a part of the catalyst precursor hematite into 씟- carbide (Fe5C2) and &egr;'-carbide (FeC2-2) without a large amount of fines generation. This method slows the transformation of the hematite to iron carbides by reducing the partial pressure of the synthesis gas by inert gas dilution. The activation time is about three to about five hours.
B01J 37/18 - Reducing with gases containing free hydrogen
B01J 23/78 - Catalysts comprising metals or metal oxides or hydroxides, not provided for in group of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups with alkali- or alkaline earth metals or beryllium
C07C 1/04 - Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of carbon from carbon monoxide with hydrogen
C10G 2/00 - Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
A method for meeting both base-load and peak-load demand in a power production facility. By integrating a Fischer-Tropsch (FT) hydrocarbon production facility with an electrical power generating facility, peak-load power demand can be met by reducing the temperature of the FT reactor thereby increasing the quantity of tail gases and using FT tail gases to fuel a gas turbine generator set. The method enables rapid power response and allows the synthesis gas generating units and the FT units to operate with constant flow rates.