An apparatus for providing a nonlabor-intensive process for sealing an opening formed in the ground with a chemically-inflatable bag is provided. The chemically-inflatable bag contains two or more chemical reactants, one of which is a liquid reactant that is initially stored in a liquid-containing device. The liquid-containing device has a removable cap, which upon removal or breakage of the cap permits the liquid reacting agent to contact and react with another reacting agent. The chemical reaction produces carbon dioxide, which expands the chemically-inflatable bag from a collapsed condition to an inflated condition. In the inflated condition, the chemically-inflatable bag fills and protects the integrity of the formed cavity.
The present invention is directed towards an apparatus for providing a nonlabor-intensive process for sealing an opening formed in the ground with a chemically-inflatable bag. The chemically-inflatable bag contains two or more chemical reactants, one of which is a liquid reactant that is initially stored in a liquid-containing device. The liquid-containing device has a removable cap, which upon removal or breakage of the cap permits the liquid reacting agent to contact and react with another reacting agent. The chemical reaction produces carbon dioxide, which expands the chemically-inflatable bag from a collapsed condition to an inflated condition. In the inflated condition, the chemically-inflatable bag fills and protects the integrity of the formed cavity.
The present invention is directed towards an apparatus for providing a nonlabor-intensive process for sealing an opening formed in the ground with a chemically-inflatable bag. The chemically-inflatable bag contains two or more chemical reactants, one of which is a liquid reactant that is initially stored in a liquid-containing device. The liquid-containing device has a removable cap, which upon removal or breakage of the cap permits the liquid reacting agent to contact and react with another reacting agent. The chemical reaction produces carbon dioxide, which expands the chemically-inflatable bag from a collapsed condition to an inflated condition. In the inflated condition, the chemically-inflatable bag fills and protects the integrity of the formed cavity.
F42D 1/20 - Tamping cartridges, i.e. cartridges containing tamping material
F42D 1/22 - Means for holding or positioning blasting cartridges or tamping cartridges in boreholes
B01J 7/02 - Apparatus for generating gases by wet methods
B01F 13/00 - Other mixers; Mixing plant, including combinations of dissimilar mixers
E21C 37/14 - Other methods or devices for dislodging with or without loading by making use of hydraulic or pneumatic pressure in a borehole by compressed airOther methods or devices for dislodging with or without loading by making use of hydraulic or pneumatic pressure in a borehole by gas blastOther methods or devices for dislodging with or without loading by making use of hydraulic or pneumatic pressure in a borehole by gasifying liquids
F42D 1/08 - Tamping methodsMethods for loading boreholes with explosivesApparatus therefor
4.
Fluid release mechanism for a chemically-inflatable bag
The present invention is directed towards an apparatus for providing a process for sealing an opening formed in the ground with a chemically-inflatable bag. The chemically-inflatable bag contains two or more chemical reactants, one of which is a liquid reactant that is initially stored in a liquid-containing device. The liquid-containing device has a removable cap, which upon removal or breakage of the cap permits the liquid reacting agent to contact and react with another reacting agent. The chemical reaction produces carbon dioxide, which expands the chemically-inflatable bag from a collapsed condition to an inflated condition. In the inflated condition, the chemically-inflatable bag fills and protects the integrity of the formed cavity.
Embodiments provide an apparatus for providing a nonlabor-intensive process for sealing an opening formed in the ground with a chemically-inflatable bag. The chemically-inflatable bag comprises two or more chemical reactants, one of which is a liquid reactant that is initially stored in a liquid-containing device. The liquid-containing device has a removable cap, which upon removal or breakage of the cap permits the liquid reacting agent to contact and react with another reacting agent. The chemical reaction produces carbon dioxide, which expands the chemically-inflatable bag from a collapsed condition to an inflated condition. In the inflated condition, the chemically-inflatable bag fills and protects the integrity of the formed cavity.
Embodiments provide an apparatus and methods for providing a nonlabor- intensive process for preventing backfill entering, or environmental factors eroding, a cavity formed in the ground. Preventing cavity degradation involves constructing a chemically-inflatable bag that separates two or more chemical reactants by creases and cylindrical coils formed in the chemically-inflatable bag. The creases typically act as watertight releasable seals that separate the chemical reactants while the cylindrical coils resist unintentional compromise of the releasable seals. However, the cylindrical coils are designed to give way upon the user applying an unfurling action on the chemically-inflatable bag; thus, furnishing a passageway for the chemical reactants to intermix and initiate a chemical reaction. The chemical reaction produces carbon dioxide as a by-product, which expands the chemically-inflatable bag from a collapsed condition to an inflated condition. In the inflated condition, the chemically-inflatable bag fills and protects the integrity of the formed cavity.
Embodiments provide an apparatus and methods for providing a nonlabor-intensive process for preventing backfill entering, or environmental factors eroding, a cavity formed in the ground. Preventing cavity degradation involves constructing a chemically-inflatable bag that separates two or more chemical reactants by creases and cylindrical coils formed in the chemically-inflatable bag. The creases typically act as watertight releasable seals that separate the chemical reactants while the cylindrical coils resist unintentional compromise of the releasable seals. However, the cylindrical coils are designed to give way upon the user applying an unfurling action on the chemically-inflatable bag; thus, furnishing a passageway for the chemical reactants to intermix and initiate a chemical reaction. The chemical reaction produces carbon dioxide as a by-product, which expands the chemically-inflatable bag from a collapsed condition to an inflated condition. In the inflated condition, the chemically-inflatable bag fills and protects the integrity of the formed cavity.
17 - Rubber and plastic; packing and insulating materials
Goods & Services
DECKING DEVICES, NAMELY PLASTIC PLUGS AND SELF INFLATING PLASTIC BAGS TO SEAL HOLES DRILLED BEFORE AND/OR AFTER THE INSERTION OF EXPLOSIVES TO POSITION AND CONTAIN THE ENERGY OF THE EXPLOSIVE