Systems, methods, and devices for hybrid series compensation in transmission lines using power electronics which may include a system with a transmission line connected to a power source; a fixed series capacitor (FSC) circuit connected in series with the transmission line; and a static synchronous series compensation (SSSC) circuit connected in series with the transmission line, wherein the FSC circuit and the SSSC circuit are configured to provide fixed and dynamic capacitive compensation to the transmission line.
A voltage source converter may be coupled to a transmission line. The voltage source converter has two or more inverter valve units. Each inverter valve unit has a full H bridge of switching devices and a capacitor. Paralleling conductor pairs connect the inverter valve units in parallel, in a self-balancing circuit arrangement.
H02M 7/5387 - Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
H02M 7/483 - Converters with outputs that each can have more than two voltage levels
3.
Powering an impedance injection unit during startup operations
A multi-mode power supply is described for providing power to an impedance injection unit that is operable to inject reactive power into a power transmission line. The impedance injection unit is configured to operate safely in the presence of switching states of the impedance injection unit, and in the presence of disturbances such as surge currents in the power transmission line, by the multi-mode power supply clamping a potential overvoltage to a safe level. The power supply contains analog and digital circuits and can recover automatically from a surge current in the transmission line, or from a condition of zero line current. Power harvesting may be achieved via a line connected current transformer, via an internal current transformer, via a DC link capacitor, or from combinations of these.
H02M 1/32 - Means for protecting converters other than by automatic disconnection
G05F 1/12 - Regulating voltage or current wherein the variable is actually regulated by the final control device is AC
H02J 3/20 - Arrangements for adjusting, eliminating or compensating reactive power in networks in long overhead lines
H02M 3/07 - Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode
4.
Attenuating harmonic current in power transmission lines
A series connectable power flow module is for connection to a power transmission line. The module has a full bridge inverter and a controller. The full bridge inverter has inputs for controlling charging and discharging a DC link capacitor. The controller is coupled to the inputs of the full bridge inverter. The controller is configured to separate a harmonic current from a line current flowing in the power transmission line. The controller operates the full bridge inverter in accordance with the separated harmonic current, to attenuate the harmonic current flowing in the power transmission line through injection of a DC link capacitor voltage.
H02M 7/219 - Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
H02M 1/12 - Arrangements for reducing harmonics from AC input or output
H02M 7/757 - Conversion of AC power input into DC power outputConversion of DC power input into AC power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
5.
Modular Facts Devices with External Fault Current Protection
Flexible AC transmission system (FACTS) enabling distributed controls is a requirement for power transmission and distribution, to improve line balancing and distribution efficiency. These FACTS devices are electronic circuits that vary in the type of services they provide. All FACTS devices have internal circuitry to handle fault currents. Most of these circuits are unique in design for each manufacturer, which make these FACTS devices non-modular, non-interchangeable, expensive and heavy. One of the most versatile FACTS device is the static synchronous series compensator (SSSC), which is used to inject impedance into the transmission lines to change the power flow characteristics. The addition of integrated fault current handling circuitry makes the SSSC and similar FACTS devices unwieldy, heavy, and not a viable solution for distributed control. What is disclosed are modifications to FACTS devices that move the fault current protection external to the FACTS device and make them modular and re-usable.
H02H 3/16 - Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition, with or without subsequent reconnection responsive to fault current to earth, frame or mass
H02H 7/16 - Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for capacitors
H02H 7/26 - Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occurred
H02H 9/04 - Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
H02H 9/06 - Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage using spark-gap arresters
H02J 3/06 - Controlling transfer of power between connected networksControlling sharing of load between connected networks
H02J 3/18 - Arrangements for adjusting, eliminating or compensating reactive power in networks
6.
FAILURE DETECTION WITHIN A GROUP OF POWER FLOW CONTROL MODULES
A power flow control system is disclosed. The system includes impedance injection modules (IIMs) distributed along and connected in series to one or more power transmission lines. The system further includes dual-ring fiber optic networks, with each dual-ring fiber optic network including a pair of fiber rings that provide data flow in opposite directions. The system further includes redundant power line coordinators in communication with the IIMs through the dual-ring fiber optic networks.
Intelligent impedance injection modules (IIM)s are currently being used for line balancing and overcoming local disturbances on High Voltage (HV) transmission lines of an HV power grid. These distributed IIMs are connected and/or coupled to the HV transmission lines and operate with a pseudo ground at the voltage of the HV transmission line. In order to operate effectively, the IIMs need to communicate with other distributed IIMs across the three phases of the HV grid and also communicate with local intelligent centers LINCs that connect to and synchronize operations across each group of the distributed IIMs in a local region of the HV power grid. Systems and methods are presented for effective and secure sub-cyclic speed communication to and from the distributed IIMs, distributed IIMs to LINCs and substations to enable coordinated actions. Further the distributed IIMs and LINCs receive GPS signals and use the GPS clock for synchronizing operations.
H02J 13/00 - Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the networkCircuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
H04L 9/06 - Arrangements for secret or secure communicationsNetwork security protocols the encryption apparatus using shift registers or memories for blockwise coding, e.g. D.E.S. systems
H04B 3/54 - Systems for transmission via power distribution lines
A modular power converter is operable to mitigate a DC component of injection onto a power transmission line. The modular power converter includes a pulse width modulation (PWM)-controlled generator, a voltage emulator, and a control circuit. The PWM-controlled generator includes drivers and a coupling capacitor. The PWM-controlled generator is to store voltage on the coupling capacitor and inject a voltage of the converter, which includes the DC component of injection, onto the power transmission line. The voltage emulator is to determine a DC measurement emulating the voltage of the converter, as a time-varying average value that is based on summing generator driver-state weighted values of the voltage on the coupling capacitor. The control circuit is to generate PWM pulses to operate the PWM-controlled generator and adjust timing of the PWM pulses, based at least on the DC measurement from the voltage emulator to counter-balance the DC component of injection.
H02J 3/18 - Arrangements for adjusting, eliminating or compensating reactive power in networks
H02M 3/158 - Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
H02M 1/14 - Arrangements for reducing ripples from DC input or output
A solenoid driver operable to drive a solenoid actuating a high-voltage power switch is disclosed. The solenoid driver includes a first group of semiconductor switches including a first semiconductor switch and a second semiconductor switch in series. This group is connected to a high-voltage supply line by a diode. The solenoid driver further includes a second group of semiconductor switches including a third semiconductor switch and a fourth semiconductor switch in series. This group is connected to the high-voltage supply line by a second diode. The solenoid driver further includes a common connection between the first group of semiconductor switches and the second group of semiconductor switches. A solenoid coil of the solenoid is connected between the first group of semiconductor switches and the second group of semiconductor switches at a junction between the first and second semiconductor switches and a junction between the third and fourth semiconductor switches.
In an impedance injection module in which multiple converter units are placed in series to realize a high level of impedance injection, switches, preferably vacuum interrupters, are connected to short the input and the output terminals of each individual unit. Unlike the fault-protecting switch across the entire module, these switches at the individual converter unit level serve several purposes, overload and surge protection of a unit, insertion loss minimization of an idle unit when the required impedance injection is small, and electrically removing a defective injection unit from the power flow to increase the overall reliability of the impedance injection module in the face of the failure of one unit or a few units. For more rapid response, particularly in response to faults, the vacuum interrupter at the unit level may be accompanied by an SCR switch in parallel with it.
H02J 13/00 - Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the networkCircuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
G05B 13/02 - Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
H02J 3/18 - Arrangements for adjusting, eliminating or compensating reactive power in networks
H02J 3/00 - Circuit arrangements for ac mains or ac distribution networks
H02J 3/20 - Arrangements for adjusting, eliminating or compensating reactive power in networks in long overhead lines
A clamping circuit employs a filter comprising two series branches of surge arresting circuits to clamp voltage spikes on equipment in series with a power transmission line. Clamping of these voltage spikes protects insulators, semiconductors, and other sensitive components within the series equipment from transient grid events. By using a predetermined frequency to control the response, the filter does not interfere with normal operation of the power system nor the operation of a power flow control module series-coupled to the transmission line through the filter. The clamping circuit employs hysteresis and imposes a shared voltage ratio between the two circuit branches, the ratio depending on frequency and voltage of the transient asserted on the transmission line, in order to provide a very sharp protection response to events within the target frequency range.
H02H 9/06 - Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage using spark-gap arresters
H02H 9/00 - Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
12.
Liquid cooling of high current devices in power flow control systems
A modular liquid cooling block is described for cooling high current devices deployed in power flow control systems. The liquid cooling blocks may have separate shower heads which may be configured for direct impingement, indirect impingement, or parallel flow cooling configurations. Voltage isolation of liquid cooling blocks from an enclosure of the power flow control system and from associated equipment enables serial or parallel connected power flow control units to inject substantial reactive power that may be configurable into a power transmission line. Associated power flow control systems are monitored for temperature, flow rate and pressure gradient. Redundant pumps and fan radiators contribute to reliable operation. Automatic shutdown and alarm may be provided.
H05K 7/20 - Modifications to facilitate cooling, ventilating, or heating
H01L 23/473 - Arrangements for cooling, heating, ventilating or temperature compensation involving the transfer of heat by flowing fluids by flowing liquids
A capacitor bank assembly has a conductive mount tray and capacitors. The capacitors are vertically mounted and held by the conductive mount tray. All positive terminals of the capacitors are connected to a first conductive plate. All negative terminals of the capacitors are connected to a second conductive plate. An insulating material separates the first conductive plate and the second conductive plate.
A liquid cooling static synchronous series compensator (SSSC) system has inverter valve modules, inverter valve units and liquid cooling blocks. Liquid cooling blocks may be configured to provide a jetted flow, a parallel flow or an individualized flow, within an enclosed fluid chamber, for cooling inverter valve units. Liquid cooling blocks may have voltage isolation.
A system for managing power delivery and power flow in a distribution grid having grid forming capability is disclosed. The system includes a connect-disconnect switches operable to connect a power transmission grid to and disconnect the power transmission grid from the distribution grid. The distribution grid includes renewable energy generators and a number of loads. The system further includes a full bridge shunt inverter system connected to the distribution grid. The full bridge shunt inverter system includes a four-quadrant DC-to-AC inverter and at least a battery for power storage and operable as a power source for grid formation. The system further includes a pair of active filters connected in series on the distribution grid. The full bridge shunt inverter system is connected to the distribution grid at a node between the active filters to enable impedance adjustment for managing and controlling the power flow in the distribution grid.
A flexible alternating current transmission system (FACTS)-based shunt system is described for use in a hierarchy in a high-voltage or medium-voltage power grid. The shunt system includes a FACTS-based shunt device, a communication link, and a shunt controller. A hierarchy in the power grid includes a supervisory utility communicably coupled to localized intelligence centers (LINCs). Each LINC is communicably coupled to one or more impedance injection modules (IIMs) that are coupled to the power grid. The hierarchy has an optimization engine. The shunt controller, of the shunt system, is to communicate and cooperate with one or more of the LINCs in the hierarchy. The shunt controller is to operate the FACTS-based shunt device in accordance with such communication and cooperation with the LINCs, to provide voltage stability to the power grid through hierarchical control according to the supervisory utility, the LINCs and the optimization engine.
A system has grid forming capability. A connect-disconnect switch is connectable to a power transmission grid and connectable to a distribution grid that may have renewable energy generation sources and loads. A shunt inverter system comprising a 4-quadrant DC-to-AC inverter and a battery power source is connectable to the distribution grid. A controller controls the connect-disconnect switch to connect and disconnect the distribution grid from the power transmission grid, or disconnect a first segment of the distribution grid from a second segment of the distribution grid. The controller operates the shunt inverter system to provide power factor correction to the distribution grid under normal operation. The controller operates the shunt inverter system with switching and current control instructions to enable grid forming and sustaining of continued operation of the distribution grid.
H02J 3/38 - Arrangements for parallelly feeding a single network by two or more generators, converters or transformers
H02M 7/5387 - Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
H02J 3/01 - Arrangements for reducing harmonics or ripples
H02J 3/18 - Arrangements for adjusting, eliminating or compensating reactive power in networks
A driver circuit for driving a solenoid, and related method, are described. A power supply charges one or more capacitors to a high voltage level sufficient to over-drive the solenoid. A switch is connected to the one or more capacitors and the solenoid. When the switch is on, the switch connects the one or more capacitors to the solenoid. When the switch is off, the switch disconnects the one or more capacitors from the solenoid. Control circuitry turns the switch on, and turns the switch off in response to sensing current through the solenoid reaches a defined maximum current.
A passive cooling topology and a manufacturing method are described for a transformer to achieve improved power density at a light weight. No fans or cooling liquids are required. Vertical planar faces are used for the central core element, the primary and secondary windings, the outer core element, and a finned heat sink. The primary flow for thermal cooling is radial, through the vertical planar faces. The transformer may be configured to float at the potential of a high voltage transmission line, leading to improved thermal characteristics. Eddy currents are reduced using repeating air gaps in the central core, and a continuously transposed cable comprising multiple strands per turn in the secondary winding. Air pockets in the windings are eliminated using a potting resin and vacuum pressure impregnation (VPI).
A voltage source converter has a first inverter valve unit that has a first terminal and a second terminal, and a second inverter valve unit that has a first terminal and a second terminal. The first inverter valve unit and the second inverter valve unit are connectedly arranged in parallel. The first inverter valve unit and the second inverter valve unit are self-balancing through equal capacitance and parallel connection of the first inverter valve unit and the second valve unit.
H02M 7/5387 - Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
H02M 7/493 - Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
A transformer for power line reactance injection that can be adapted in manufacturing to different operating current ranges by interchanging primary windings having one, two, three, four or more laminar turns. Through its use of gaps in the magnetic circuit that are filled with high temperature, high thermal conductivity dielectrics, this transformer has tolerance to very high fault currents, and it can be passively cooled by the use of fins on the exterior walls of the core.
A modular liquid cooling block is described for cooling high current devices deployed in power flow control systems. The liquid cooling blocks may have separate shower heads which may be configured for direct impingement, indirect impingement, or parallel flow cooling configurations. Voltage isolation of liquid cooling blocks from an enclosure of the power flow control system and from associated equipment enables serial or parallel connected power flow control units to inject substantial reactive power that may be configurable into a power transmission line. Associated power flow control systems are monitored for temperature, flow rate and pressure gradient. Redundant pumps and fan radiators contribute to reliable operation. Automatic shutdown and alarm may be provided.
H05K 7/20 - Modifications to facilitate cooling, ventilating, or heating
H01L 23/473 - Arrangements for cooling, heating, ventilating or temperature compensation involving the transfer of heat by flowing fluids by flowing liquids
23.
Integration of enclosure and core for improved structural integrity of an impedance injection unit
Sheet metal construction is described for achieving high strength at low weight for a power reactor and for an impedance injection module incorporating the power reactor. Clamping plates are used to retain the core and the windings of the reactor. Integrated features of a specialized frame of the impedance injection module include flanges for structural rigidity, a convenient yoke plate for lifting by crane, feet for mounting insulators, and sufficient strength to maintain mechanical integrity during normal operation and also during fault conditions. The specialized frame provides a light weight assembly suitable for mounting on power transmission lines as well as on ground assemblies. The specialized frame can reduce the cost of the total enclosure to around 25% of the cost and 50% of the weight of an equivalent conventional enclosure. An insulation topology is also described.
B23P 19/00 - Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformationTools or devices therefor so far as not provided for in other classes
H01F 41/02 - Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformersApparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils or magnets
H01F 27/245 - Magnetic cores made from sheets, e.g. grain-oriented
H01F 27/30 - Fastening or clamping coils, windings, or parts thereof togetherFastening or mounting coils or windings on core, casing, or other support
H01F 27/26 - Fastening parts of the core togetherFastening or mounting the core on casing or support
24.
Monitoring non-uniform capacitor and IGBT degradation with current sensors
Systems and methods of detecting non-uniform aging and degradation of power assembly units are disclosed. The system may include a first power assembly unit and a second power assembly unit adjacent to the first power assembly unit. Each of the first and second power assembly units has a coupling capacitor and a number of electrical components. The system may further include a current sensor in between the coupling capacitors of the first and second power assembly units to detect a current spike in the coupling capacitors and the electrical components.
A control module controls impedance injection units (IIUs) to form multiple connection configurations in sequence. Each connection configuration has one IIU, or multiple IIUs in series, parallel or combination of series and parallel. The connection configurations of IIUs are coupled to a high-voltage transmission line. The control module and the IIUs generate rectangular impedance injection waveforms. When the waveforms are combined and injected to the high-voltage transmission line, this produces a pseudo-sinusoidal waveform.
A power flow control unit has one or more impedance injection units. The impedance injection unit has high current drivers and capacitors forming a capacitor bank, and a cooling plate. The cooling plate is thermally coupled to the high current drivers and thermally decoupled from the capacitor bank. Bus bars connect the impedance injection units in series with a power transmission line. The power flow control unit is configurable to inject into the power transmission line a reactive power of at least one MVAr (mega volt-ampere reactive).
H02M 1/12 - Arrangements for reducing harmonics from AC input or output
H02J 3/18 - Arrangements for adjusting, eliminating or compensating reactive power in networks
H02J 3/16 - Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
27.
Modular facts devices with external fault current protection
Flexible AC transmission system (FACTS) enabling distributed controls is a requirement for power transmission and distribution, to improve line balancing and distribution efficiency. These FACTS devices are electronic circuits that vary in the type of services they provide. All FACTS devices have internal circuitry to handle fault currents. Most of these circuits are unique in design for each manufacturer, which make these FACTS devices non-modular, non-interchangeable, expensive and heavy. One of the most versatile FACTS device is the static synchronous series compensator (SSSC), which is used to inject impedance into the transmission lines to change the power flow characteristics. The addition of integrated fault current handling circuitry makes the SSSC and similar FACTS devices unwieldy, heavy, and not a viable solution for distributed control. What is disclosed are modifications to FACTS devices that move the fault current protection external to the FACTS device and make them modular and re-usable.
H02H 3/16 - Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition, with or without subsequent reconnection responsive to fault current to earth, frame or mass
H02J 3/06 - Controlling transfer of power between connected networksControlling sharing of load between connected networks
H02J 3/18 - Arrangements for adjusting, eliminating or compensating reactive power in networks
H02H 7/16 - Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for capacitors
H02H 9/04 - Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
H02H 9/06 - Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage using spark-gap arresters
H02H 7/26 - Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occurred
28.
Sinusoidal wave formation for reduction of oscillations, harmonics and distortion using short pulses to reduce the number of required impedance injection units
A method for synchronized injection of impedance into high voltage (HV) transmission line is disclosed. The method includes generating, by a plurality of impedance injection units (IIUs) coupled to the HV transmission line, impedance injection waves that cumulatively form a pseudo-sinusoidal wave. The method further includes optimizing, by the plurality of IIUs, the pseudo-sinusoidal wave to represent a pure sinusoidal wave. The method further includes injecting, by the plurality of IIUs, the pseudo-sinusoidal wave, as impedance, into the HV transmission line. The plurality of IIUs form multiple connection configurations in sequence, each connection configuration comprising one IIU or multiple IIUs in series, parallel or combination thereof, coupled to the HV transmission line.
A power flow control system and method relate to power flow control for faults on power transmission lines. An inverter has power switching devices and a capacitor. A power-safe circuit holds the power switching devices inactive during an initial fault current of the power transmission line, until a power supply for operating the inverter reaches a threshold.
H02H 7/00 - Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
H02H 1/00 - Details of emergency protective circuit arrangements
H02H 7/122 - Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for convertersEmergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for rectifiers for static converters or rectifiers for inverters, i.e. DC/AC converters
H02J 7/00 - Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
H02M 7/537 - Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
H02J 7/34 - Parallel operation in networks using both storage and other DC sources, e.g. providing buffering
30.
System and methods for using thyristors to conduct surge currents away from critical infrastructure
A system and method using thyristors to protect a series-connected Flexible AC Transmission Systems (FACTS) device from surge currents are disclosed. According to some embodiments, the system includes a thyristor connected in shunt with the FACTS device to be protected. The system further includes control circuitry coupled to the thyristor to drive a gate of the thyristor with a direct current (DC) signal and turn on the thyristor in a time span on order of microseconds. The system and method can be used to protect any series-connected FACTS device that is in danger of being exposed to surge current such as a reclose after a deadline.
H02H 7/26 - Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occurred
H02H 1/00 - Details of emergency protective circuit arrangements
H03K 17/72 - Bipolar semiconductor devices with more than two PN junctions, e.g. thyristors, programmable unijunction transistors, or with more than three electrodes, e.g. silicon controlled switches, or with more than one electrode connected to the same conductivity region, e.g. unijunction transistors
31.
Method and apparatus for detecting faults using current unbalance
A fault detection system has line current monitors. Each line current monitor couples to a line-phase of an electric power transmission system. Each line current monitor has a phase detector, a loop filter and a controlled oscillator, coupled as a phase locked loop. The phase detector has a rotating frame transform. The phase detector couples to a line-phase and provides in-phase and quadrature signals in a rotating frame, based on in-phase and quadrature signals proportional to current in the line-phase. One or more fault detection modules are coupled to the line current monitors through inter-phase communication of the in-phase and quadrature signals in a time frame rotating at the line frequency. The communication may have electrical isolation.
An impedance injection unit (IIU) system is coupled to a high-voltage (HV) transmission line. The IIUs are activated in sequences of activation in successive time periods. This injects an impedance waveform onto the HV transmission line. The ordering of IIUs in the sequences of activation is repeatedly changed in successive time periods. This equalizes electrical stress across the IIUs used, leading to overall improvement in IIU system lifetimes.
H02J 3/18 - Arrangements for adjusting, eliminating or compensating reactive power in networks
H02J 3/00 - Circuit arrangements for ac mains or ac distribution networks
H02J 13/00 - Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the networkCircuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
G05F 1/70 - Regulating power factorRegulating reactive current or power
H02J 3/06 - Controlling transfer of power between connected networksControlling sharing of load between connected networks
H02J 3/12 - Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
H02J 3/20 - Arrangements for adjusting, eliminating or compensating reactive power in networks in long overhead lines
33.
Scalable modular cooling unit having voltage isolation
A liquid cooling power flow control system and related method are described. The system has switching assemblies for power flow control, in an enclosure. A pump circulates liquid coolant through a liquid cooling block to each switching assembly. The switching assemblies are electrically isolated from the enclosure.
A hierarchical power flow control system includes power flow control devices, a communication coordinator and a gateway. The gateway provides diagnostics, prognostics, and health monitoring, and communicates with an external energy management system (EMS). Operation and actions are based on self-health monitoring, self-prognostics, and analysis and prediction processing in the gateway, in communication with the external energy management system.
G16H 40/67 - ICT specially adapted for the management or administration of healthcare resources or facilitiesICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
G16H 50/20 - ICT specially adapted for medical diagnosis, medical simulation or medical data miningICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
G16H 10/60 - ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
35.
Protection from and filtering of disturbances for serial connected facts
A filter network is insertable into a power transmission line, to handle disturbances in the power transmission line. A first circuit has an RC network in parallel with a surge arrestor, to bypass high frequency disturbances of the power transmission line. A second circuit has inductors for carrying low-frequency power to and from impedance injection units.
H02H 9/00 - Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
H03H 7/06 - Frequency selective two-port networks including resistors
H02H 7/22 - Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for distribution gear, e.g. bus-bar systemsEmergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for switching devices
H02H 9/04 - Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
36.
Dynamic computation and control of distributed assets at the edge of a power grid
A system enabling localized intelligent control with communication and coordination at local subsections of a power grid with information transfer to utility for supervisory control is disclosed. The disclosure extends the control and communication capability within, at the edge, and outside the edge of the power grid using intelligent and self-aware FACTS devices. Aspects of the disclosure enable control of a distribution network, energy storage systems and generation sources as an integrated system allowing optimization of power grid operation from generation to distribution. This control capability further enables a supervisory utility to implement and manage policy issues, such as standard compliance, carbon emission reduction, right-of-way management, and conformance to environmental regulations, such as EMI compliance, noise reduction, etc. This also allows the supervisory utility to optimize energy cost, network reliability, and asset utilization and life.
H02J 3/38 - Arrangements for parallelly feeding a single network by two or more generators, converters or transformers
H02J 3/32 - Arrangements for balancing the load in a network by storage of energy using batteries with converting means
G05B 13/02 - Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
H02J 13/00 - Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the networkCircuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
In prior art grid systems, power-line control is done by substation based large systems that use high-voltage (HV) circuits to get injectable impedance waveforms that can create oscillations on the HV power lines. Intelligent impedance injection modules (IIMs) are currently being proposed for interactive power line control and line balancing. These IIMs distributed over the high-voltage lines or installed on mobile platforms and connected to the HV power lines locally generate and inject waveforms in an intelligent fashion to provide interactive response capability to commands from utility for power line control. These IIMs typically comprise a plurality of impedance-injection units (IIUs) that are transformer-less flexible alternating current transmission systems interconnected in a series-parallel connection and output pulses that are additive and time synchronized to generate appropriate waveforms that when injected into HV transmission lines are able to accomplish the desired response and provide interactive power flow control.
H02J 13/00 - Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the networkCircuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
G05B 13/02 - Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
H02J 3/18 - Arrangements for adjusting, eliminating or compensating reactive power in networks
H02J 3/00 - Circuit arrangements for ac mains or ac distribution networks
H02J 3/20 - Arrangements for adjusting, eliminating or compensating reactive power in networks in long overhead lines
H02J 3/06 - Controlling transfer of power between connected networksControlling sharing of load between connected networks
H02J 3/24 - Arrangements for preventing or reducing oscillations of power in networks
38.
Dynamic computation and control of distributed assets at the edge of a power grid
A system enabling localized intelligent control with communication and coordination at local subsections of a power grid with information transfer to utility for supervisory control is disclosed. The disclosure extends the control and communication capability within, at the edge, and outside the edge of the power grid using intelligent and self-aware FACTS devices. Aspects of the disclosure enable control of a distribution network, energy storage systems and generation sources as an integrated system allowing optimization of power grid operation from generation to distribution. This control capability further enables a supervisory utility to implement and manage policy issues, such as standard compliance, carbon emission reduction, right-of-way management, and conformance to environmental regulations, such as EMI compliance, noise reduction, etc. This also allows the supervisory utility to optimize energy cost, network reliability, and asset utilization and life.
H02J 3/38 - Arrangements for parallelly feeding a single network by two or more generators, converters or transformers
H02J 13/00 - Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the networkCircuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
G05B 13/02 - Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
H02J 3/32 - Arrangements for balancing the load in a network by storage of energy using batteries with converting means
Disclosed is a reactance-injecting module and its method of use to balance the currents among the phases of polyphase electric power transmission lines or to manage power flow among alternate paths, where the reactance-injecting module has high-speed, dedicated communication links to enable the immediate removal or reduction of injected reactance from all phases of a phase balancing cluster when a fault is detected on any one of the multiple phases. The reactance-injecting module may communicate information on a detected fault to the other reactance-injecting modules of the phase balancing cluster within 10 microseconds after the fault is detected to allow the phase balancing cluster to eliminate injected reactance from all phases within a time that is short compared to a cycle of the alternating current, such as 1 millisecond after the fault is detected. This provides extremely fast neutralization of injected reactance to minimize interference with fault localization analyses.
H02J 3/18 - Arrangements for adjusting, eliminating or compensating reactive power in networks
H02J 13/00 - Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the networkCircuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
G01R 31/08 - Locating faults in cables, transmission lines, or networks
H02H 1/00 - Details of emergency protective circuit arrangements
40.
Power supply system responsive to high and low line currents
A power supply system is operable to harvest power at low and high line currents. A current transformer is arranged to couple to a power transmission line. A current sensor which may be a Rogowski coil is arranged to couple to the power transmission line. Branches of power supply circuitry are connected to a plurality of secondary windings of the current transformer. A control circuit selects one of the branches of power supply circuitry, depending on sensed magnitude of line current, to provide electrical power to an output capacitor. Sufficient stored energy is also provided for performing a backup of operating parameters when the line current reduces to zero.
H02J 50/00 - Circuit arrangements or systems for wireless supply or distribution of electric power
H02J 50/10 - Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
H02H 9/02 - Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
H02J 7/02 - Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from AC mains by converters
H02J 7/34 - Parallel operation in networks using both storage and other DC sources, e.g. providing buffering
41.
Modular FACTS devices with external fault current protection within the same impedance injection module
An apparatus for injecting impedance into a high voltage (HV) transmission line is disclosed. The apparatus comprises a plurality of modular flexible alternating current transmission systems (FACTS) based impedance injection units (IIUs), each modular FACTS based IIU without fault current protection. The apparatus further comprises a fault current protection module external to the modular FACTS based IIUs. The fault current protection module is coupled to the modular FACTS based IIUs to provide fault current protection to the modular FACTS based IIUs.
H02H 7/26 - Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occurred
H02H 1/00 - Details of emergency protective circuit arrangements
H02J 13/00 - Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the networkCircuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
H02K 11/215 - Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
B25F 5/00 - Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
H02K 7/00 - Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
H02K 7/14 - Structural association with mechanical loads, e.g. with hand-held machine tools or fans
An enclosure includes a power flow control device to attach to a high voltage transmission line, a plurality of panels formed of metal, a shorting connection provided between each pair of panels, an electrical connection from at least one panel of the plurality of panels to the high voltage transmission line, a receiving region provided on each panel for each shorting connection, and an equipotential surface for reducing electromagnetic interference from the high voltage transmission line to internal components of the power flow control device, and from the internal components of the power flow control device to the high voltage transmission line.
Methods and systems for protecting one or more flexible alternating current transmission system (FACTS) devices in a high voltage (HV) power transmission line are disclosed. The system may include a circuit breaker to de-energize the HV power transmission line when a fault current is detected on the HV power transmission line, and to determine whether the fault current has cleared. The system may further include a power supply to harvest energy from the fault current. The system may further include a bypass switch coupled to protect the FACTS devices by providing a controllable conduction path around the FACTS devices when the bypass switch is activated. And the system may further include a fault current harvesting circuit (FHC) and an actuator operating in conjunction to control the bypass switch based on the harvested energy.
H02H 1/06 - Arrangements for supplying operative power
H02H 3/16 - Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition, with or without subsequent reconnection responsive to fault current to earth, frame or mass
H02H 3/06 - Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition, with or without subsequent reconnection Details with automatic reconnection
H01H 71/12 - Automatic release mechanisms with or without manual release
H01F 27/42 - Circuits specially adapted for the purpose of modifying, or compensating for, electric characteristics of transformers, reactors or choke coils
H02J 3/00 - Circuit arrangements for ac mains or ac distribution networks
44.
Use of the unused duration injection units in an array to reduce oscillations during impedance injection for corrections of problems
A control module controls impedance injection units (IIUs) to form multiple connection configurations in sequence. Each connection configuration has one IIU, or multiple IIUs in series, parallel or combination of series and parallel. The connection configurations of IIUs are coupled to a high-voltage transmission line. The control module and the IIUs generate rectangular impedance injection waveforms. When the waveforms are combined and injected to the high-voltage transmission line, this produces a pseudo-sinusoidal waveform.
Transients occur on power transmission lines for unpredictable reasons including breakers opening and closing, load variations, and inputs to the grid from renewable energy sources turning on and off. A recursive technique allows a linear function to be fitted to a non-linear grid dynamic of the power line transients. The technique is adaptive and helps to stabilize an impedance injection unit while it injects correcting impedance into a transmission line for the purpose of achieving power flow control. When applied to many injection units the technique may also help to stabilize the overall grid. The stabilization system using the recursive technique provides real-time monitoring of the associated power line and stabilization with respect to power line transients.
H02J 3/18 - Arrangements for adjusting, eliminating or compensating reactive power in networks
H02J 3/12 - Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
H03L 7/093 - Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal using special filtering or amplification characteristics in the loop
H02J 3/20 - Arrangements for adjusting, eliminating or compensating reactive power in networks in long overhead lines
A trailer-based system and related method are described for efficiently transporting, configuring and deploying a power flow control system, including connection to a power transmission line. The system may include preconfigured modules using bolted attachments, hoist rings and a corona ring structure. Standardized clamps are also used. A plurality of power flow control modules is operable while mounted on the trailer. The power flow control modules are configurable to inject reactive power into the power transmission line.
B60P 3/00 - Vehicles adapted to transport, to carry or to comprise special loads or objects
B66C 1/66 - Load-engaging elements or devices attached to lifting, lowering, or hauling gear of cranes, or adapted for connection therewith for transmitting forces to articles or groups of articles by mechanical means comprising article-engaging members of a shape complementary to that of the articles to be handled for engaging holes, recesses, or abutments on articles specially provided for facilitating handling thereof
H02J 3/18 - Arrangements for adjusting, eliminating or compensating reactive power in networks
A system and method using four switches connected in an H-bridge (full bridge) topology within a series-connected FACTS device is disclosed. System and method can be used to bypass a FACTS device. The switches in H-bridge are connected to an alternating current (AC) source allowing for various switching states, and enabling non-monitoring mode, local bypass monitoring mode, low-loss monitoring mode, and diagnostic mode of operation.
H02J 3/18 - Arrangements for adjusting, eliminating or compensating reactive power in networks
H02M 5/12 - Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into DC by static converters using transformers for conversion of voltage or current amplitude only
H02J 3/00 - Circuit arrangements for ac mains or ac distribution networks
H02M 1/32 - Means for protecting converters other than by automatic disconnection
48.
Power line oscillation damping using distributed FACTS devices that are voltage/impedance injection modules attached to the HV power lines
Methods for damping oscillations in a high voltage power grid, including power distribution and supply systems by distributing a plurality of voltage/impedance injection modules to inject voltages/impedances onto high voltage power transmission lines of the power grid, sensing power oscillations on the high voltage transmission lines, extracting the dominant oscillatory mode or modes of sensed power oscillations on the high voltage transmission lines, and injecting voltages/impedances responsive to at least the most dominant oscillatory mode onto the respective high voltage transmission lines to counteract the respective oscillations.
H02J 13/00 - Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the networkCircuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
H02J 3/24 - Arrangements for preventing or reducing oscillations of power in networks
49.
Fast-slow injection for recovery from transient response and voltage collapse with avoidance of SSR and SSCI
An intelligent impedance injection module is for use with transmission lines in a power grid. The intelligent impedance injection module has a plurality of transformer-less impedance injector units and a controller. The controller changes injector gain of the impedance injector units to compensate for current swings in a transmission line.
H02J 3/24 - Arrangements for preventing or reducing oscillations of power in networks
H02J 3/18 - Arrangements for adjusting, eliminating or compensating reactive power in networks
G05B 19/042 - Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
H02J 3/28 - Arrangements for balancing the load in a network by storage of energy
50.
Dynamic and integrated control of total power system using distributed impedance injection modules and actuator devices within and at the edge of the power grid
A system architecture and method for enabling hierarchical intelligent control with appropriate-speed communication and coordination of control using intelligent distributed impedance/voltage injection modules, local intelligence centers, other actuator devices and miscellaneous FACTS coupled actuator devices is disclosed. Information transfer to a supervisory utility control is enabled for responding to integral power system disturbances, system modelling and optimization. By extending the control and communication capability to the edge of the HV power grid, control of the distribution network through FACTS based Demand response units is also enabled. Hence an integrated and hierarchical total power system control is established with distributed impedance/voltage injection modules, local intelligence centers, connected other actuator devices, miscellaneous FACTS coupled devices and utility supervisory all networked at appropriate speeds allowing optimization of the total power system from generation to distribution.
H02J 3/06 - Controlling transfer of power between connected networksControlling sharing of load between connected networks
G05B 15/02 - Systems controlled by a computer electric
H02J 3/24 - Arrangements for preventing or reducing oscillations of power in networks
H02J 3/00 - Circuit arrangements for ac mains or ac distribution networks
H02J 13/00 - Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the networkCircuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
H02J 3/38 - Arrangements for parallelly feeding a single network by two or more generators, converters or transformers
H02J 3/18 - Arrangements for adjusting, eliminating or compensating reactive power in networks
An actuator for circuit interrupter has a stationary magnetic boss, a movable magnetic armature and a drive rod. The drive rod is aligned on an axis of the circuit interrupter. The drive rod has two stable positions, circuit interrupter closed and circuit interrupter open. The drive rod has a surface that the armature contacts to move the drive rod from the circuit interrupter closed position to the circuit interrupter open position. In the circuit interrupter closed position, the armature and the surface are separated by a pre-travel distance. The armature is to move towards the stationary magnetic boss and contact the surface, to initiate a circuit interrupter disconnecting motion of the drive rod with a transfer of momentum to the drive rod.
The presence of injected DC has harmful consequences for a power grid system. A piecewise sinusoidal ripple voltage wave at the line-frequency that rides on the main capacitor bank of the power converter is observed. This observation leads to a new DC detection elimination method. Three DC elimination methods for this ripple component are disclosed to allow dissipation of DC energy through heat and/or electromagnetic wave, or to allow transformation of this energy into usable power that is fed back into the power grid.
H02J 3/26 - Arrangements for eliminating or reducing asymmetry in polyphase networks
H02J 3/01 - Arrangements for reducing harmonics or ripples
H02J 3/38 - Arrangements for parallelly feeding a single network by two or more generators, converters or transformers
H02J 13/00 - Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the networkCircuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
H02M 7/49 - Combination of the output voltage waveforms of a plurality of converters
H02M 7/48 - Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
53.
Detection and mitigation of DC injection on the power grid system
The presence of injected DC has harmful consequences for a power grid system. A piecewise sinusoidal ripple voltage wave at the line-frequency that rides on the main capacitor bank of the power converter is observed. This observation leads to a new detection method and mitigation method. A two-stage control circuit is added to the operation of a power converter that controls power line impedance in order to mitigate the injected DC and to block DC circulation. This control computes a correction angle to adjust the timing of generated pulsed square waves to counter-balance the ripple. A functional solution and the results of experiments are presented. Furthermore, an extraction method and three elimination methods for this ripple component are presented to allow dissipation of DC energy through heat and/or electronic magnetic wave, or to allow transformation of this energy into usable power that is fed back into the power grid.
H02J 3/26 - Arrangements for eliminating or reducing asymmetry in polyphase networks
H02J 3/01 - Arrangements for reducing harmonics or ripples
H02J 13/00 - Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the networkCircuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
H02J 3/38 - Arrangements for parallelly feeding a single network by two or more generators, converters or transformers
H02M 7/49 - Combination of the output voltage waveforms of a plurality of converters
H02M 7/48 - Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
54.
Systems and methods for real-time communication among a cluster of impedance injection nodes in a power distribution system
Systems and methods for controlling power distribution in a power distribution system are disclosed. The system comprises a first group of impedance injection nodes that includes two or more impedance injection nodes. Each of the impedance injection nodes of the first group is attached to a respective powerline of the power distribution system, and is configured to: respectively receive messages from other impedance injection nodes in the first group sent at different respective time slots, where each of the received messages includes node information of at least one of the other nodes, and broadcast a message to the other nodes in the first group at a time slot that is different from the respective time slots of the other nodes, where the broadcasted message includes node information of the impedance injection node, or node information of the at least one of the other nodes, or both.
H04B 3/54 - Systems for transmission via power distribution lines
H04L 9/06 - Arrangements for secret or secure communicationsNetwork security protocols the encryption apparatus using shift registers or memories for blockwise coding, e.g. D.E.S. systems
A power flow control subsystem having multiple configurations is described. The subsystem is three-way configurable: as a transportable configuration, as a deployable configuration, and as a transmission line configuration. The transportable configuration includes a collection of impedance injection modules and at least one bypass module carried on a wheeled vehicle such as a trailer. The deployable configuration is an assembly of the collection of impedance injection modules and at least one bypass module, operable to perform power flow operations. The transmission line configuration includes connection of a deployable configuration to a phase of a high voltage transmission line for performing power flow control. The deployable configuration may be open or closed frame. The deployable configurations may be mounted on one or more wheeled vehicles in a mobile subsystem, or semi-permanently mounted at a ground site.
H02J 3/06 - Controlling transfer of power between connected networksControlling sharing of load between connected networks
H02J 3/18 - Arrangements for adjusting, eliminating or compensating reactive power in networks
H02J 13/00 - Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the networkCircuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
56.
Modular FACTS devices with external fault current protection
Flexible AC transmission system (FACTS) enabling distributed controls is a requirement for power transmission and distribution, to improve line balancing and distribution efficiency. These FACTS devices are electronic circuits that vary in the type of services they provide. All FACTS devices have internal circuitry to handle fault currents. Most of these circuits are unique in design for each manufacturer, which make these FACTS devices non-modular, non-interchangeable, expensive and heavy. One of the most versatile FACTS device is the static synchronous series compensator (SSSC), which is used to inject impedance into the transmission lines to change the power flow characteristics. The addition of integrated fault current handling circuitry makes the SSSC and similar FACTS devices unwieldy, heavy, and not a viable solution for distributed control. What is disclosed are modifications to FACTS devices that move the fault current protection external to the FACTS device and make them modular and re-usable.
H02H 3/16 - Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition, with or without subsequent reconnection responsive to fault current to earth, frame or mass
H02H 7/16 - Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for capacitors
H02J 3/06 - Controlling transfer of power between connected networksControlling sharing of load between connected networks
H02J 3/18 - Arrangements for adjusting, eliminating or compensating reactive power in networks
H02H 9/04 - Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
H02H 9/06 - Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage using spark-gap arresters
H02H 7/26 - Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occurred
A fastening system for securing and real-time monitoring of a bolted connection is described. An ultrasonic signal is used to measure time-of-flight in the bolt and calculate an effective length of the bolt. By comparing the calculated effective length against reference values, a loosened bolt may be detected, and a real-time decision can be made to initiate protective measures and/or make a report to a support system. The measuring subsystem can be configured to be electrically isolated, and the bolted connection may include a live electrical connection. The real-time monitoring can provide early warning of potential system failures across any system having bolted connections: this includes civil systems such as buildings and bridges, transportation devices such as trains and airplanes and automobiles, and power distribution systems.
G01N 29/22 - Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic wavesVisualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object Details
G01N 29/30 - Arrangements for calibrating or comparing, e.g. with standard objects
Disclosed is a reactance-injecting module used to balance the currents among the phases of polyphase electric power transmission lines or to manage power flow among alternate paths, where the reactance-injecting module has high-speed, dedicated communication links to enable the immediate removal of injected reactance from all phases of a phase balancing cluster when a fault is detected on any one of the multiple phases. The reactance-injecting module may communicate information on a detected fault to the other reactance-injecting modules of the phase balancing cluster within 10 microseconds after the fault is detected to allow the phase balancing cluster to eliminate injected reactance from all phases within 1 millisecond after the fault is detected. This provides extremely fast neutralization of injected reactance to minimize interference with fault localization analyses.
H02J 3/18 - Arrangements for adjusting, eliminating or compensating reactive power in networks
H02J 13/00 - Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the networkCircuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
G01R 31/08 - Locating faults in cables, transmission lines, or networks
H02H 1/00 - Details of emergency protective circuit arrangements
In prior art grid systems, power-line control is done by substation based large systems that use high-voltage (HV) circuits to get injectable impedance waveforms that can create oscillations on the HV power lines. Intelligent impedance injection modules (IIMs) are currently being proposed for interactive power line control and line balancing. These IIMs distributed over the high-voltage lines or installed on mobile platforms and connected to the HV power lines locally generate and inject waveforms in an intelligent fashion to provide interactive response capability to commands from utility for power line control. These IIMs typically comprise a plurality of impedance-injection units (IIUs) that are transformer-less flexible alternating current transmission systems interconnected in a series-parallel connection and output pulses that are additive and time synchronized to generate appropriate waveforms that when injected into HV transmission lines are able to accomplish the desired response and an provide interactive power flow control.
H02J 3/06 - Controlling transfer of power between connected networksControlling sharing of load between connected networks
G05B 13/02 - Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
H02J 3/18 - Arrangements for adjusting, eliminating or compensating reactive power in networks
H02J 3/24 - Arrangements for preventing or reducing oscillations of power in networks
H02J 13/00 - Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the networkCircuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
60.
Early detection of faults in power transmission lines
A modular power flow control system having early detection and reporting of transmission line faults is described. The response time for closing a bypass switch and reporting the fault is less than 200 microseconds for hard faults, longer for soft faults. Reprogramming of distance relays is not required. Transmission line faults are characterized using a fault detection sensor suite, normally including at least a current sensor such as a current transformer and a rate of current change sensor such as a Rogowski coil, and in some embodiments, a temperature sensor. Other embodiments are disclosed.
H02M 5/458 - Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into DC by static converters using discharge tubes or semiconductor devices to convert the intermediate DC into AC using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
H02M 7/49 - Combination of the output voltage waveforms of a plurality of converters
H02J 3/18 - Arrangements for adjusting, eliminating or compensating reactive power in networks
A containerized power flow control system is described, for attachment to a power transmission line or substation. The system includes at least one container that is transportable by road, rail, sea or air. A plurality of identical impedance injection modules is operable while mounted in the container, wherein each of the modules is configurable to inject a pre-determined power control waveform into the power line.
A containerized power flow control system is described, for attachment to a power transmission line or substation. The system includes at least one container that is transportable by road, rail, sea or air. A plurality of identical impedance injection modules is operable while mounted in the container, wherein each of the modules is configurable to inject a pre-determined power control waveform into the power line.
09 - Scientific and electric apparatus and instruments
35 - Advertising and business services
42 - Scientific, technological and industrial services, research and design
Goods & Services
Power flow control device; hardware and software systems used for control, regulation and management of power and energy by utilities; power supply network controlling and regulating apparatus and installations; reactance injection installations; electrical testing apparatus; overvoltage protection modules; electrical power conditioning apparatus; apparatus for monitoring power lines and the supply of electrical power; apparatus for switching electrical power; transformers; electrical power line valves; electrical surge absorbers; control and protection equipment for electric power distribution networks; computer hardware; computer software; mobile apps; computer databases; data sheets, manuals and instructional materials on the subject of management and monitoring of power supply grids, all recorded electronically or optically; information, manuals, non-printed publications, code, text and other media or multimedia, all being downloadable from a computer network or the Internet. Collection and processing of data about electrical grid and other power network performance; business consultation services in the fields of energy, power supply, electricity and other utilities; data processing; data management; data verification; assistance and advisory services relating to business management, organisation and operation; business management consultation services in the fields of power supply and telecommunications; information services, namely, providing business information regarding measuring, monitoring and reducing network energy consumption and cost; compilation and maintenance of computer records in the field of network energy delivery and consumption; management of databases; business information services; energy information gathering, keeping, storage and retrieval services; business information services, namely provision of information about energy transmission and energy consumption. Providing temporary use of non-downloadable software and software system used for control, regulation and management of power and energy by utilities; engineering and design services; providing temporary use of non-downloadable software systems used for data, network and algorithm analytics and reporting; providing temporary use of non-downloadable software systems used for system-wide monitoring, coordination and optimization; non-downloadable software used for energy integration, energy efficiency, energy demand control, and energy system improvement; providing temporary use of non-downloadable software; application service provider services; research and design in the field of management and monitoring of electrical grids; providing a web-based system and on-line control portal for smart grid connected control devices for customers and operators to manage remotely, administer, modify and control operation of power grids; engineering services in the field of energy and power; technical and engineering management and monitoring of electrical grid and telecommunications network performance; energy management services for businesses.
64.
Agile deployment of optimized power flow control system on the grid
A modular power flow control system is described for optimizing power flow control in a multi-phase power transmission system. Identical impedance injection modules are arranged in an m×n matrix, where m is the number of series-connected modules inserted into each phase (forming a leg of the installed bank of modules), and n is the number of parallel-connected legs per phase. Each impedance injection module in a phase is configurable to collectively insert a pre-determined (controllable) power control waveform into the phase to which it is attached. The modular flow control system is agile with respect to configurability, reconfigurability, maintenance, size, weight, and cost.
H02J 3/18 - Arrangements for adjusting, eliminating or compensating reactive power in networks
H02M 5/293 - Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into DC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
H02J 3/20 - Arrangements for adjusting, eliminating or compensating reactive power in networks in long overhead lines
H02M 7/483 - Converters with outputs that each can have more than two voltage levels
65.
Dynamic and integrated control of total power system using distributed impedance injection modules and actuator devices within and at the edge of the power grid
A system architecture and method for enabling hierarchical intelligent control with appropriate-speed communication and coordination of control using intelligent distributed impedance/voltage injection modules, local intelligence centers, other actuator devices and miscellaneous FACTS coupled actuator devices is disclosed. Information transfer to a supervisory utility control is enabled for responding to integral power system disturbances, system modelling and optimization. By extending the control and communication capability to the edge of the HV power grid, control of the distribution network through FACTS based Demand response units is also enabled. Hence an integrated and hierarchical total power system control is established with distributed impedance/voltage injection modules, local intelligence centers, connected other actuator devices, miscellaneous FACTS coupled devices and utility supervisory all networked at appropriate speeds allowing optimization of the total power system from generation to distribution.
G05B 15/02 - Systems controlled by a computer electric
H02J 3/06 - Controlling transfer of power between connected networksControlling sharing of load between connected networks
H02J 3/24 - Arrangements for preventing or reducing oscillations of power in networks
H02J 13/00 - Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the networkCircuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
H02J 3/38 - Arrangements for parallelly feeding a single network by two or more generators, converters or transformers
H02J 3/18 - Arrangements for adjusting, eliminating or compensating reactive power in networks
H02J 3/00 - Circuit arrangements for ac mains or ac distribution networks
Flexible AC transmission system (FACTS) enabling distributed controls is a requirement for power transmission and distribution, to improve line balancing and distribution efficiency. These FACTS devices are electronic circuits that vary in the type of services they provide. All FACTS devices have internal circuitry to handle fault currents. Most of these circuits are unique in design for each manufacturer, which make these FACTS devices non-modular, non-interchangeable, expensive and heavy. One of the most versatile FACTS device is the static synchronous series compensator (SSSC), which is used to inject impedance into the transmission lines to change the power flow characteristics. The addition of integrated fault current handling circuitry makes the SSSC and similar FACTS devices unwieldy, heavy, and not a viable solution for distributed control. What is disclosed are modifications to FACTS devices that move the fault current protection external to the FACTS device and make them modular and re-usable.
H02H 3/16 - Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition, with or without subsequent reconnection responsive to fault current to earth, frame or mass
H02J 3/06 - Controlling transfer of power between connected networksControlling sharing of load between connected networks
H02J 3/18 - Arrangements for adjusting, eliminating or compensating reactive power in networks
H02H 7/16 - Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for capacitors
H02H 9/04 - Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
H02H 9/06 - Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage using spark-gap arresters
H02H 7/26 - Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occurred
68.
MODULAR FACTS DEVICES WITH EXTERNAL FAULT CURRENT PROTECTION
Flexible AC transmission system (FACTS) enabling distributed controls is a requirement for power transmission and distribution, to improve line balancing and distribution efficiency. These FACTS devices are electronic circuits that vary in the type of services they provide. All FACTS devices have internal circuitry to handle fault currents. Most of these circuits are unique in design for each manufacturer, which make these FACTS devices non-modular, non-interchangeable, expensive and heavy. One of the most versatile FACTS device is the static synchronous series compensator (SSSC), which is used to inject impedance into the transmission lines to change the power flow characteristics. The addition of integrated fault current handling circuitry makes the SSSC and similar FACTS devices unwieldy, heavy, and not a viable solution for distributed control. What is disclosed are modifications to FACTS devices that move the fault current protection external to the FACTS device and make them modular and re-usable.
Distributed series reactance modules and active impedance injection modules that are adapted to operating with electric power transmission lines over a wide range of transmission voltages are disclosed. Key elements include a virtual ground, an enclosure that acts as a Faraday shield, radio frequency or microwave control methods and the use of corona rings.
H02J 3/18 - Arrangements for adjusting, eliminating or compensating reactive power in networks
H02J 13/00 - Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the networkCircuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
Distributed static synchronous series compensators (DSSSCs) which may also be designated tower routers capable of injecting series inductive or capacitive impedances to enable distributed power-flow control. When a large number of these (a fleet of) DSSSCs are distributed over the grid for power-flow control, it is necessary to ensure that coordinated communication and control capabilities are also established, enabling fast reaction to changes that can exist across the grid. A system architecture and method for enabling localized high-speed low-latency intelligent control with communications between subsections (local network) of the grid along with communication to the central Grid operations center at the utility for supervisory control is disclosed herein. The architecture provides sub-cyclic (< 1/60 of a second) response capability, using the local DSSSCs with high-speed communication at the local network level to power-system disturbances, such as power-oscillation damping (POD), sub-synchronous resonance (SSR) etc.
G05B 15/02 - Systems controlled by a computer electric
H02J 13/00 - Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the networkCircuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
H02J 3/18 - Arrangements for adjusting, eliminating or compensating reactive power in networks
71.
Transformers with multi-turn primary windings for dynamic power flow control
Active impedance-injection module enabled for distributed power flow control of high-voltage (HV) transmission lines is disclosed. The module uses transformers with multi-turn primary windings, series-connected to high-voltage power lines, to dynamically control power flow on those power lines. The insertion of the transformer multi-turn primary is by cutting the line and splicing the two ends of the winding to the ends of the cut high-voltage transmission line. The secondary winding of the transformer is connected to a control circuit and a converter/inverter circuit that is able to generate inductive and capacitive impedance based on the status of the transmission line. The module operates by extracting power from the HV transmission line with the module floating at the HV transmission-line potential. High-voltage insulators are typically used to suspend the module from transmission towers, or intermediate support structures. It may also be directly suspended from the HV transmission line.
This patent discloses an active impedance-injection module for dynamic line balancing of a high-voltage (HV) transmission line. The impedance-injection module comprises a plurality of transformers each having a primary winding in series with a HV transmission line. Each transformer also has secondary windings, each connected to an individual electronic converter. The plurality of secondary windings are electrically isolated from the associated primary winding and extract power from the HV transmission line for operation of the converters and other circuits connected to the secondary windings. The active impedance-injection module is enabled to generate a controlled impedance, inductive or capacitive, to be impressed on the HV transmission line. A plurality of active impedance-injection modules spatially distributed on a HV transmission line are enabled to inject a controlled cumulative impedance on a HV transmission line while limiting the capacity of individual converters to that achievable with practical electronic components.
A split-conductor electrical-injection power substation uses an array of series and parallel electrical-injection devices to control power flow in the power grid. The split-conductors allow the use of smaller electrical-injection devices in higher current distribution systems. The electrical injection devices introduce small voltage differences between the split-conductor wires because of electrical injection and sensor variations. The small voltage variations cause large loop currents on the low-impedance wires. Sensors detect current differences in the split-conductor wires and use feedback to adjust injected voltages, thereby reducing the loop currents.
A modular, space-efficient support structure mounts multiple electrical devices. The structure is modular to allow for subsequent addition and removal of electrical devices by adding and removing primary structural elements coupled for structural efficiency. The structure is deployable in many locations without reconfiguration and has reduced dependence on local site conditions. The structure uses non-permanent construction methods to facilitate rapid assembly, disassembly, re-deployment and re-use of components. Multiple electrical devices such as transformers are mounted at elevation on device mounting columns. The electrical devices are interconnected to each other in parallel or series with connectors mounted on the top portion of the device to allow maintenance clearance underneath. The arrangement of the electrical devices maximizes the density of the devices while maintaining vertical, lateral and radial safety clearances. The electrical devices are arranged in a symmetrical fashion around the primary structural element for symmetrical load distribution.
A modular, space-efficient support structure mounts multiple electrical devices. The structure is modular to allow for subsequent addition and removal of electrical devices by adding and removing primary structural elements coupled for structural efficiency. The structure is deployable in many locations without reconfiguration and has reduced dependence on local site conditions. The structure uses non-permanent construction methods to facilitate rapid assembly, disassembly, re-deployment and re-use of components. Multiple electrical devices such as transformers are mounted at elevation on device mounting columns. The electrical devices are interconnected to each other in parallel or series with connectors mounted on the top portion of the device to allow maintenance clearance underneath. The arrangement of the electrical devices maximizes the density of the devices while maintaining vertical, lateral and radial safety clearances. The electrical devices are arranged in a symmetrical fashion around the primary structural element for symmetrical load distribution.
A system architecture and method for enabling hierarchical intelligent control with appropriate-speed communication and coordination of control using intelligent distributed impedance / voltage injection modules, local intelligence centers, other actuator devices and miscellaneous FACTS coupled actuator devices is disclosed. Information transfer to a supervisory utility control is enabled for responding to integral power system disturbances, system modelling and optimization. By extending the control and communication capability to the edge of the HV power grid, control of the distribution network through FACTS based Demand response units is also enabled. Hence an integrated and hierarchical total power system control is established with distributed impedance / voltage injection modules, local intelligence centers, connected other actuator devices, miscellaneous FACTS coupled devices and utility supervisory all networked at appropriate speeds allowing optimization of the total power system from generation to distribution.
H02J 3/24 - Arrangements for preventing or reducing oscillations of power in networks
H02J 3/46 - Controlling the sharing of output between the generators, converters, or transformers
H02H 9/02 - Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
H02H 9/04 - Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
H02H 9/08 - Limitation or suppression of earth fault currents, e.g. Petersen coil
77.
Dynamic and integrated control of total power system using distributed impedance injection modules and actuator devices within and at the edge of the power grid
A system architecture and method for enabling hierarchical intelligent control with appropriate-speed communication and coordination of control using intelligent distributed impedance/voltage injection modules, local intelligence centers, other actuator devices and miscellaneous FACTS coupled actuator devices is disclosed. Information transfer to a supervisory utility control is enabled for responding to integral power system disturbances, system modelling and optimization. By extending the control and communication capability to the edge of the HV power grid, control of the distribution network through FACTS based Demand response units is also enabled. Hence an integrated and hierarchical total power system control is established with distributed impedance/voltage injection modules, local intelligence centers, connected other actuator devices, miscellaneous FACTS coupled devices and utility supervisory all networked at appropriate speeds allowing optimization of the total power system from generation to distribution.
G05D 9/00 - Level control, e.g. controlling quantity of material stored in vessel
G05B 15/02 - Systems controlled by a computer electric
H02J 3/06 - Controlling transfer of power between connected networksControlling sharing of load between connected networks
H02J 13/00 - Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the networkCircuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
H02J 3/24 - Arrangements for preventing or reducing oscillations of power in networks
H02J 3/18 - Arrangements for adjusting, eliminating or compensating reactive power in networks
H02J 3/38 - Arrangements for parallelly feeding a single network by two or more generators, converters or transformers
H02J 3/00 - Circuit arrangements for ac mains or ac distribution networks
78.
System and method for distributed grid control with sub-cyclic local response capability
Distributed static synchronous series compensators (DSSSCs) which may also be designated tower routers capable of injecting series inductive or capacitive impedances to enable distributed power-flow control. When a large number of these (a fleet of) DSSSCs are distributed over the grid for power-flow control, it is necessary to ensure that coordinated communication and control capabilities are also established, enabling fast reaction to changes that can exist across the grid. A system architecture and method for enabling localized high-speed low-latency intelligent control with communications between subsections (local network) of the grid along with communication to the central Grid operations center at the utility for supervisory control is disclosed herein. The architecture provides sub-cyclic (< 1/60 of a second) response capability, using the local DSSSCs with high-speed communication at the local network level to power-system disturbances, such as power-oscillation damping (POD), sub-synchronous resonance (SSR) etc.
G05D 9/00 - Level control, e.g. controlling quantity of material stored in vessel
H02J 13/00 - Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the networkCircuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
H02J 3/18 - Arrangements for adjusting, eliminating or compensating reactive power in networks
79.
SYSTEM AND METHOD FOR DISTRIBUTED GRID CONTROL WITH SUB-CYCLIC LOCAL RESPONSE CAPABILITY
Distributed static synchronous series compensators (DSSSCs) which may also be designated tower routers capable of injecting series inductive or capacitive impedances to enable distributed power-flow control. When a large number of these (a fleet of) DSSSCs are distributed over the grid for power-flow control, it is necessary to ensure that coordinated communication and control capabilities are also established, enabling fast reaction to changes that can exist across the grid. A system architecture and method for enabling localized high-speed low-latency intelligent control with communications between subsections (local network) of the grid along with communication to the central Grid operations center at the utility for supervisory control is disclosed herein. The architecture provides sub-cyclic (<1/60 of a second) response capability, using the local DSSSCs with high-speed communication at the local network level to power-system disturbances, such as power-oscillation damping (POD), sub-synchronous resonance (SSR) etc.
G01R 15/16 - Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using capacitive devices
G01R 15/18 - Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
G01R 15/20 - Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices
G01R 19/165 - Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
H02J 3/18 - Arrangements for adjusting, eliminating or compensating reactive power in networks
H02J 3/20 - Arrangements for adjusting, eliminating or compensating reactive power in networks in long overhead lines
H02J 3/24 - Arrangements for preventing or reducing oscillations of power in networks
G05F 1/70 - Regulating power factorRegulating reactive current or power
80.
Power transmission tower mounted series injection transformer
The power transmission tower mounted series injection transformer (TMIT) injects impedance and/or voltage on a transmission tower power line. A tension bearing tower uses vertical and horizontal insulators to support and stabilize the TMIT. The TMIT can be much heavier than a transformer device clamped to the high-voltage transmission line. The TMIT is connected in series with the tension bearing tower's jumper allowing it to use a multi-turn transformer. By operating at the line voltage potential, the TMIT does not require the large bushings and oil drums used by sub-station injection transformers.
Active impedance-injection module enabled for distributed power flow control of high-voltage (HV) transmission lines is disclosed. The module uses transformers with multi-turn primary windings, series-connected to high-voltage power lines, to dynamically control power flow on those power lines. The insertion of the transformer multi-turn primary is by cutting the line and splicing the two ends of the winding to the ends of the cut high-voltage transmission line. The secondary winding of the transformer is connected to a control circuit and a converter/ inverter circuit that is able to generate inductive and capacitive impedance based on the status of the transmission line. The module operates by extracting power from the HV transmission line with the module floating at the HV transmission-line potential. High-voltage insulators are typically used to suspend the module from transmission towers, or intermediate support structures. It may also be directly suspended from the HV transmission line.
H02P 13/06 - Arrangements for controlling transformers, reactors or choke coils, for the purpose of obtaining a desired output by tap-changingArrangements for controlling transformers, reactors or choke coils, for the purpose of obtaining a desired output by rearranging interconnections of windings
H02B 5/02 - Non-enclosed substationsSubstations with enclosed and non-enclosed equipment mounted on pole, e.g. pole transformer substation
G01R 15/18 - Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
G01R 31/02 - Testing of electric apparatus, lines, or components for short-circuits, discontinuities, leakage, or incorrect line connection
G05F 1/70 - Regulating power factorRegulating reactive current or power
H02B 13/00 - Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle
82.
POWER TRANSMISSION TOWER MOUNTED SERIES INJECTION TRANSFORMER
The power transmission tower mounted series injection transformer (TMIT) injects impedance and/or voltage on a transmission tower power line. A tension bearing tower uses vertical and horizontal insulators to support and stabilize the ΤΜΓΤ. The TMIT can be much heavier than a transformer device clamped to the high-voltage transmission line. The TMIT is connected in series with the tension bearing tower's jumper allowing it to use a multi-turn transformer. By operating at the line voltage potential, the TMIT does not require the large bushings and oil drums used by sub-station injection transformers.
G01R 19/00 - Arrangements for measuring currents or voltages or for indicating presence or sign thereof
G01R 21/08 - Arrangements for measuring electric power or power factor by using galvanomagnetic-effect devices, e.g. Hall-effect devices
G05F 1/24 - Regulating voltage or current wherein the variable is actually regulated by the final control device is AC using bucking or boosting transformers as final control devices
G05F 1/30 - Regulating voltage or current wherein the variable is actually regulated by the final control device is AC using bucking or boosting transformers as final control devices combined with discharge tubes or semiconductor devices semiconductor devices only
H02J 3/26 - Arrangements for eliminating or reducing asymmetry in polyphase networks
83.
VOLTAGE OR IMPEDANCE-INJECTION METHOD USING TRANSFORMERS WITH MULTIPLE SECONDARY WINDINGS FOR DYNAMIC POWER FLOW CONTROL
This patent discloses an active impedance-injection module for dynamic line balancing of a high-voltage (HV) transmission line. The impedance-injection module comprises a plurality of transformers each having a primary winding in series with a HV transmission line. Each transformer also has secondary windings, each connected to an individual electronic converter. The plurality of secondary windings are electrically isolated from the associated primary winding and extract power from the HV transmission line for operation of the converters and other circuits connected to the secondary windings. The active impedance-injection module is enabled to generate a controlled impedance, inductive or capacitive, to be impressed on the HV transmission line. A plurality of active impedance-injection modules spatially distributed on a HV transmission line are enabled to inject a controlled cumulative impedance on a HV transmission line while limiting the capacity of individual converters to that achievable with practical electronic components.
Active impedance-injection module enabled for distributed power flow control of high-voltage (HV) transmission lines is disclosed. The module uses transformers with multi-turn primary windings, series-connected to high-voltage power lines, to dynamically control power flow on those power lines. The insertion of the transformer multi-turn primary is by cutting the line and splicing the two ends of the winding to the ends of the cut high-voltage transmission line. The secondary winding of the transformer is connected to a control circuit and a converter/inverter circuit that is able to generate inductive and capacitive impedance based on the status of the transmission line. The module operates by extracting power from the HV transmission line with the module floating at the HV transmission-line potential. High-voltage insulators are typically used to suspend the module from transmission towers, or intermediate support structures. It may also be directly suspended from the HV transmission line.
Disclosed is a method for reducing the variation in voltage, due to Ferranti effect, using the impedance injection capability of distributed impedance injection modules. The Ferranti effect is an increase in voltage occurring at the receiving end of a long transmission line in comparison to the voltage at the sending end. This effect is more pronounced on longer lies and underground lines when the high-voltage power lines are energized with a very low load, when there is a change from a high load to a very light load, or the load is disconnected from the high-voltage power lines of the power grid. This effect creates a problem for voltage control at the distribution end of the power grid.
G05F 3/04 - Regulating voltage or current wherein the variable is AC
H02J 3/12 - Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
H01F 27/06 - Mounting, supporting, or suspending transformers, reactors, or choke coils
H02J 3/18 - Arrangements for adjusting, eliminating or compensating reactive power in networks
H02J 3/20 - Arrangements for adjusting, eliminating or compensating reactive power in networks in long overhead lines
86.
Voltage or impedance-injection method using transformers with multiple secondary windings for dynamic power flow control
This patent discloses an active impedance-injection module for dynamic line balancing of a high-voltage (HV) transmission line. The impedance-injection module comprises a plurality of transformers each having a primary winding in series with a HV transmission line. Each transformer also has secondary windings, each connected to an individual electronic converter. The plurality of secondary windings are electrically isolated from the associated primary winding and extract power from the HV transmission line for operation of the converters and other circuits connected to the secondary windings. The active impedance-injection module is enabled to generate a controlled impedance, inductive or capacitive, to be impressed on the HV transmission line. A plurality of active impedance-injection modules spatially distributed on a HV transmission line are enabled to inject a controlled cumulative impedance on a HV transmission line while limiting the capacity of individual converters to that achievable with practical electronic components.
A device for use in a power transmission system to sense GICs. The device may be a part of a reactance-injecting device on a power line, it may be a standalone device, or it may be a part of another type of device. The device may include a sensor to sense magnetic fields (e.g., a Hall effect sensor). The sensor may be positioned in the air gap of a magnetic core formed concentrically around the power line. The signal from the sensor may be converted to a digital signal and separately processed to determine the magnitude of the AC current and the magnitude of the DC (or quasi-DC) current. If the output signal of another A/C current sensor is available, that output signal may be used to adjust/calibrate the determined magnitude of the DC current. The sensor may communicate with other devices in a network to provide GIC information.
G01R 15/18 - Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
G01R 15/20 - Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices
G01R 19/00 - Arrangements for measuring currents or voltages or for indicating presence or sign thereof
G01R 21/08 - Arrangements for measuring electric power or power factor by using galvanomagnetic-effect devices, e.g. Hall-effect devices
The disclosure is generally directed to reactance modules or DSRs (30) that may be mounted on a power transmission line (16) of a power transmission system (400). A DSR (30) may be configured in a bypass mode or in an injection mode (where reactance is injected into the corresponding line (16)). Multiple DSRs (30) installed on a power line section (18) define an array (410) and have a dedicated controller (440). Such an array (410) and controller (440) may be installed on a number of different power line sections (18). The controller (440) for each array (410) may communicate with a DSR server (420), which in turn may communicate with a utility-side control system (430). Each DSR (30) may incorporate one or more features directed to core (50) configurations and assembly, communications, modal configuration control, fault protection, EMI shielding, DSR (30) assembly, and DSR (30) installation.
A device for use in a power transmission system to sense GICs. The device may be a part of a reactance-injecting device on a power line, it may be a standalone device, or it may be a part of another type of device. The device may include a sensor to sense magnetic fields (e.g., a Hall effect sensor). The sensor may be positioned in the air gap of a magnetic core formed concentrically around the power line. The signal from the sensor may be converted to a digital signal and separately processed to determine the magnitude of the AC current and the magnitude of the DC (or quasi-DC) current. If the output signal of another A/C current sensor is available, that output signal may be used to adjust/calibrate the determined magnitude of the DC current. The sensor may communicate with other devices in a network to provide GIC information.
G01R 15/18 - Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
G01R 19/00 - Arrangements for measuring currents or voltages or for indicating presence or sign thereof
G01R 21/08 - Arrangements for measuring electric power or power factor by using galvanomagnetic-effect devices, e.g. Hall-effect devices
a). The order sequences (364, 384) are opposite of each other—one ranks the current flows from high-to-low, and the other ranks the current flow from low-to-high.
H02J 3/26 - Arrangements for eliminating or reducing asymmetry in polyphase networks
H01H 51/34 - Self-interrupters, i.e. with periodic or other repetitive opening and closing of contacts
H01H 47/02 - Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay
H02J 13/00 - Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the networkCircuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
H01F 29/00 - Variable transformers or inductances not covered by group
a). The order sequences (364, 384) are opposite of each other—one ranks the current flows from high-to-low, and the other ranks the current flow from low-to-high.
H02J 3/26 - Arrangements for eliminating or reducing asymmetry in polyphase networks
H01H 51/34 - Self-interrupters, i.e. with periodic or other repetitive opening and closing of contacts
H01H 47/02 - Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay