A fish processing system includes a measurement sensor configured to measure a distance across a head of a fish as the fish moves along a conveyor. A drive mechanism provides movement of a blade across a transport path of the fish along the conveyor in response to the determined distance to accurately sever the head of the fish based on the size of the fish. The system may also include a detection sensor for closing a wall of a trough to reject fish with heads that are not properly removed by the blade as well as an adjustment cylinder to vary a position of a conveyor relative to a fish processing subsystem to avoid jamming. Related methods for severing a portion of each fish in a series of transported fish based on the size of each fish are also provided.
A fish processing system includes a measurement sensor configured to measure a distance across a head of a fish as the fish moves along a conveyor. A drive mechanism provides movement of a blade across a transport path of the fish along the conveyor in response to the determined distance to accurately sever the head of the fish based on the size of the fish. The system may also include a detection sensor for closing a wall of a trough to reject fish with heads that are not properly removed by the blade as well as an adjustment cylinder to vary a position of a conveyor relative to a fish processing subsystem to avoid jamming. Related methods for severing a portion of each fish in a series of transported fish based on the size of each fish are also provided.
B65G 17/06 - Conveyors having an endless traction element, e.g. a chain, transmitting movement to a continuous or substantially-continuous load-carrying surface or to a series of individual load-carriersEndless-chain conveyors in which the chains form the load-carrying surface having a load-carrying surface formed by a series of interconnected, e.g. longitudinal, links, plates, or platforms
Methods and systems for processing fish, such as salmon, are provided which enable filleting of the fish in a particular efficient manner. An example method includes exposing a backbone of a fish from a belly side of the fish, positioning the backbone of the fish on a conveyor device, and conveying the fish with the backbone in contact with the conveyor device. The conveyor may be a spiked chain, and positioning the backbone of the fish on the conveyor device may include engaging the backbone of the fish with the spiked chain such that the fish straddles the spiked chain as the fish is transported. The method may further include cutting the fish from the dorsal side on each of opposing sides of a central plane of the fish to a location adjacent a connection of the pinbones of the fish with the vertebrae of the fish while the fish is conveyed with the backbone in contact with the conveyor device, and subsequently peeling the ribs and ventral spines from fillets of the fish.
Methods and systems for processing fish are provided which enable the efficient conveyance of fish products from one fish processing subsystem or station to another in a particularly reliable and robust form factor. The systems may include a first fish processing subsystem configured to process fish with the fish orientated in a first orientation; a second fish processing subsystem configured to process the fish with the fish orientated in a second orientation different from the first orientation; and a conveyor system that couples the first fish processing subsystem to the second fish processing subsystem with the conveyor system being configured to receive the fish in the first orientation and deliver the fish in the second orientation. Related methods of conveying and processing fish are also provided.
A22C 25/08 - Holding, guiding, or conveying fish before, during or after its preparation
A22C 25/14 - Beheading, eviscerating, or cleaning fish
A22C 25/12 - Arranging fish, e.g. according to the position of head and tail
B65G 17/06 - Conveyors having an endless traction element, e.g. a chain, transmitting movement to a continuous or substantially-continuous load-carrying surface or to a series of individual load-carriersEndless-chain conveyors in which the chains form the load-carrying surface having a load-carrying surface formed by a series of interconnected, e.g. longitudinal, links, plates, or platforms
B65G 17/36 - Individual load-carriers having concave surfaces, e.g. buckets
Methods and systems for processing fish are provided which enable cutting of the fish and removal of the viscera without damage to either the viscera or the remaining fish product. The systems may include a gutting device to severe a gullet of the fish from the fish body and to gather and remove the viscera without significant damage to the viscera or the remaining fish product. Extractors for severing the connection between the gullet and the fish with one or more underlying cutting members are also provided to assist in removal of the viscera.
Methods and systems for processing fish are provided which enable cutting of the fish and removal of the viscera without damage to either the viscera or the remaining fish product. The systems may include an adjustable cutting device to cut the belly in a particularly unobtrusive manner and/or an adjustable gutting device to severe a gullet of the fish from the fish body and to gather and remove the viscera without significant damage to the viscera or the remaining fish product. Extractors for severing the connection between the gullet and the fish are also provided to assist in removal of the viscera, including the gonads. Vacuum head assemblies for cleaning a cavity of the fish after the viscera is removed are also provided.
Methods and systems for processing fish are provided which enable removal of the head or other portion of a fish in a particularly reliable and efficient manner. The systems include a conveyor drive motor which provides continuous movement of a conveyor device for transporting fish along a transport path and which simultaneously provides intermittent movement of a blade across the transport path to sequentially sever a portion of each fish. An intermittent drive mechanism is coupled to the conveyor drive motor and coupled to the blade to convert continuous movement produced by the conveyor drive motor to intermittent movement of the blade between a standby position and a cutting position. Related methods for severing a portion of each fish in a series of transported fish are also provided.
Methods and systems for processing fish are provided which enable cutting of the fish and removal of the viscera without damage to either the viscera or the remaining fish product. The systems may include an adjustable cutting device to cut the belly in a particularly unobtrusive manner and/or an adjustable gutting device to severe a gullet of the fish from the fish body and to gather and remove the viscera without significant damage to the viscera or the remaining fish product. Extractors for severing the connection between the gullet and the fish are also provided to assist in removal of the viscera, including the gonads. Vacuum head assemblies for cleaning a cavity of the fish after the viscera is removed are also provided.
Methods and systems for processing fish are provided which enable cutting of the fish and removal of the viscera without damage to either the viscera or the remaining fish product. The systems may include an adjustable cutting device to cut the belly in a particularly unobtrusive manner and/or an adjustable gutting device to severe a gullet of the fish from the fish body and to gather and remove the viscera without significant damage to the viscera or the remaining fish product. Extractors for severing the connection between the gullet and the fish are also provided to assist in removal of the viscera, including the gonads. Vacuum head assemblies for cleaning a cavity of the fish after the viscera is removed are also provided.