The invention concerns a process for the preparation of a calcium silicate hydrate and ettringite containing hardening accelerator composition by reaction of a water-soluble calcium compound, silicate compound, aluminum compound and a sulfate compound, wherein the molar ratio of silicon to sulfate is from 2/1 to 30/1 and the reaction of the four compounds being carried out in the presence of an aqueous solution which contains a comb polymer suitable as a plasticizer for hydraulic binders. Also concerned are the use of said accelerators in building material mixtures, the building material mixtures containing said accelerators and a process for the preparation of a sprayable binder composition in which said accelerators are used.
C04B 22/14 - Acids or salts thereof containing sulfur in the anion, e.g. sulfides
C04B 28/02 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
C04B 28/14 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
C04B 28/16 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements containing anhydrite
C04B 40/00 - Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
The present invention relates to a method for producing a gypsum-containing foamed prefabricated building material and to a gypsum-containing foamed prefabricated building material.
C04B 38/10 - Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by using foaming agents
C04B 28/14 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
C04B 24/00 - Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
C04B 24/04 - Carboxylic acids; Salts, anhydrides or esters thereof
C04B 38/00 - Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
The invention relates to a process for producing calcium sulphate dihydrate by reacting a water-soluble calcium compound with a water-soluble sulphate compound in the presence of water and a polymer containing acid groups, wherein the polymer containing acid groups comprises specific polyether groups. Additionally disclosed are calcium sulphate dihydrate producible by the process according to the invention, and the use thereof for production of gypsum plasterboard.
C04B 22/10 - Acids or salts thereof containing carbon in the anion, e.g. carbonates
C04B 22/14 - Acids or salts thereof containing sulfur in the anion, e.g. sulfides
C04B 28/14 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
C04B 40/00 - Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
The invention concerns a process for the preparation of a calcium silicate hydrate and ettringite containing hardening accelerator composition by reaction of a water-soluble calcium compound, silicate compound, aluminum compound and a sulfate compound, wherein the molar ratio of silicon to sulfate is from 2/1 to 30/1 and the reaction of the four compounds being carried out in the presence of an aqueous solution which contains a comb polymer suitable as a plasticizer for hydraulic binders. Also concerned are the use of said accelerators in building material mixtures, the building material mixtures containing said accelerators and a process for the preparation of a sprayable binder composition in which said accelerators are used.
C04B 40/00 - Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
C04B 28/02 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
C04B 28/14 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
C04B 28/16 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements containing anhydrite
5.
A METHOD FOR PRODUCING A GYPSUM-CONTAINING BUILDING MATERIAL AND BUILDING MATERIAL PREPARED THEREBY WITH KETENE DIMERS AS HYDROPHOBING AGENT
The present invention relates to a method for producing a gypsum-containing foamed prefabricated building material and to a gypsum-containing foamed prefabricated building material obtained thereby. The method includes preparing a mixture of gypsum hemihydrate and/or anhydrite with selected ketene dimers as hydrophobing agent, adding a foam and forming the gypsum composition to obtain a foamed prefabricated building material.
C04B 28/14 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
6.
A METHOD FOR PRODUCING A GYPSUM-CONTAINING BUILDING MATERIAL AND BUILDING MATERIAL PREPARED THEREBY WITH KETENE DIMERS AS HYDROPHOBING AGENT
The present invention relates to a method for producing a gypsum-containing foamed prefabricated building material and to a gypsum-containing foamed prefabricated building material obtained thereby. The method includes preparing a mixture of gypsum hemihydrate and/or anhydrite with selected ketene dimers as hydrophobing agent, adding a foam and forming the gypsum composition to obtain a foamed prefabricated building material.
C04B 28/14 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
The invention relates to a pulverulent composition which can be produced by bringing a powder which comprises at least one inorganic binder into contact with from 0.01 to 10% by weight, based on the total mass of the composition, of a liquid component comprising at least one copolymer which can be obtained by polymerization of a mixture of monomers comprising (I) at least one ethylenically unsaturated monomer which comprises at least one radical selected from the group consisting of carboxylic acid, carboxylic acid salt, carboxylic esters, carboxamide, carboxylic anhydride and carboximide and (II) at least one ethylenically unsaturated monomer having a polyalkylene oxide radical, where the liquid component contains at least 1% by weight of the at least one copolymer and at least 30% by weight of an organic solvent. Furthermore, a process for producing the liquid component, the use thereof and also specific copolymers are disclosed.
C04B 24/26 - Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
C04B 28/02 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
C04B 28/14 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
C08F 216/14 - Monomers containing only one unsaturated aliphatic radical
C08F 220/28 - Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
A knifing filler and/or joint grout composition is proposed, comprising at least one inorganic filler, which is selected from among limestone, calcium carbonate, chalk, marble, calcite, aragonite, dolomite, calcium sulphate dihydrate, and mixtures thereof, preferably ground limestone and/or ground dolomite, at least one film-forming polymer dispersion, at least one non-ionic surfactant, and water.
The invention relates to a process for producing calcium sulphate dihydrate by reacting a water-soluble calcium compound with a water-soluble sulphate compound in the presence of water and a polymer containing acid groups, wherein the polymer containing acid groups comprises specific polyether groups. Additionally disclosed are calcium sulphate dihydrate producible by the process according to the invention, and the use thereof for production of gypsum plasterboard.
C04B 22/14 - Acids or salts thereof containing sulfur in the anion, e.g. sulfides
C04B 28/14 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
C04B 40/00 - Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
The invention relates to a process for producing calcium sulphate dihydrate by reacting a water-soluble calcium compound with a water-soluble sulphate compound in the presence of water and a polymer containing acid groups, wherein the polymer containing acid groups comprises specific polyether groups. Additionally disclosed are calcium sulphate dihydrate producible by the process according to the invention, and the use thereof for production of gypsum plasterboard.
C04B 28/14 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
C04B 40/00 - Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
The invention relates to a powder composition that can be produced by bringing a powder comprising at least one inorganic binder into contact with 0.01 to 10 wt.%, based on the total mass of the composition, of a liquid component comprising at least one copolymer that can be obtained by polymerizing a mixture of monomers, said mixture comprising (I) at least one ethylenically unsaturated monomer, which comprises at least one radical from the group consisting of carboxylic acid, carboxylic acid salt, carboxylic acid ester, carboxylic acid amid, carboxylic acid anhydride, and carboxylic acid imide, and (II) at least one ethylenically unsaturated monomer with a polyalkylene oxide radical, said liquid component containing at least 1 wt.% of the at least one copolymer and at least 30 wt.% of an inorganic solvent. The invention further relates to a method for producing the liquid component, to the use thereof, and to specific copolymers.
A pulverulent and mineral oil-free composition which is present as binary system and contains as main constituents a) from 5 to 40% by weight of at least one fatty acid derivative and/or fatty alcohol derivative, b) from 0.5 to 10% by weight of at least one silicone oil and c) from 20 to 85% by weight of at least one support material, with the components a) and b) having been applied to the support material c), is proposed. Suitable components a) are, in particular, fatty alcohol alkoxylates comprising ethylene oxide units and propylene oxide units. Polydimethylsiloxanes are particularly suitable representatives of silicone oils b). The support material c) is selected from the group consisting of chalk, dolomite, shell limestone and silica. The composition has a bimodal particle size distribution in the range from 10 to 120 μm. Such compositions are used, in particular, as antifoams for dry mortar applications.
C04B 40/00 - Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
C04B 24/08 - Fats; Fatty oils; Ester type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
C04B 24/42 - Compounds having one or more carbon-to-silicon linkages
C04B 28/02 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
C04B 111/10 - Compositions characterised by the absence of a specified material
Claimed is a formulation containing a) at least one component having dispersing properties and being selected from branched comb polymers having polyether side chains, a naphthalene sulphonate-formaldehyde condensate and a melamine sulphonate-formaldehyde condensate, and b) a polycondensation product. Typical representatives of component a) are polycarboxylate ether, polycarboxylate ester and uncharged copolymers. In addition to the main components a) and b) further additives such as anti-forming agents and tensides or polymers having a low Charge, neutral polymers or polyvinyl alcohol can be comprised by the formulation that is suitable for Controlling the flowability of aqueous suspensions of construction Chemicals.
C08L 51/08 - Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds