Corneal devices that have a plurality of open cells therein. The plurality of open cells can be defined by an interconnected framework formed by removing select portions of the device body. The corneal devices can be corneal onlays, inlays, or other types of corneal implants and devices.
A61F 2/00 - Filters implantable into blood vesselsProstheses, i.e. artificial substitutes or replacements for parts of the bodyAppliances for connecting them with the bodyDevices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
A61F 2/14 - Eye parts, e.g. lenses or corneal implantsArtificial eyes
A61F 9/00 - Methods or devices for treatment of the eyesDevices for putting in contact-lensesDevices to correct squintingApparatus to guide the blindProtective devices for the eyes, carried on the body or in the hand
Corneal device inserters and positioners that include an elongate member with a distal region, the distal region including a top portion, a bottom portion, and a corneal device receiving space, the corneal device receiving space defined by the top portion, the bottom portion, and a receiving space proximal end, the distal region further comprising a slot in fluid communication with the corneal device receiving space, the slot extending through at least one of the top portion and the bottom portion, the slot having a slot proximal end disposed at least as far proximally as the receiving space proximal end.
Corneal implant applicator devices and methods of using. In some embodiments they include an implant applicator and an implant support, wherein the implant applicator and implant support are disposed relative to one another to form an implant nest that is adapted to house a corneal implant; wherein the applicator has a greater affinity for the corneal implant than the support.
A61B 50/30 - Containers specially adapted for packaging, protecting, dispensing, collecting or disposing of surgical or diagnostic appliances or instruments
A61F 2/00 - Filters implantable into blood vesselsProstheses, i.e. artificial substitutes or replacements for parts of the bodyAppliances for connecting them with the bodyDevices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
B65B 5/06 - Packaging groups of articles, the groups being treated as single articles
A61B 50/20 - Holders specially adapted for surgical or diagnostic appliances or instruments
B65D 81/26 - Adaptations for preventing deterioration or decay of contentsApplications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants with provision for draining away, or absorbing, fluids, e.g. exuded by contentsApplications of corrosion inhibitors or desiccators
A61F 9/00 - Methods or devices for treatment of the eyesDevices for putting in contact-lensesDevices to correct squintingApparatus to guide the blindProtective devices for the eyes, carried on the body or in the hand
Corneal implant retaining devices and their methods of use. The retaining devices can be a cap adapted to be disposed over a portion of a corneal implant insertion device.
A61F 9/00 - Methods or devices for treatment of the eyesDevices for putting in contact-lensesDevices to correct squintingApparatus to guide the blindProtective devices for the eyes, carried on the body or in the hand
A61F 2/14 - Eye parts, e.g. lenses or corneal implantsArtificial eyes
A training cornea adapted to train physicians how to position a corneal inlay within a cornea, and methods thereof. The training comea having a pre-made flap therein and having a base curvature with a radius of curvature that is the same as the radius of curvature training ball. The training cornea comprising a hydrophilic material.
Methods, systems, and devices for lathing parts, including lenses such as ophthalmic lenses. In some embodiments a reference surface is machined into a workpiece. In some embodiments the methods include machining first and second surfaces of a lens so that they have the same centerlines.
B23Q 3/08 - Work-clamping means other than mechanically-actuated
B23Q 17/20 - Arrangements for indicating or measuring on machine tools for indicating or measuring workpiece characteristics, e.g. contour, dimension, hardness
B24B 13/005 - Blocking means, chucks or the likeAlignment devices
B29D 11/00 - Producing optical elements, e.g. lenses or prisms
Corneal implants that have an implant body comprising manufactured corneal tissue. Methods of manufacturing corneal implant that include manufacturing a volume of corneal tissue. Corneal implants that have an implant body made from cornea tissue removed from a living subject.
Methods of correcting vision for presbyopia, including remodeling a stroma with a laser to create an intracorneal shape, where the corneal shape includes a central region with a thickness that is about 50 microns or less measured from an extension of a shape of a peripheral region of the corneal shape, wherein remodeling a portion of the stroma increases a curvature of a central portion of the anterior surface of the cornea with a central elevation change for near vision.
Corneal implants and methods for reducing gap formation between corneal tissue after implanting the corneal implant. In some embodiments the corneal implants include a peripheral portion adapted to be reconfigured to more closely conform to the shape of a corneal bed. In some embodiments the corneal implant is adapted to be reconfigured such that when a corneal flap is positioned over the corneal implant gap formation is reduced or eliminated.
A61F 9/00 - Methods or devices for treatment of the eyesDevices for putting in contact-lensesDevices to correct squintingApparatus to guide the blindProtective devices for the eyes, carried on the body or in the hand
Methods of designing corneal implants, such as inlays, to compensate for a corneal response, such as epithelial remodeling of the epithelial layer, to the presence of the implant. Additionally, methods of performing alternative corneal vision correction procedures to compensate for an epithelial response to the procedure. Methods of compensating for a corneal response when performing a vision correction procedure to create a center near region of the cornea for near vision while providing distance vision peripheral to the central near zone.
Methods of designing corneal implants, such as inlays, to compensate for a corneal response, such as epithelial remodeling of the epithelial layer, to the presence of the implant. Additionally, methods of performing alternative corneal vision correction procedures to compensate for an epithelial response to the procedure. Methods of compensating for a corneal response when performing a vision correction procedure to create a center near region of the cornea for near vision while providing distance vision peripheral to the central near zone.
Provided herein are intracorneal inlays for correcting vision impairments by altering the shape of the anterior corneal surface. The physical design of the inlay to induce the desired change of the anterior corneal surface includes consideration of the biomechanical response of the corneal tissue to the physical shape of the inlay. This biomechanical response can differ depending on the thickness, diameter, and profile of the inlay. In one embodiment, inlays having diameters smaller than the pupil are provided for correcting presbyopia. To provide near vision, an inlay is implanted centrally in the cornea to induce an 'effect' zone on the anterior corneal surface, within which diopter power is increased. Distance vision is provided by a region of the cornea peripheral to the 'effect' zone. In another embodiment, small diameter inlays are provided that induce 'effect' zones on the anterior corneal surface that are much larger in diameter than the inlays.
Provided therein are apparatuses, systems and methods for storing and retrieving a corneal implant and for delivering the corneal implant in or on the cornea. In an embodiment, a insertion system comprises an inserter for delivering a corneal implant to a desired location in or on the cornea. The inserter has a holding space at its distal end for holding a corneal implant therein. A solution may substantially fill the holding space with the corneal implant to keep the implant hydrated and to hold the implant in the holding space by the surface tension of the solution. The corneal implant may be preloaded in the holding space of the inserter and stored in a storage container filled with storage fluid, e.g., saline, until use. To deliver the corneal implant, the inserter is positioned at the desired location, and the corneal implant released from the holding space of the inserter.
A61F 9/00 - Methods or devices for treatment of the eyesDevices for putting in contact-lensesDevices to correct squintingApparatus to guide the blindProtective devices for the eyes, carried on the body or in the hand
A61F 2/14 - Eye parts, e.g. lenses or corneal implantsArtificial eyes
Described herein are designs and design methods for intracorneal inlays with intrinsic dioper power (i.e., index of refraction different from the surrounding cornea tissue). The designs and design methods achieve a desired refractive change by a combination of the intrinsic diopter power of the inlay and the physical shape of the inlay, which alters the shape of the anterior cornea surface.
Provided herein are small diameter inlays for correcting vision impairments by altering the shape of the anterior corneal surface. In an embodiment, inlays having diameters smaller than the pupil are provided for correcting presbyopia. To provide near vision, an inlay is implanted centrally in the cornea to induce an 'effective' zone on the anterior corneal surface, within which diopter power is increased. Distance vision is provided by a region of the cornea peripheral to the 'effect' zone. In another embodiment, small diameter inlays are provided that induce effective optical zones on the anterior corneal surface that are much larger in diameter than the inlays. The increase in the effective optical zone, due at least in part to a draping effect, allows an inlay to produce a much larger clinical effect on a patient's vision than the diameter of the inlay.
A corneal implant injector assembly includes a barrel, a plunger, and an injector tip with a channel having a size and orientation adapted to store and deliver a corneal implant. The corneal implant is preferably stored in the channel in a contracted state. The plunger has an implant engagement tip for engaging and moving the implant within the channel and to deploy the implant. In some embodiments, the injector tip is selectively detachable from the remaining portion of the injector assembly.
A61F 9/00 - Methods or devices for treatment of the eyesDevices for putting in contact-lensesDevices to correct squintingApparatus to guide the blindProtective devices for the eyes, carried on the body or in the hand
The implantable lenses described herein provide for modified edge regions. In one example embodiment an implantable lens includes an anterior surface, a posterior surface and an outer edge surface separating the anterior and posterior surfaces. The anterior surface can include a corrective portion and a beveled portion. The beveled portion can be located between the corrective portion and the outer edge surface. The outer edge surface can have a first portion and a second portion, where the first portion abuts the posterior surface and the second portion, and where the second portion further abuts the beveled portion. The modified edge region provides a more gradual transition between the anterior and posterior surfaces.
A corneal implant having an aspheric surface for modifying the cornea curvature and altering the corneal refractive power. The corneal implant has a lens body formed of an optically clear bio-compatible material, preferably with an index of refraction substantially similar to that of human corneal tissue (1.376). The aspheric surface is comprised of a continuous aspheric surface from the apex of the implant to beveled surface. The beveled surface, positioned near the outer diameter of the implant, is used to reduce the thickness of the aspheric surface on the periphery of the lens to the outer diameter edge. The body of the implant has a diameter between about 2.0 mm and 7.0 mm and a thickness less than about 0.150 mm.