An HVAC system for enhanced source-to-load matching without sacrificing airflow delivery in low load structures. Embodiments of the present disclosure provide for an HVAC system for enhanced source-to-load matching in a low load environment, i.e. dwellings with a BTU/hour capacity of less than 18,000. Prior art HVAC equipment is oversized for dwellings with a BTU/hour capacity of less than 18,000 that are insulated to minimum code requirements. Embodiments of the present disclosure provide for an HVAC system that separates the delivery of airflow (CFM) output from that of the BTU capacity output, thereby enabling a distributed delivery system for optimal source-to-load matching without sacrificing airflow delivery in low load environments. The source-to-load matching enabled by the present disclosure ensures optimal indoor air quality, enhanced comfort for occupants of the dwelling, and approximately a 60% reduction in heating and cooling costs when compared to prior art HVAC systems.
A self-contained, integrated, modular HVAC system includes a plurality of adaptive or interchangeable components or swappable modules interconnected to enable the modulation of total airflow and total cooling capacity (sensible plus latent) to meet variable loads, and adjust a sensible heat ratio (SHR) to meet a variable latent ratio of a conditioned space. The components comprise one or more air inlet, damper, inlet damper, air filtration module, air purification module, air freshener module, dehumidifying module, cooling module, air bypass module, blower module, air outlet, I/O panel, and a control cabinet. The components have sensors and actuators that allows a programmable control system to coordinate diagnostics and operations of internal and external components of a refrigeration/heating cycle using various feedback control logics. The HVAC system allows users to remotely determine a chosen relative humidity (RH) set-point, airflow, and temperature of a conditioned space using wireless data communication devices.
F24F 13/15 - Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built-up of tilting members, e.g. louvre with parallel simultaneously tiltable lamellae
F24F 11/52 - Indication arrangements, e.g. displays
A method and system for providing a user with real-time luminosity, temperature, indoor air quality sensing, diagnostics, analysis, and environmental control via a smart HVAC controller, a plurality of multi-sensor devices and personal health devices and gateways communicably engaged via a mesh network and the Internet. Indoor luminosity, temperature, indoor air quality and HVAC data from a residential or commercial structure as well as occupant health/wellness/ activities status are collected, communicated, and aggregated in an application database via an Internet connection. An application server is operable to query the application database to provide a variety of home status, occupant status, analysis, and diagnostic reports. Reports containing detailed air quality and contaminant data could be communicated to client via email, web/mobile applications, and mobile push notifications. The application may generate one or more remediation recommendations, including configuration, settings, and automatic control of an HVAC system.
Embodiments of the present disclosure enable an HVAC system comprising an adaptive air distribution system, and methods for distributed and adaptive control of an occupant comfort parameter in a localized, distributed space, within a multizone environment. The system comprises an HVAC system controller, sensors, and actuators for the control and distribution of a primary airflow of an HVAC system into a specific zone of a residential or housing unit. The various system elements are configured to adapt operation under a variable sensible or latent internal load gain or change to achieve a desired occupant comfort parameter target set point or occupant ambient target for a distributed zone within a multizone environment. The occupant comfort parameter target set point is configurable through a task ambient management system residing within an application cloud server operably engaged with an application database, the application cloud server being communicably connected to the HVAC system controller.
An HVAC system for enhanced source-to-load matching without sacrificing airflow delivery in low load structures. Embodiments of the present disclosure provide for an HVAC system for enhanced source-to-load matching in a low load environment, i.e. dwellings with a BTU/hour capacity of less than 18,000. Prior art HVAC equipment is oversized for dwellings with a BTU/hour capacity of less than 18,000 that are insulated to minimum code requirements. Embodiments of the present disclosure provide for an HVAC system that separates the delivery of airflow (CFM) output from that of the BTU capacity output, thereby enabling a distributed delivery system for optimal source-to-load matching without sacrificing airflow delivery in low load environments. The source-to-load matching enabled by the present disclosure ensures optimal indoor air quality, enhanced comfort for occupants of the dwelling, and approximately a 60% reduction in heating and cooling costs when compared to prior art HVAC systems.
F24F 3/044 - Systems in which all treatment is given in the central station, i.e. all-air systems
F24F 3/052 - Multiple duct systems, e.g. systems in which hot and cold air are supplied by separate circuits from the central station to mixing chambers in the spaces to be conditioned
F24F 3/14 - Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatmentApparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidificationAir-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatmentApparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by dehumidification
F24F 11/50 - Control or safety arrangements characterised by user interfaces or communication
F24F 11/62 - Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
F24F 11/70 - Control systems characterised by their outputsConstructional details thereof
A smart HVAC system includes a plurality of sensors that monitor the temperature and humidity of a conditioned space and the energy efficiency of the HVAC system. A system controller is operable to control one or more bypass dampers. The modulation of air volume allows the cooling coil to achieve an optimum BTU extraction rate, and regulate temperature and humidity levels of the conditioned space. Sensor data is interpreted by a controller to modulate positioning of the dampers, thereby regulating the volume of air moved across the cooling coil. The smart HVAC system regulates the amount of air moved over the coil according to the desired system output, which includes temperature humidity and energy efficiency while maintaining a constant movement of air and the optimal amount of air exchanges per hour throughout the conditioned space with enhanced dehumidification and mold free systems.
F24F 3/14 - Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatmentApparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidificationAir-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatmentApparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by dehumidification
F24F 11/77 - Control systems characterised by their outputsConstructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
F24F 3/044 - Systems in which all treatment is given in the central station, i.e. all-air systems
F24F 11/30 - Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
F24F 11/81 - Control systems characterised by their outputsConstructional details thereof for controlling the temperature of the supplied air by controlling the air supply to heat-exchangers or bypass channels