A storage system (20; 300) for storing loads (32) held by carriers (30; 330) has a plurality of uprights (46; 346) and a plurality of carrier supports (66; 366) mounted to the uprights. A plurality of flooring levels, one above another, are supported by the plurality of uprights and form a first bank (552A) and a second bank (552B) with a divide (550) between. A plurality of bridges (570) have deployed conditions spanning the divide and stowed conditions not spanning the divide.
A manufacturing system (20) comprises: one or more stores (84; 80A-80C; 92) for raw materials, work-in-progress (WIP), and finished goods; a plurality of manufacturing cells (40A-40F), each cell includes: one or more machines (42A-42C) for manufacturing an assembly; and a programmable logic controller (PLC) (44) for controlling the machines; one or more devices (60, 70) for moving raw material, WIP, and finished goods; and one or more servers (32) for communicating with the PLCs and the devices. The one or more servers further have programming for: instructing (642) the plurality of manufacturing cells to assemble finished goods from the raw materials; instructing (628, 632) the one or more devices to move said raw materials and finished goods; and just in sequence (JIS) skipped assembly recovery steps (730) for the manufacturing cells and devices.
G05B 19/418 - Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
G06Q 10/20 - Administration of product repair or maintenance
3.
Automated Storage and Retrieval System with Multi-Directional Vehicles
A storage system (20; 300) for storing loads (32) has: a plurality of carriers (30; 330), for holding respective loads; a plurality of uprights (46; 346); a plurality of flooring levels, one above another, supported by the uprights; a plurality of carrier supports (66; 366); at least one wheeled automated vehicle (50; 350), for carrying said carriers along the flooring levels and including a lifting surface (200; 400) for supporting a supported one of the carriers and shiftable between a lowered condition and a raised condition; and means (52A, 52B) for moving the at least one wheeled automated vehicle between the flooring levels.
A storage system (20; 300) for storing loads (32) held by carriers (30; 330) has a plurality of uprights (46; 346) and a plurality of carrier supports (66; 366) mounted to the uprights. A plurality of flooring levels, one above another, are supported by the plurality of uprights and form a first bank (552A) and a second bank (552B) with a divide (550) between. A plurality of bridges (570) have deployed conditions spanning the divide and stowed conditions not spanning the divide.
A storage system (20; 300) for storing loads (32) has: a plurality of carriers (30; 330), for holding respective loads; a plurality of uprights (46; 346); a plurality of flooring levels, one above another, supported by the uprights; a plurality of carrier supports (66; 366); at least one wheeled automated vehicle (50; 350), for carrying said carriers along the flooring levels and including a lifting surface (200; 400) for supporting a supported one of the carriers and shiftable between a lowered condition and a raised condition; and means (52A, 52B) for moving the at least one wheeled automated vehicle between the flooring levels.
A multi-level rail for a storage structure may comprise an upper horizontal portion configured to support a load and a lower horizontal portion configured to support a row vehicle. An upper support portion extends downward diagonally from the upper horizontal portion toward the lower horizontal portion, and a lower support extends downward diagonally from the lower horizontal portion. This rail is configured to connect to at least one vertical post of the storage structure. Support beams for a railed storage structure are also disclosed with an elongated body having a terminal end portion configured to attach to a vertical column of a storage support structure and an upper support surface configured to support a horizontal support rail. A wing portion is secured to the terminal end portion and configured to attach to the horizontal support rail by extending lateral to the elongated body and above the upper support surface.
A manufacturing system (20) comprises: one or more stores (84; 80A-80C; 92) for raw materials, work-in-progress (WIP), and finished goods; a plurality of manufacturing cells (40A 40F), each cell includes: one or more machines (42A-42C) for manufacturing an assembly; and a programmable logic controller (PLC) (44) for controlling the machines; one or more devices (60, 70) for moving raw material, WIP, and finished goods; and one or more servers (32) for communicating with the PLCs and the devices. The one or more servers further have programming for: instructing (642) the plurality of manufacturing cells to assemble finished goods from the raw materials; instructing (628, 632) the one or more devices to move said raw materials and finished goods; and just in sequence (JIS) skipped assembly recovery steps (730) for the manufacturing cells and devices.
G05B 19/418 - Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
G06Q 10/20 - Administration of product repair or maintenance
A manufacturing system (20) comprises: one or more stores (84; 80A-80C; 92) for raw materials, work-in-progress (WIP), and finished goods; a plurality of manufacturing cells (40A 40F), each cell includes: one or more machines (42A-42C) for manufacturing an assembly; and a programmable logic controller (PLC) (44) for controlling the machines; one or more devices (60, 70) for moving raw material, WIP, and finished goods; and one or more servers (32) for communicating with the PLCs and the devices. The one or more servers further have programming for: instructing (642) the plurality of manufacturing cells to assemble finished goods from the raw materials; instructing (628, 632) the one or more devices to move said raw materials and finished goods; and just in sequence (JIS) skipped assembly recovery steps (730) for the manufacturing cells and devices.
B65G 1/137 - Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed
B65G 43/00 - Control devices, e.g. for safety, warning or fault-correcting
G05B 19/418 - Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
9.
Structure for automated pallet storage and retrieval
A multi-level rail for a storage structure may comprise an upper horizontal portion configured to support a load and a lower horizontal portion configured to support a row vehicle. An upper support portion extends downward diagonally from the upper horizontal portion toward the lower horizontal portion, and a lower support extends downward diagonally from the lower horizontal portion. This rail is configured to connect to at least one vertical post of the storage structure. Support beams for a railed storage structure are also disclosed with an elongated body having a terminal end portion configured to attach to a vertical column of a storage support structure and an upper support surface configured to support a horizontal support rail. A wing portion is secured to the terminal end portion and configured to attach to the horizontal support rail by extending lateral to the elongated body and above the upper support surface.
A multi-level storage structure includes a plurality of vertical supports, a plurality of row spacing members connecting vertical posts positioned laterally relative to each other, a plurality of row rails connecting vertical posts positioned longitudinally relative to each other and configured to support at least one row cart, a plurality of aisle rails extending perpendicular to the plurality of row rails and configured to support at least one aisle cart, and a plurality of pre-formed holes formed in at least one of the vertical supports, row spacing members, row rails, and aisle rails to mount at least one of a lighting system, a fire suppression system, a mobile safety tie off carriage, and at least one support brace to the storage structure. The plurality of pre-formed holes are formed prior to assembly of the storage structure.
A multi-level storage structure includes a plurality of vertical supports, a plurality of row spacing members connecting vertical posts positioned laterally relative to each other, a plurality of row rails connecting vertical posts positioned longitudinally relative to each other and configured to support at least one row cart, a plurality of aisle rails extending perpendicular to the plurality of row rails and configured to support at least one aisle cart, and a plurality of pre-formed holes formed in at least one of the vertical supports, row spacing members, row rails, and aisle rails to mount at least one of a lighting system, a fire suppression system, a mobile safety tie off carriage, and at least one support brace to the storage structure. The plurality of pre-formed holes are formed prior to assembly of the storage structure.
An apparatus for lifting a load on an automated lifting cart, including a lifting surface vertically movable relative to the lifting cart, two pairs of cams positioned underneath the lifting surface having cam profiles shaped to lift the lifting surface upon rotation of the cams, a pair of encoders reading a rotation property of each pair of cams, and a controller configured to control movement of the pairs of cams by synchronizing the rotation properties of the pairs of cams by matching output from the encoders. Additionally, methods of lifting a load using an automated lifting cart including cams with a movement profile and a load profile, and methods of synchronizing drive shafts in a lifting cart using torque current measurements sent from a lead motor to a lag motor.
A system for positioning a lifting cart in an automated storage facility is described. In one example, the system includes a motorized lifting cart configured to move about a railway of a storage area. An encoder on the cart reads a property of rotation of a rotating element on the cart, and a controller may receive the property of rotation from the encoder and convert it to a rotation count of the rotating element. The rotating element may be an encoder shaft, drive shaft, and like elements. Some systems include a signal emitter or photo sensor to position the lifting cart and to facilitate providing instructions to the cart.
B62B 3/06 - Hand carts having more than one axis carrying transport wheelsSteering devices thereforEquipment therefor involving means for grappling or securing in place objects to be carriedLoad handling equipment for simply clearing the load from the ground, e.g. low-lift trucks
An apparatus for lifting a load on an automated lifting cart, including a lifting surface vertically movable relative to the lifting cart, two pairs of cams positioned underneath the lifting surface having cam profiles shaped to lift the lifting surface upon rotation of the cams, a pair of encoders reading a rotation property of each pair of cams, and a controller configured to control movement of the pairs of cams by synchronizing the rotation properties of the pairs of cams by matching output from the encoders. Additionally, methods of lifting a load using an automated lifting cart including cams with a movement profile and a load profile, and methods of synchronizing drive shafts in a lifting cart using torque current measurements sent from a lead motor to a lag motor.
A multi-level rail for a storage structure may comprise an upper horizontal portion configured to support a load and a lower horizontal portion configured to support a row vehicle. An upper support portion extends downward diagonally from the upper horizontal portion toward the lower horizontal portion, and a lower support extends downward diagonally from the lower horizontal portion. This rail is configured to connect to at least one vertical post of the storage structure. Support beams for a railed storage structure are also disclosed with an elongated body having a terminal end portion configured to attach to a vertical column of a storage support structure and an upper support surface configured to support a horizontal support rail. A wing portion is secured to the terminal end portion and configured to attach to the horizontal support rail by extending lateral to the elongated body and above the upper support surface.
A multi-level rail for a storage structure may comprise an upper horizontal portion configured to support a load and a lower horizontal portion configured to support a row vehicle. An upper support portion extends downward diagonally from the upper horizontal portion toward the lower horizontal portion, and a lower support extends downward diagonally from the lower horizontal portion. This rail is configured to connect to at least one vertical post of the storage structure. Support beams for a railed storage structure are also disclosed with an elongated body having a terminal end portion configured to attach to a vertical column of a storage support structure and an upper support surface configured to support a horizontal support rail. A wing portion is secured to the terminal end portion and configured to attach to the horizontal support rail by extending lateral to the elongated body and above the upper support surface.
A method and system for auto safety verification of automatic guided vehicle (AGV) sensors is presented. An auto safety verification test can be performed autonomously by the AGV to ensure that sensors on the AGV are configured correctly and working properly. The auto safety verification test avoids human errors that exist in manual verification tests and significantly reduces the amount of time required to verify sensors on the AGV.
An apparatus for lifting a load on an automated lifting cart, including a lifting surface vertically movable relative to the lifting cart, two pairs of cams positioned underneath the lifting surface having cam profiles shaped to lift the lifting surface upon rotation of the cams, a pair of encoders reading a rotation property of each pair of cams, and a controller configured to control movement of the pairs of cams by synchronizing the rotation properties of the pairs of cams by matching output from the encoders. Additionally, methods of lifting a load using an automated lifting cart including cams with a movement profile and a load profile, and methods of synchronizing drive shafts in a lifting cart using torque current measurements sent from a lead motor to a lag motor.
B65G 1/06 - Storage devices mechanical with means for presenting articles for removal at predetermined position or level
B62B 3/06 - Hand carts having more than one axis carrying transport wheelsSteering devices thereforEquipment therefor involving means for grappling or securing in place objects to be carriedLoad handling equipment for simply clearing the load from the ground, e.g. low-lift trucks
B66F 9/065 - Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks non-masted
An apparatus for lifting a load on an automated lifting cart, including a lifting surface vertically movable relative to the lifting cart, two pairs of cams positioned underneath the lifting surface having cam profiles shaped to lift the lifting surface upon rotation of the cams, a pair of encoders reading a rotation property of each pair of cams, and a controller configured to control movement of the pairs of cams by synchronizing the rotation properties of the pairs of cams by matching output from the encoders. Additionally, methods of lifting a load using an automated lifting cart including cams with a movement profile and a load profile, and methods of synchronizing drive shafts in a lifting cart using torque current measurements sent from a lead motor to a lag motor.
A system for positioning a lifting cart in an automated storage facility is described. In one example, the system includes a motorized lifting cart configured to move about a railway of a storage area. An encoder on the cart reads a property of rotation of a rotating element on the cart, and a controller may receive the property of rotation from the encoder and convert it to a rotation count of the rotating element. The rotating element may be an encoder shaft, drive shaft, and like elements. Some systems include a signal emitter or photo sensor to position the lifting cart and to facilitate providing instructions to the cart.
B65G 1/137 - Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed
B62B 3/06 - Hand carts having more than one axis carrying transport wheelsSteering devices thereforEquipment therefor involving means for grappling or securing in place objects to be carriedLoad handling equipment for simply clearing the load from the ground, e.g. low-lift trucks
B65G 1/00 - Storing articles, individually or in orderly arrangement, in warehouses or magazines
A system includes trays of a plurality of different widths and an unloading system for unloading cartons from the trays. The trays (20; 20′; 20″) each comprise a base (22) and a pair of end walls (30) extending upward from the base. The unloading system (200; 200′) comprises a plurality of fingers (202A-202I). Each of the end walls comprise a plurality of vertical slots (40) open to an upper edge of the end wall. The fingers are positioned and dimensioned to pass through the slots of the trays as the trays are delivered by the tray delivery conveyor to lift contents of the trays. The fingers are positioned so that some fingers pass through the slots of each of the different widths, but others pass only through slots of wider said widths.
A system includes trays of a plurality of different widths and an unloading system for unloading cartons from the trays. The trays (20; 20′; 20″) each comprise a base (22) and a pair of end walls (30) extending upward from the base. The unloading system (200; 200′) comprises a plurality of fingers (202A-202I). Each of the end walls comprise a plurality of vertical slots (40) open to an upper edge of the end wall. The fingers are positioned and dimensioned to pass through the slots of the trays as the trays are delivered by the tray delivery conveyor to lift contents of the trays. The fingers are positioned so that some fingers pass through the slots of each of the different widths, but others pass only through slots of wider said widths.
A system includes trays of a plurality of different widths and an unloading system for unloading cartons from the trays. The trays (20; 20'; 20") each comprise a base (22) and a pair of end walls (30) extending upward from the base. The unloading system (200; 200') comprises a plurality of fingers (202A-202I). Each of the end walls comprise a plurality of vertical slots (40) open to an upper edge of the end wall. The fingers are positioned and dimensioned to pass through the slots of the trays as the trays are delivered by the tray delivery conveyor to lift contents of the trays. The fingers are positioned so that some fingers pass through the slots of each of the different widths, but others pass only through slots of wider said widths.
B65G 47/34 - Devices for discharging articles or materials from conveyors
B65G 47/68 - Devices for transferring articles or materials between conveyors, i.e. discharging or feeding devices adapted to receive articles arriving in one layer from one conveyor and to transfer them in individual layers to more than one conveyor, or vice versa, e.g. combining the flows of articles conveyed by more than one conveyor
B65G 35/08 - Mechanical conveyors not otherwise provided for comprising trains of unconnected load-carriers, e.g. belt sections, movable in a path, e.g. a closed path, adapted to contact each other and to be propelled by means arranged to engage each load-carrier in turn
B65G 47/88 - Separating or stopping elements, e.g. fingers
24.
TRAYS AND APPARATUS AND METHOD FOR REMOVING CARTONS FROM TRAYS
A system includes trays of a plurality of different widths and an unloading system for unloading cartons from the trays. The trays (20; 20'; 20") each comprise a base (22) and a pair of end walls (30) extending upward from the base. The unload-ing system (200; 200') comprises a plurality of fingers (202A-2021). Each of the end walls comprise a plurality of vertical slots (40) open to an upper edge of the end wall. The fingers are positioned and dimensioned to pass through the slots of the trays as the trays are delivered by the tray delivery conveyor to lift contents of the trays. The fingers are positioned so that some fingers pass through the slots of each of the different widths, but others pass only through slots of wider said widths.
B65G 35/08 - Mechanical conveyors not otherwise provided for comprising trains of unconnected load-carriers, e.g. belt sections, movable in a path, e.g. a closed path, adapted to contact each other and to be propelled by means arranged to engage each load-carrier in turn
B65G 47/68 - Devices for transferring articles or materials between conveyors, i.e. discharging or feeding devices adapted to receive articles arriving in one layer from one conveyor and to transfer them in individual layers to more than one conveyor, or vice versa, e.g. combining the flows of articles conveyed by more than one conveyor
B65G 47/88 - Separating or stopping elements, e.g. fingers
An automated warehouse system row cart includes a lifter that uses cams to raise and lower pallets. Three symmetrical cam lobes are cut into a hollow cylinder. Three matching cam lifters ride these lobes and are attached to an elevator plate. A stepper motor running in one direction is used to raise and lower the elevator plate by virtue of the action between the cam lobes and lifters.