A collapsible fuel cell for an aircraft includes an inner textile support substrate having an outer surface including one or more textile crease lines forming a fold pattern and an outer shell layer conforming to the outer surface of the textile support substrate to form the fuel cell. The fuel cell is collapsible along the fold pattern formed by the one or more textile crease lines.
A fuel cell includes a flexible body and first and second fittings attached to the flexible body. The first and second fittings each include a first opening configured for ingress or egress of a fluid, and each include second openings extending through outer portions of the first and second fittings. The first and second fittings are more rigid than the flexible body. The fuel cell further includes a first elongated interconnect attached to the first fitting through one or more of the second openings extending through the outer portion of the first fitting and connected to the second fitting through one or more of the second openings extending through the outer portion of the second fitting such that the first elongated interconnect couples together the first and second fittings.
In certain embodiments, a hose includes an inner tube, a filler material, and an outer cover. The inner tube has a cross-sectional shape and includes a cavity for transporting a substance. The filler material is provided around an outer periphery of the inner tube. The filler material includes a self-sealing material or a self-healing material. The outer cover is provided around an outer periphery of the filler material such that the filler material is between the outer cover and the inner tube. The outer cover has a D-shaped cross-sectional shape.
F16L 11/12 - Hoses, i.e. flexible pipes made of rubber or flexible plastics with arrangements for particular purposes, e.g. specially profiled, with protecting layer, heated, electrically conducting
F16L 11/08 - Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall
An explosion suppression insert for a fuel tank includes a hollow body having an inner surface and an outer surface, the hollow body being made of an explosion suppressing material; and a plurality of perforations defined in the outer wall. In some embodiments, a nonwoven explosion resisting insert for a fuel tank includes a body including a plurality of interconnected non-woven fibrous struts being made of an explosion suppressing material, the body having a first end and a second end; and a plurality of voids defined by the plurality of struts, the voids being configured such that the body has a porosity of between 5 pores per inch and 50 pores per inch. Methods of manufacturing explosion resisting inserts are also provided.
B29C 64/118 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
A62C 99/00 - Subject matter not provided for in other groups of this subclass
In an embodiment, a fuel cell includes: a flexible substrate including a first fuel-tolerant material; a fitting on the flexible substrate, the fitting including first openings extending through an outer portion of the fitting; a primer coating on the outer portion of the fitting, the primer coating including a second fuel-tolerant material; first yarns strung through the first openings of the fitting, the first yarns stitched into the flexible substrate; and an encapsulant encapsulating the first yarns, the primer coating, and the outer portion of the fitting, the encapsulant disposed on the flexible substrate, the encapsulant including a third fuel-tolerant material, the third fuel-tolerant material chemically bonded to the second fuel-tolerant material and the first fuel-tolerant material.
In an embodiment, a fuel cell includes: a flexible substrate including a first fuel-tolerant material; a fitting on the flexible substrate, the fitting including first openings extending through an outer portion of the fitting; a primer coating on the outer portion of the fitting, the primer coating including a second fuel-tolerant material; first yarns strung through the first openings of the fitting, the first yarns stitched into the flexible substrate; and an encapsulant encapsulating the first yarns, the primer coating, and the outer portion of the fitting, the encapsulant disposed on the flexible substrate, the encapsulant including a third fuel-tolerant material, the third fuel-tolerant material chemically bonded to the second fuel-tolerant material and the first fuel-tolerant material.
A liquid containment cell includes an inner layer configured to contain a liquid, an outer layer, and a multilayer self-sealing structure disposed between the inner layer and the outer layer, where the multilayer self-sealing structure includes a plurality of sealing liner layers and further includes at least one slip layer disposed between adjacent sealing liner layers of the plurality of sealing liner layers. The at least one slip layer includes a polyethylene (PE) material, and the at least one slip layer is configured to permit at least one sealing liner layer of the plurality of sealing liner layers to move at least partially into a hole created by a projectile.
B32B 5/02 - Layered products characterised by the non-homogeneity or physical structure of a layer characterised by structural features of a layer comprising fibres or filaments
B32B 27/12 - Layered products essentially comprising synthetic resin next to a fibrous or filamentary layer
In an embodiment, an aircraft includes a fuselage; a propulsion system powered by a fuel; and a fuel cell configured to store the fuel, the fuel cell including an inner layer configured to contact the fuel; an outer layer; and a self-sealing fabric structure formed from ultra-high molecular weight polyethylene (UHMWPE), the self-sealing fabric structure being between the inner layer and the outer layer, the self-sealing fabric structure being configured to self-seal a hole formed in the inner layer and the outer layer by a projectile.
B64D 27/24 - Aircraft characterised by the type or position of power plants using steam or spring force
B32B 5/02 - Layered products characterised by the non-homogeneity or physical structure of a layer characterised by structural features of a layer comprising fibres or filaments
B32B 5/26 - Layered products characterised by the non-homogeneity or physical structure of a layer characterised by the presence of two or more layers which comprise fibres, filaments, granules, or powder, or are foamed or specifically porous one layer being a fibrous or filamentary layer another layer also being fibrous or filamentary
In certain embodiments, a hose includes an inner tube, a filler material, and an outer cover. The inner tube has a cross-sectional shape and includes a cavity for transporting a substance. The filler material is provided around an outer periphery of the inner tube. The filler material includes a self-sealing material or a self-healing material. The outer cover is provided around an outer periphery of the filler material such that the filler material is between the outer cover and the inner tube. The outer cover has a D-shaped cross-sectional shape.
F16L 11/12 - Hoses, i.e. flexible pipes made of rubber or flexible plastics with arrangements for particular purposes, e.g. specially profiled, with protecting layer, heated, electrically conducting
F16L 11/08 - Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall
A fuel cell containing fuel for an aircraft includes an innermost layer configured to contact the fuel, an outermost layer and a containment gel formed from isocyanate and polyol interposed between the innermost and outermost layers. The containment gel is configured to self-seal a ballistically formed hole therein, thereby reducing leakage of the fuel from the fuel cell.
B60L 50/75 - Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using propulsion power supplied by both fuel cells and batteries
B32B 1/00 - Layered products having a non-planar shape
B32B 5/02 - Layered products characterised by the non-homogeneity or physical structure of a layer characterised by structural features of a layer comprising fibres or filaments
B32B 7/12 - Interconnection of layers using interposed adhesives or interposed materials with bonding properties
B32B 27/12 - Layered products essentially comprising synthetic resin next to a fibrous or filamentary layer
A fuel cell containing fuel for an aircraft includes an innermost layer configured to contact the fuel, an outermost layer and a containment gel formed from isocyanate and polyol interposed between the innermost and outermost layers. The containment gel is configured to self-seal a ballistically formed hole therein, thereby reducing leakage of the fuel from the fuel cell.
B64D 7/00 - Arrangement of military equipment, e.g. armaments, armament accessories or military shielding, in aircraftAdaptations of armament mountings for aircraft
12.
Process of manufacturing reticulated foam products, using alternative materials
An explosion suppression insert for a fuel tank includes a hollow body having an inner surface and an outer surface, the hollow body being made of an explosion suppressing material; and a plurality of perforations defined in the outer wall. In some embodiments, a nonwoven explosion resisting insert for a fuel tank includes a body including a plurality of interconnected non-woven fibrous struts being made of an explosion suppressing material, the body having a first end and a second end; and a plurality of voids defined by the plurality of struts, the voids being configured such that the body has a porosity of between 5 pores per inch and 50 pores per inch. Methods of manufacturing explosion resisting inserts are also provided.
B29C 64/118 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
A62C 99/00 - Subject matter not provided for in other groups of this subclass
A method of fabricating a tank includes connecting a pressure source to a nozzle on a male mold, inflating the male mold via the nozzle, forming a tank by applying at least one layer over the outer surface of the male mold, the tank having a port formed about the nozzle, deflating the male mold, and withdrawing the male mold through the port. A method of fabricating a tank includes 3D-printing a male mold, connecting a pressure source to a nozzle on the male mold, inflating the male mold via the nozzle, forming a tank by applying at least one layer over the outer surface of the male mold, the tank having a port formed about the nozzle, deflating the male mold, and withdrawing the male mold through the port. A method of fabricating a tank includes forming a tank on a mold formed from a foam blocks.
B29C 33/38 - Moulds or coresDetails thereof or accessories therefor characterised by the material or the manufacturing process
B29C 33/50 - Moulds or coresDetails thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles with means for collapsing or disassembling elastic
B29C 49/44 - Component parts, details or accessoriesAuxiliary operations for applying pressure through the walls of an inflated bag
A method of manufacturing a seamless, non-wicking containment bladder includes providing yarn materials, coating the yarn materials with a precursor protective coating, loading the yarn materials into an additive manufacturing process, depositing the yarn materials in pre-selected amounts and locations to form a desired structure, forming and heat-setting, and coating the seamless bladder.