Various examples are provided related to attachment of tape or strips of material along a seam of a garment or other material. In one example, among others, a robotic system includes a joining device that can attach a tape or strip of material across a seam, a loading system that can position material with the seam for attachment of the tape or strip of material, a seam feed system that can adjust positioning of the material for attachment, and a tape handling system that can supply the tape or strip of material to the joining head of the joining device for attachment across the seam. A tape handling system can include a tape joining assembly that can receive tape or strip of material from a current tape cartridge and bond it to the tape or strip of material clamped by the tape joining assembly.
D05B 35/06 - Work-feeding or work-handling elements for sewing machines, not otherwise provided for for attaching bands, ribbons, strips, or tapes or for binding
Various examples are provided related to attachment of tape or strips of material along a seam of a garment or other material. In one example, among others, a robotic system includes a joining device that can attach a tape or strip of material across a seam, a loading system that can position material with the seam for attachment of the tape or strip of material, a seam feed system that can adjust positioning of the material for attachment, and a tape handling system that can supply the tape or strip of material to the joining head of the joining device for attachment across the seam. A tape handling system can include a tape joining assembly that can receive tape or strip of material from a current tape cartridge and bond it to the tape or strip of material clamped by the tape joining assembly.
D05B 35/06 - Work-feeding or work-handling elements for sewing machines, not otherwise provided for for attaching bands, ribbons, strips, or tapes or for binding
D05B 27/00 - Work-feeding means for sewing machines
D05B 33/00 - Devices incorporated in sewing machines for supplying or removing the work
Various examples are provided related to processing and handling of products. In one example, among others, a material product holding system includes a product holding assembly and a structure supporting the product holding assembly, the structure coupled to the positioning assembly. The product holding assembly can include support arms and a positioning assembly that can adjust positioning of the support arms with respect to each other to engage with at least a portion of a product supported by the support arms. In another example, a method include engaging support arms with a surface of at least a portion of a product, the support arms tensioning the product, positioning the support arms to load the product on a workstation, contracting the support arms to remove the tension, processing the product, re-engaging the support arms after completion of the processing, and unloading the product from the workstation.
Various examples are provided related to processing and handling of products. In one example, among others, a material product holding system (120) includes a product holding assembly (122) and a structure supporting the product holding assembly, the structure coupled to a positioning assembly (204). The product holding assembly (122) includes support arms (202) and a positioning assembly (204) that can adjust positioning of the support arms with respect to each other to engage with at least a portion of a product supported by the support arms. In another example, a method includes engaging support arms (202) with a surface of at least a portion of a product, the support arms tensioning the product, positioning the support arms (202) to load the product on a workstation, contracting the support arms to remove the tension, processing the product, re-engaging the support arms (202) after completion of the processing, and unloading the product from the workstation.
D05B 21/00 - Sewing machines with devices for automatically controlling movement of work-carrier relative to stitch-forming mechanism in order to obtain particular configuration of seam, e.g. programme-controlled for sewing collars, for attaching pockets
D05B 35/04 - Work-feeding or work-handling elements for sewing machines, not otherwise provided for for facilitating seamingHem-turning elementsHemmers with movable tools
D05B 39/00 - Workpiece carriers for sewing machines
B41F 17/00 - Printing apparatus or machines of special types or for particular purposes, not otherwise provided for
Various examples are provided related to attachment of bands about a garment opening. In one example, among others, a sleeve band can be attached to a garment by loading the sleeve band on a band guide, aligning an opening of a garment over the sleeve band, and attaching the band to the garment along the edge of the opening. Alignment of the edges of the opening and the sleeve band can be maintained by ply aligners during attachment. In another example, a garment holding system includes a garment holder that can receive a garment and a band positioning system includes a band guide that can receive a band. Edges of the opening of the garment and the band can be controlled and maintained with ply aligners of the band positioning system.
Various examples are provided related to attachment of bands about a garment opening. In one example, among others, a sleeve band can be attached to a garment by loading the sleeve band on a band guide, aligning an opening of a garment over the sleeve band, and attaching the band to the garment along the edge of the opening. Alignment of the edges of the opening and the sleeve band can be maintained by ply aligners during attachment. In another example, a garment holding system includes a garment holder that can receive a garment and a band positioning system includes a band guide that can receive a band. Edges of the opening of the garment and the band can be controlled and maintained with ply aligners of the band positioning system.
Various examples are provided related to face identification of material. An image can be captured by a vision system and feature parameters determined and compared to a material feature database to determine which face of the material is being presented. The vision system can employ a set of parameters for configuration to acquire the image. The system can communicate the identification to downstream processes in real time. A near-universal, color agnostic, angular orientation independent identification of material faces can be determined without the need for physical manipulation of the material.
Various examples are provided related to automation of pallet loading. In one example, a method includes positioning, by a material manipulator, an opening of a product; inserting a product loading assembly of a pallet loading system through an opening of the product, where the product loading assembly can hold the product during manipulation of the product and the pallet loading system can position the product for loading on a pallet; and transferring the product onto the pallet using the product loading assembly. The product can be a portion of a product or a garment or portion of a garment. The product can be smoothed on a surface of the pallet. The pallet can secure the product to the pallet by a pallet clamp. The product on the pallet can be embellished by processing equipment or workstation.
B25J 11/00 - Manipulators not otherwise provided for
D06F 73/00 - Apparatus for smoothing or removing creases from garments or other textile articles by formers, cores, stretchers, or internal frames, with the application of heat or steam
The invention relates to a method including the steps of: positioning, by a material manipulator, an opening of a product (402); inserting a product loading assembly (122) of a pallet loading system through said opening of the product (402), whereby the product loading assembly (122) can hold the product (402) during manipulation of the product (402) and the pallet loading system can position the product (402) for loading on a pallet (132); and transferring the product (402) onto the pallet (132) using the product loading assembly (122). The product (402) can be a portion of a product or a garment or portion of a garment. The product can be smoothed on a surface of the pallet (132). The pallet (132) can secure the product (402) to the pallet (132) by a pallet clamp. The product (402) on the pallet (132) can be embellished by a processing equipment or a workstation.
B41J 3/407 - Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed for marking on special material
Various examples are provided related to attachment of bands such as, e.g., collar or neck bands, sleeve bands, wrist bands, waist bands and ankle bands, etc. to a garment opening. In one example, among others, a band can be attached to a garment by loading the band between rollers in a joining position, positioning an opening of a garment extending between control surface mandrels over the band, and attaching the band to the garment along the edge of the opening.
A41H 43/02 - Handling garment parts or blanks, e.g. feeding, piling, separating or reversing
A41H 43/04 - Joining garment parts or blanks by gluing or welding
D05B 21/00 - Sewing machines with devices for automatically controlling movement of work-carrier relative to stitch-forming mechanism in order to obtain particular configuration of seam, e.g. programme-controlled for sewing collars, for attaching pockets
D05B 27/10 - Work-feeding means for sewing machines with rotary circular feed members
D05B 35/06 - Work-feeding or work-handling elements for sewing machines, not otherwise provided for for attaching bands, ribbons, strips, or tapes or for binding
Various examples are provided related to attachment of bands such as, e.g., collar or neck bands, sleeve bands, wrist bands, waist bands and ankle bands, etc. to a garment opening. In one example, among others, a band can be attached to a garment by loading the band between rollers (202) in a joining position, positioning an opening of a garment extending between control surface mandrels (304) over the band, and attaching the band to the garment along the edge of the opening.
D05B 33/00 - Devices incorporated in sewing machines for supplying or removing the work
D05B 35/06 - Work-feeding or work-handling elements for sewing machines, not otherwise provided for for attaching bands, ribbons, strips, or tapes or for binding
D05B 21/00 - Sewing machines with devices for automatically controlling movement of work-carrier relative to stitch-forming mechanism in order to obtain particular configuration of seam, e.g. programme-controlled for sewing collars, for attaching pockets
Various examples are provided related to attachment of bands about a garment opening. In one example, among others, a sleeve band can be attached to a garment by loading the sleeve band on a band guide, aligning an opening of a garment over the sleeve band, and attaching the band to the garment along the edge of the opening. Alignment of the edges of the opening and the sleeve band can be maintained by ply aligners during attachment. In another example, a garment holding system includes a garment holder that can receive a garment and a band positioning system includes a band guide that can receive a band. Edges of the opening of the garment and the band can be controlled and maintained with ply aligners of the band positioning system.
Various examples are provided related to attachment of bands such as, e.g., collar or neck bands, sleeve bands, wrist bands, waist bands and ankle bands, etc. to a garment opening. In one example, among others, a band can be attached to a garment by loading the band between rollers in a joining position, positioning an opening of a garment extending between control surface mandrels over the band, and attaching the band to the garment along the edge of the opening.
D05B 35/06 - Work-feeding or work-handling elements for sewing machines, not otherwise provided for for attaching bands, ribbons, strips, or tapes or for binding
D05B 27/10 - Work-feeding means for sewing machines with rotary circular feed members
D05B 21/00 - Sewing machines with devices for automatically controlling movement of work-carrier relative to stitch-forming mechanism in order to obtain particular configuration of seam, e.g. programme-controlled for sewing collars, for attaching pockets
A41H 43/02 - Handling garment parts or blanks, e.g. feeding, piling, separating or reversing
A41H 43/04 - Joining garment parts or blanks by gluing or welding
Various examples are provided related to transporting and sewing material in, e.g., automation of sewing robots. An automated sewing process feed control system is disclosed in which a material aligner is utilized. An omni-chain material aligner can include a circular roller chain in which the rollers allow for a controlling force to be applied to a material. An omni-belt material aligner can include a belt with attached perpendicular rollers which allow feed control and active motorized steering control. The material aligner can control the pressure applied onto the material to facilitate control of feeding the material.
Various examples are provided related to face identification of material. An image can be captured by a vision system and feature parameters determined and compared to a material feature database to determine which face of the material is being presented. The vision system can employ a set of parameters for configuration to acquire the image. The system can communicate the identification to downstream processes in real time. A near-universal, color agnostic, angular orientation independent identification of material faces can be determined without the need for physical manipulation of the material.
Various examples are provided related to face identification of material. An image can be captured by a vision system and feature parameters determined and compared to a material feature database to determine which face of the material is being presented. The vision system can employ a set of parameters for configuration to acquire the image. The system can communicate the identification to downstream processes in real time. A near-universal, color agnostic, angular orientation independent identification of material faces can be determined without the need for physical manipulation of the material.
G06K 9/46 - Extraction of features or characteristics of the image
G01N 21/892 - Investigating the presence of flaws, defects or contamination in moving material, e.g. paper, textiles characterised by the flaw, defect or object feature examined
G06K 9/62 - Methods or arrangements for recognition using electronic means
Various examples are provided related to transporting and sewing material in, e.g., automation of sewing robots. An automated sewing process feed control system is disclosed in which a material aligner is utilized. An omni-chain material aligner can include a circular roller chain in which the rollers allow for a controlling force to be applied to a material. An omni-belt material aligner can include a belt with attached perpendicular rollers which allow feed control and active motorized steering control. The material aligner can control the pressure applied onto the material to facilitate control of feeding the material.
Various examples are provided related to transporting and sewing material in, e.g., automation of sewing robots. Multiple pieces of layered materials can be transported on a flat planar surface while maintaining the material layer's position and orientation relative to one another during a sewing procedure of these materials along any arbitrary seam shape. In one example, among others, a system includes a sewing machine including a sewing needle, a material holding assembly and a translation system. The material holding assembly can include mechanical fingers that can contact material on a sewing plane adjacent to the sewing needle and a structural grounding system supporting the mechanical fingers. The translation system can reposition the material on the sewing plane via the mechanical fingers. Clearance around the sewing needle can be provided by repositioning individual mechanical fingers around the sewing needle.
D05B 21/00 - Sewing machines with devices for automatically controlling movement of work-carrier relative to stitch-forming mechanism in order to obtain particular configuration of seam, e.g. programme-controlled for sewing collars, for attaching pockets
D05B 35/02 - Work-feeding or work-handling elements for sewing machines, not otherwise provided for for facilitating seamingHem-turning elementsHemmers
Various examples are provided related to transporting and sewing material in, e.g., automation of sewing robots. Multiple pieces of layered materials can be transported on a flat planar surface while maintaining the material layer's position and orientation relative to one another during a sewing procedure of these materials along any arbitrary seam shape. In one example, among others, a method includes positioning a second piece of material on a first piece of material located on a sewing plane, positioning a material holding apparatus over the pieces of material to secure position and orientation between the pieces of material, locating the pieces of material with respect to an automated sewing machine by repositioning the material holding apparatus, and sewing the second piece of material to the first piece of material. The methods can eliminate the need of custom-made templates for sewing arbitrarily shaped seams with an automated sewing machine.
Various examples are provided related to transporting and sewing material in, e.g., automation of sewing robots. Multiple pieces of layered materials can be transported on a flat planar surface while maintaining the material layer's position and orientation relative to one another during a sewing procedure of these materials along any arbitrary seam shape. In one example, among others, a system includes a sewing machine including a sewing needle, a material holding assembly and a translation system. The material holding assembly can include mechanical fingers that can contact material on a sewing plane adjacent to the sewing needle and a structural grounding system supporting the mechanical fingers. The translation system can reposition the material on the sewing plane via the mechanical fingers. Clearance around the sewing needle can be provided by repositioning individual mechanical fingers around the sewing needle.
D05B 21/00 - Sewing machines with devices for automatically controlling movement of work-carrier relative to stitch-forming mechanism in order to obtain particular configuration of seam, e.g. programme-controlled for sewing collars, for attaching pockets
D05B 39/00 - Workpiece carriers for sewing machines
Various examples are provided related to transporting and sewing material in, e.g., automation of sewing robots. Multiple pieces of layered materials can be transported on a flat planar surface while maintaining the material layer's position and orientation relative to one another during a sewing procedure of these materials along any arbitrary seam shape. In one example, among others, a method includes positioning a second piece of material on a first piece of material located on a sewing plane, positioning a material holding apparatus over the pieces of material to secure position and orientation between the pieces of material, locating the pieces of material with respect to an automated sewing machine by repositioning the material holding apparatus, and sewing the second piece of material to the first piece of material. The methods can eliminate the need of custom-made templates for sewing arbitrarily shaped seams with an automated sewing machine.
D05B 21/00 - Sewing machines with devices for automatically controlling movement of work-carrier relative to stitch-forming mechanism in order to obtain particular configuration of seam, e.g. programme-controlled for sewing collars, for attaching pockets
D05B 39/00 - Workpiece carriers for sewing machines
A compliant perimeter end effector (200) includes a mounting bracket (203) having a contact mounting flange (206), a plurality of compliant material contact elements (212) coupled about a perimeter of the contact mounting flange (206). The mounting bracket (203) can couple to a manipulator including, e.g., an industrial robot or other manipulation assembly. The compliant material contact elements (212) can include a contact interface (221) that can engage with a piece of material. The compliant material contact elements (212) can precisely transfer material on a workspace with surface irregularities while equally distributing force to the material. Various examples are provided related such end effectors for use in, e.g. automation of sewing robots.
Material moving apparatus (128), systems and methods are presented which can include an air material mover (132). Airflow through orifices (302) can create a localized vacuum such that the uppermost or top layer of material can be separated from the stack of material. The airflow can interact with the material to produce flutter, which assists in separating lower layers from the uppermost layer. A material gripper (134) can grip the uppermost or top layer of material for removal from the stack and repositioning in a work area.
B65H 3/32 - Separating articles from piles by elements, e.g. fingers, plates, rollers, inserted or traversed between articles to be separated and remainder of the pile
B65H 5/08 - Feeding articles separated from pilesFeeding articles to machines by grippers, e.g. suction grippers
B65H 5/14 - Details of grippersActuating mechanisms therefor
Various examples are provided related to end effectors for use in, e.g., automation of sewing robots. In one example, among others, a compliant perimeter end effector includes a mounting bracket having a contact mounting flange, a plurality of compliant material contact elements coupled about a perimeter of the contact mounting flange. The mounting bracket can couple to a manipulator including, e.g., an industrial robot or other manipulation assembly. The compliant material contact elements can include a contact interface that can engage with a piece of material. The compliant material contact elements can precisely transfer material on a workspace with surface irregularities while equally distributing force to the material.
Material moving apparatus, systems and methods are presented which can include an air material mover. Airflow through orifices can create a localized vacuum such that the uppermost or top layer of material can be separated from the stack of material. The airflow can interact with the material to produce flutter, which assists in separating lower layers from the uppermost layer. A material gripper can grip the uppermost or top layer of material for removal from the stack and repositioning in a work area.
Due to rapid advancement in computing technology of both hardware and software, the labor intensive sewing process has been transformed into a technology-intensive automated process. During an automated process, product materials may become wrinkled or folded, which can slow down the automated process or result in human intervention. Various examples are provided related to the automation of sewing robots, and removal of wrinkles from products. Images of material on a work table can be captured and analyzed to determine if there are wrinkles or folds in the product. The robot can remove the wrinkle or fold by manipulating the material through the use of end effectors such as, e.g., budgers.
Due to rapid advancement in computing technology of both hardware and software, the labor intensive sewing process has been transformed into a technology-intensive automated process. During an automated process, product materials may become wrinkled or folded, which can slow down the automated process or result in human intervention. Various examples are provided related to the automation of sewing robots, and removal of wrinkles from products. Images of material on a work table can be captured and analyzed to determine if there are wrinkles or folds in the product. The robot can remove the wrinkle or fold by manipulating the material through the use of end effectors such as, e.g., budgers.
D05B 35/00 - Work-feeding or work-handling elements for sewing machines, not otherwise provided for
D05B 81/00 - Sewing machines incorporating devices serving purposes other than sewing, e.g. for blowing air, for grinding
D05B 69/30 - Driving-gear or control devices for sewing machines Details
B25J 11/00 - Manipulators not otherwise provided for
B65H 7/14 - Controlling article feeding, separating, pile-advancing, or associated apparatus, to take account of incorrect feeding, absence of articles, or presence of faulty articles by feelers or detectors by photoelectric feelers or detectors
A sewn product making apparatus such as a sewing robot can be used to produce a variety of products over a broad range of sizes, shapes or materials. Various examples are provided related to the automation of sewing robots, and the making of sewn products. In one example, among others, a system can generate a product making path using a product construction file, and instruct a sewing device and fabric mover(s) to automatically sew the product based upon the product making path. The product making path can be modified when a deviation is detected, and the sewing adjusted based upon the modified product making path. The product construction file can be generated using information from a computer aided design associated with the product.
D05B 19/16 - Control of workpiece movement, e.g. modulation of travel of feed dog
D05B 21/00 - Sewing machines with devices for automatically controlling movement of work-carrier relative to stitch-forming mechanism in order to obtain particular configuration of seam, e.g. programme-controlled for sewing collars, for attaching pockets
32.
SENSOR SYSTEMS AND METHODS FOR SEWN PRODUCT PROCESSING APPARATUS
Due to rapid advancement in computing technology of both hardware and software, the labor intensive sewing process has been transformed into a technology-intensive automated process. During an automated process, processing of a work piece can be visually monitored using a sensor system. Data gathered from the sensor system can be used to infer the condition and/or position of the work piece in the work area using, e.g., models of a sensor profile. Evaluation can be carried out before processing begins, during processing and/or after processing of the work piece. Examples of systems and methods are described that provide for initially and successively matching the model of the expected shape for a product work piece to a set of sensor readings of the work piece in order to determine the position of the work piece and support a variety of useful features.
G05B 19/418 - Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
D05B 21/00 - Sewing machines with devices for automatically controlling movement of work-carrier relative to stitch-forming mechanism in order to obtain particular configuration of seam, e.g. programme-controlled for sewing collars, for attaching pockets
Various examples are provided related to seamer systems and methods that can be used at the end of a sewing process to secure sewing medium in sewn material by creating a knot. Excess sewing medium can be removed after forming knot at the sewn material. A clamp can secure a portion of the sewing medium while allowing at least one element of the sewing medium to pass through the clamp. A material stabilizer can align the sewing medium to form the knot and sever the excess sewing medium after the knot is formed.
A sewn product making apparatus such as a sewing robot can be used to produce a variety of products over a broad range of sizes, shapes or materials. Various examples are provided related to the automation of sewing robots, and the making of sewn products. In one example, among others, a system can generate a product making path using a product construction file, and instruct a sewing device and fabric mover(s) to automatically sew the product based upon the product making path. The product making path can be modified when a deviation is detected, and the sewing adjusted based upon the modified product making path. The product construction file can be generated using information from a computer aided design associated with the product.
D05B 19/08 - Arrangements for inputting stitch or pattern data to memory
D05B 19/16 - Control of workpiece movement, e.g. modulation of travel of feed dog
G05B 19/4093 - Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine
Various examples are provided related to transporting and sewing material in, e.g., automation of sewing robots. An automated sewing process feed control system is disclosed in which a material aligner is utilized. An omni-chain material aligner can include a circular roller chain in which the rollers allow for a controlling force to be applied to a material. An omni-belt material aligner can include a belt with attached perpendicular rollers which allow feed control and active motorized steering control. The material aligner can control the pressure applied onto the material to facilitate control of feeding the material.
Various examples are provided related to end effectors for use in, e.g., automation of sewing robots. In one example, among others, a compliant perimeter end effector includes a mounting bracket having a contact mounting flange, a plurality of compliant material contact elements coupled about a perimeter of the contact mounting flange. The mounting bracket can couple to a manipulator including, e.g., an industrial robot or other manipulation assembly. The compliant material contact elements can include a contact interface that can engage with a piece of material. The compliant material contact elements can precisely transfer material on a workspace with surface irregularities while equally distributing force to the material.
Due to rapid advancement in computing technology of both hardware and software, the labor intensive sewing process has been transformed into a technology-intensive automated process. During an automated process, processing of a work piece can be visually monitored using a sensor system. Data gathered from the sensor system can be used to infer the condition and/or position of the work piece in the work area using, e.g., models of a sensor profile. Evaluation can be carried out before processing begins, during processing and/or after processing of the work piece. Examples of systems and methods are described that provide for initially and successively matching the model of the expected shape for a product work piece to a set of sensor readings of the work piece in order to determine the position of the work piece and support a variety of useful features.
Material moving apparatus, systems and methods are presented which can include an air material mover. Airflow through orifices can create a localized vacuum such that the uppermost or top layer of material can be separated from the stack of material. The airflow can interact with the material to produce flutter, which assists in separating lower layers from the uppermost layer. A material gripper can grip the uppermost or top layer of material for removal from the stack and repositioning in a work area.
Various examples are provided related to transporting and sewing material in, e.g., automation of sewing robots. Multiple pieces of layered materials can be transported on a flat planar surface while maintaining the material layer's position and orientation relative to one another during a sewing procedure of these materials along any arbitrary seam shape. In one example, among others, a method includes positioning a second piece of material on a first piece of material located on a sewing plane, positioning a material holding apparatus over the pieces of material to secure position and orientation between the pieces of material, locating the pieces of material with respect to an automated sewing machine by repositioning the material holding apparatus, and sewing the second piece of material to the first piece of material. The methods can eliminate the need of custom-made templates for sewing arbitrarily shaped seams with an automated sewing machine.
Various examples are provided related to transporting and sewing material in, e.g., automation of sewing robots. Multiple pieces of layered materials can be transported on a flat planar surface while maintaining the material layer's position and orientation relative to one another during a sewing procedure of these materials along any arbitrary seam shape. In one example, among others, a system includes a sewing machine including a sewing needle, a material holding assembly and a translation system. The material holding assembly can include mechanical fingers that can contact material on a sewing plane adjacent to the sewing needle and a structural grounding system supporting the mechanical fingers. The translation system can reposition the material on the sewing plane via the mechanical fingers. Clearance around the sewing needle can be provided by repositioning individual mechanical fingers around the sewing needle.
D05B 21/00 - Sewing machines with devices for automatically controlling movement of work-carrier relative to stitch-forming mechanism in order to obtain particular configuration of seam, e.g. programme-controlled for sewing collars, for attaching pockets
D05B 35/02 - Work-feeding or work-handling elements for sewing machines, not otherwise provided for for facilitating seamingHem-turning elementsHemmers
41.
Sensor systems and methods for sewn product processing apparatus
Due to rapid advancement in computing technology of both hardware and software, the labor intensive sewing process has been transformed into a technology-intensive automated process. During an automated process, processing of a work piece can be visually monitored using a sensor system. Data gathered from the sensor system can be used to infer the condition and/or position of the work piece in the work area using, e.g., models of a sensor profile. Evaluation can be carried out before processing begins, during processing and/or after processing of the work piece. Examples of systems and methods are described that provide for initially and successively matching the model of the expected shape for a product work piece to a set of sensor readings of the work piece in order to determine the position of the work piece and support a variety of useful features.
Due to rapid advancement in computing technology of both hardware and software, the labor intensive sewing process has been transformed into a technology-intensive automated process. During an automated process, product materials may become wrinkled or folded, which can slow down the automated process or result in human intervention. Various examples are provided related to the automation of sewing robots, and removal of wrinkles from products. Images of material on a work table can be captured and analyzed to determine if there are wrinkles or folds in the product. The robot can remove the wrinkle or fold by manipulating the material through the use of end effectors such as, e.g., budgers.
A sewn product making apparatus such as a sewing robot can be used to produce a variety of products over a broad range of sizes, shapes or materials. Various examples are provided related to the automation of sewing robots, and the making of sewn products. In one example, among others, a system can generate a product making path using a product construction file, and instruct a sewing device and fabric mover(s) to automatically sew the product based upon the product making path. The product making path can be modified when a deviation is detected, and the sewing adjusted based upon the modified product making path. The product construction file can be generated using information from a computer aided design associated with the product.
D05B 19/08 - Arrangements for inputting stitch or pattern data to memory
G05B 19/4093 - Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine
D05B 19/16 - Control of workpiece movement, e.g. modulation of travel of feed dog
A feed mechanism that advances fabric comprises at least one dog that mechanically advances the fabric toward a sewing head and at least one actuator that is coupled to and actuates the at least one dog in a servo controlled motion so that the sewing head sews the fabric at a desirable position.
D05B 19/16 - Control of workpiece movement, e.g. modulation of travel of feed dog
D05B 27/06 - Work-feeding means for sewing machines with feed dogs having horizontal and vertical movements arranged above and below the workpieces
D05B 27/08 - Work-feeding means for sewing machines with feed dogs having horizontal and vertical movements with differential feed motions
D05B 3/04 - Sewing apparatus or machines with mechanism for lateral movement of the needle or the work or both for making ornamental pattern seams, for sewing buttonholes, for reinforcing openings, or for fastening articles, e.g. buttons, by sewing with mechanisms for work feed
A conveyance system that transports fabric comprises a work space having a surface that the fabric can be transports across, and at least one budger that moves and/or provide force to the fabric in a servo controlled motion.
A feed mechanism that advances fabric comprises at least one dog that mechanically advances the fabric toward a sewing head and at least one actuator that is coupled to and actuates the at least one dog in a servo controlled motion so that the sewing head sews the fabric at a desirable position.
Embodiments of the present invention provide a system and device for making garment. One embodiment, for example, includes a system that comprises a processing device and a sewing module that sews garment material to facilitate making the garment. The system further comprises memory that includes a thread count manager having instructions stored in the memory. The instructions are executed by the processing device and include logic configured to instruct the sewing module to sew the garment material based on counting threads of the garment material rather than using the geometric shape of pieces of garment material.
G06F 19/00 - Digital computing or data processing equipment or methods, specially adapted for specific applications (specially adapted for specific functions G06F 17/00;data processing systems or methods specially adapted for administrative, commercial, financial, managerial, supervisory or forecasting purposes G06Q;healthcare informatics G16H)