A method and system provide a fitting system for a flexible fuel cell of an aircraft. The fitting system may include a flexible fuel cell and a fitting. The fitting may have a peripheral flange with a series of slots spaced about the flange. A series of fabric strips may be threaded into the slots of the fitting and one or more adhesives may couple the fabric strips to the fuel cell. The fabric strips may extend out around the periphery of the fitting to provide a uniform contact surface area with the fuel cell. The fabric strips may be separated by fuel cell material. The fabric strips may be made from one or more materials for enclosing or holding fuel. The fitting may further include threaded holes wherein the threaded holes may receive fasteners to couple the fitting to the fuel equipment of an aircraft.
A method and system provide a fitting system for a flexible fuel cell of an aircraft. The fitting system may include a flexible fuel cell and a fitting. The fitting may have a peripheral flange with a series of slots spaced about the flange. A series of fabric strips may be threaded into the slots of the fitting and one or more adhesives may couple the fabric strips to the fuel cell. The fabric strips may extend out around the periphery of the fitting to provide a uniform contact surface area with the fuel cell. The fabric strips may be separated by fuel cell material. The fabric strips may be made from one or more materials for enclosing or holding fuel. The fitting may further include threaded holes wherein the threaded holes may receive fasteners to couple the fitting to the fuel equipment of an aircraft.
A fabric and elastomeric material (referred to as a fabric trilayer) combined with a sealant may be applied in such a fashion so as to eliminate or minimize air entrapment in an elastomeric composite structure that forms a seal-sealing volume. The performance of the self-sealing volume is dramatically improved with this minimizing of air entrapment. Surprisingly and unexpectedly, this construction approach may be accomplished without significantly adding to the weight or thickness of the volume and without affecting the outer dimension of the self-sealing volume. Thus, a method and system for forming a self-sealing volume are described. The system includes an elastomeric composite structure comprising at least one layer of an elastomeric material derived from a neat (no solvent) elastomeric material that does not substantially react at room temperature.
B32B 5/02 - Layered products characterised by the non-homogeneity or physical structure of a layer characterised by structural features of a layer comprising fibres or filaments
B29C 49/00 - Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
B29C 49/22 - Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor using multilayered preforms or parisons
A fabric coated or impregnated with an elastomeric material may include a polyurethane dispersion layer combined with a sealant. The fabric may be applied in such a fashion so as to enable the elimination of solvent or fluid that is associated with the elastomer. The polyurethane dispersion layer generally comprises an elastomeric material dispersed or dissolved in a liquid medium, such as, but not limited to, water. At the same time, the integrity of the elastomeric composite which is formed from the dispersion and sealant layers may be maintained in order to minimize the presence of air voids and pockets. It has thus been realized that in doing so the performance of the self-sealing volume is dramatically improved. This method of construction usually may be accomplished without significantly adding to the weight or thickness of the volume and without affecting the outer dimension of the self-sealing volume.
A method and system for forming a self-sealing volume includes an elastomeric composite structure. The structure includes layers of a cast polyurethane derived from a neat polyurethane monomer reaction mixture that does not substantially react at room temperature. The polyurethane monomer reaction layer includes a reaction product of an organic polyisocyanate and a reactive hydrogen-containing material reacted with a mixture of a monomeric polyol and polymeric polyols. The structure may further include one or more layers of a fabric that have been precoated with an aliphatic polyurethane, and one or more sealing layers. A fuel impermeable inner liner may be positioned in an inner region. The sealing layers may comprise at least one of partially vulcanized natural rubber (NR), polyisoprene (IR), styrene butadiene (SBR), or a blend of SBR with NR or IR. A dimensionally correct, self-sealing volume may be created by inflating the volume during its cure.
B29C 49/22 - Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor using multilayered preforms or parisons
B29C 70/48 - Shaping or impregnating by compression for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM]
B32B 27/08 - Layered products essentially comprising synthetic resin as the main or only constituent of a layer next to another layer of a specific substance of synthetic resin of a different kind
B32B 27/12 - Layered products essentially comprising synthetic resin next to a fibrous or filamentary layer
B29K 75/00 - Use of polyureas or polyurethanes as moulding material
B29K 105/08 - Condition, form or state of moulded material containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
A fabric coated or impregnated with an elastomeric material may include a polyurethane dispersion layer combined with a sealant. The fabric may be applied in such a fashion so as to enable the elimination of solvent or fluid that is associated with the elastomer. The polyurethane dispersion layer generally comprises an elastomeric material dispersed or dissolved in a liquid medium, such as, but not limited to, water. At the same time, the integrity of the elastomeric composite which is formed from the dispersion and sealant layers may be maintained in order to minimize the presence of air voids and pockets. It has thus been realized that in doing so the performance of the self-sealing volume is dramatically improved. This method of construction usually may be accomplished without significantly adding to the weight or thickness of the volume and without affecting the outer dimension of the self-sealing volume.
B29C 49/42 - Component parts, details or accessories; Auxiliary operations
B29C 49/00 - Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
B29C 49/02 - Combined blow-moulding and manufacture of the preform or the parison
B29C 49/22 - Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor using multilayered preforms or parisons
B32B 5/26 - Layered products characterised by the non-homogeneity or physical structure of a layer characterised by the presence of two or more layers which comprise fibres, filaments, granules, or powder, or are foamed or specifically porous one layer being a fibrous or filamentary layer another layer also being fibrous or filamentary
B32B 3/26 - Layered products essentially comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products essentially having particular features of form characterised by a layer with cavities or internal voids
B32B 7/12 - Interconnection of layers using interposed adhesives or interposed materials with bonding properties
B32B 27/12 - Layered products essentially comprising synthetic resin next to a fibrous or filamentary layer
B32B 27/28 - Layered products essentially comprising synthetic resin comprising copolymers of synthetic resins not wholly covered by any one of the following subgroups
B32B 5/24 - Layered products characterised by the non-homogeneity or physical structure of a layer characterised by the presence of two or more layers which comprise fibres, filaments, granules, or powder, or are foamed or specifically porous one layer being a fibrous or filamentary layer
A system and method for improving fuel storage within the wing of an aircraft. In one exemplary embodiment, the system and method eliminate the traditional spars and ribs, and any spanwise and cordwise connecting vertical webs, within a wing. Instead, the system comprises a plurality of modified flared spars, each having a length defined by an angled hat section, to form a wing structure. The modified flared spars may also comprise one or more lengths defined by a specialized section configured to accommodate a portion of a box section, or any other internal component of the wing. The system and method may also involve a contiguous fuel bladder of any size/type. The fuel bladder for the wing may comprise a fabric coated or impregnated with an elastomeric material that may include a polyurethane dispersion layer combined with a sealant.
A method for making hydrocarbon and water resistant armor composite may include applying an adhesive layer to upper and lower surfaces of a stack of armor materials. In one embodiment, a first sheet and a second sheet of porous materials may be provided. A protective environmental coating may be applied to the sheets of porous materials. In another embodiment, an adhesive layer may be applied to upper and lower surfaces of a stack of armor materials and then providing a first sheet and a second sheet of nonporous materials. The protective environmental coating as well as the first and second sheets of nonporous materials may make the hydrocarbon and water resistant armor impervious to at least fuel, oil, air, or water. The hydrocarbon and water resistant armor may form part of ballistic apparel, a blast blanket, a ballistic panel, or a fragmentation panel.
A fabric and elastomeric material (referred to as a fabric trilayer) combined with a sealant may be applied in such a fashion so as to eliminate or minimize air entrapment in an elastomeric composite structure that forms a seal-sealing volume. The performance of the self-sealing volume is dramatically improved with this minimizing of air entrapment. Surprisingly and unexpectedly, this construction approach may be accomplished without significantly adding to the weight or thickness of the volume and without affecting the outer dimension of the self-sealing volume. Thus, a method and system for forming a self-sealing volume are described. The system includes an elastomeric composite structure comprising at least one layer of an elastomeric material derived from a neat (no solvent) elastomeric material that does not substantially react at room temperature.
B29C 49/22 - Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor using multilayered preforms or parisons
B29C 49/02 - Combined blow-moulding and manufacture of the preform or the parison
B29C 49/00 - Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
B32B 5/02 - Layered products characterised by the non-homogeneity or physical structure of a layer characterised by structural features of a layer comprising fibres or filaments
A system and method for improving fuel storage within the wing of an aircraft. In one exemplary embodiment, the system and method eliminate the traditional spars and ribs, and any spanwise and cordwise connecting vertical webs, within a wing. Instead, the system comprises a plurality of modified flared spars, each having a length defined by an angled hat section, to form a wing structure. The modified flared spars may also comprise one or more lengths defined by a specialized section configured to accommodate a portion of a box section, or any other internal component of the wing. The system and method may also involve a contiguous fuel bladder of any size/type. The fuel bladder for the wing may comprise a fabric coated or impregnated with an elastomeric material that may include a polyurethane dispersion layer combined with a sealant.
A method and system for forming a self-sealing volume includes an elastomeric composite structure. The structure includes layers of a cast polyurethane derived from a neat polyurethane monomer reaction mixture that does not substantially react at room temperature. The polyurethane monomer reaction layer includes a reaction product of an organic polyisocyanate and a reactive hydrogen-containing material reacted with a mixture of a monomeric polyol and polymeric polyols. The structure may further include one or more layers of a fabric that have been precoated with an aliphatic polyurethane, and one or more sealing layers. A fuel impermeable inner liner may be positioned in an inner region. The sealing layers may comprise at least one of partially vulcanized natural rubber (NR), polyisoprene (IR), styrene butadiene (SBR), or a blend of SBR with NR or IR. A dimensionally correct, self-sealing volume may be created by inflating the volume during its cure.
B29C 49/22 - Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor using multilayered preforms or parisons
Blast activated quick-disconnect apparatus in cooperation with a quick disconnect device including a two-piece body with a longitudinally movable collar surrounding a portion of each of the two pieces, the collar holding the two pieces together in a first position and separating the two pieces in a second or activated position. The apparatus including mounting apparatus fixedly attaching the quick disconnect device to a vehicle to be protected from physical shock or concussion, a mass affixed to the movable collar of the two-piece body, a spring having one end abutting the mass, and a spring stop formed as one of a portion of the mounting apparatus or a separate component. The spring being designed to provide a bias on the mass that prevents movement of the mass and collar into the activated position during accelerations in a normal use range.
Fuel systems for use in aircraft comprised of, namely, fuel manifolds, rollover or vent valves and fuel pumps; fuel systems for use in land vehicles comprised, namely, of fuel manifolds, rollover or vent valves and fuel pumps