42 - Scientific, technological and industrial services, research and design
Goods & Services
engineering services in the fields of oil and gas, spacecraft, missile, and aircraft safety analysis, reliability analysis, quality assurance, maintainability analysis, health, software, mechanical analysis and design, electrical analysis and design, and operations.
An exemplary hybrid accumulator includes a piston slidably disposed in a cylinder and separating a reservoir from a pressure chamber, in use, a hydraulic fluid disposed in the reservoir and a spring disposed in the pressure chamber to act on the piston and pre-charge the hydraulic fluid to a first pressure, and a heating element in communication with the pressure chamber to increase pressure in the pressure chamber when the heating element is initiated.
An exemplary hybrid accumulator includes a piston slidably disposed in a cylinder and separating a reservoir from a pressure chamber, in use, a hydraulic fluid disposed in the reservoir and a spring disposed in the pressure chamber to act on the piston and pre-charge the hydraulic fluid to a first pressure, and a heating element in communication with the pressure chamber to increase pressure in the pressure chamber when the heating element is initiated.
An exemplary method of actuating an operational device includes activating a propellant in a pyrotechnic pressure generator, the pyrotechnic pressure generator comprising an elongated body having a first end, a second end, and a bore extending axially from a barrier to the second end, a piston slidably disposed in the bore, the propellant located in a chamber between the first end and the barrier, a gas outlet orifice through the barrier providing gas communication between the chamber, and a port at the second end in communication with the operational device; producing a gas in the chamber in response to activating the propellant, the gas escaping through the gas outlet orifice into the bore and the gas applying a force to the piston; moving the piston in a stroke from a position proximate to the barrier to a position proximate to the second end; communicating a pressure to the operational device that is equal to or greater than an operating pressure of the operational device in response to moving the piston; and actuating the operational device in response to communicating the pressure to the operational device.
An exemplary method includes using a pressure supply device (PSD) to actuate a hydraulic customer includes activating, when in the first position, a first gas generator of the multiple gas generators thereby driving the piston to the second position, pressurizing the hydraulic fluid, and discharging the pressurized hydraulic fluid to the customer; actuating the customer in response to receiving the pressurized hydraulic fluid; resetting the piston to first position by transferring a resetting hydraulic fluid into the reservoir; and exhausting gas and condensate from the gas chamber in response to resetting the piston to the first position.
An exemplary method includes using a pressure supply device (PSD) to actuate a hydraulic customer includes activating, when in the first position, a first gas generator of the multiple gas generators thereby driving the piston to the second position, pressurizing the hydraulic fluid, and discharging the pressurized hydraulic fluid to the customer; actuating the customer in response to receiving the pressurized hydraulic fluid; resetting the piston to first position by transferring a resetting hydraulic fluid into the reservoir; and exhausting gas and condensate from the gas chamber in response to resetting the piston to the first position.
F15B 11/072 - Combined pneumatic-hydraulic systems
F04B 9/123 - Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being elastic, e.g. steam or air having only one pumping chamber
E21B 34/16 - Control means therefor being outside the borehole
E21B 33/035 - Well headsSetting-up thereof specially adapted for underwater installations
F15B 21/00 - Common features of fluid actuator systemsFluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
An exemplary gas generator driven hydraulic accumulator includes an elongated body having a first end, a second end, and a bore extending axially from a barrier to the second end; a piston slidably disposed in the bore; in use a gas generator located in a chamber between the first end and the barrier; an orifice through the barrier providing fluid communication between the chamber and the bore; in use a hydraulic fluid disposed in the bore between the piston and the second end whereby the hydraulic fluid is exhausted under pressure through a discharge port in response to activation of the gas generator; and in use a one-way flow control device connected in a flow path of the discharge port to permit one-way flow of the hydraulic fluid from the bore and to block return fluid from through the discharge port into the bore.
An exemplary system for supplying hydraulic pressure to an operational device includes two or more pressure supply devices connected in a pod, the pressure supply devices including an elongated body having an internal bore extending axially from a first end to a discharge end; a gas generator operationally connected at the first end; a piston movably disposed in the internal bore; a hydraulic fluid disposed in the internal bore between the piston and the discharge end, wherein a portion of the hydraulic fluid is exhausted under pressure through a discharge port in response to activation of the gas generator; the operational device in hydraulic connection with the discharge port to receive the exhausted hydraulic fluid.
A method according to one or more aspects of the disclosure includes actuating a slip device to grip a tubular extending through a bore, the slip device has an upper set of slips spaced axially above a lower set of slips and the actuating includes radially moving in unison the upper and the lower sets of slips from an open position to an extended position gripping the tubular.
A pressure supply device in accordance to one or more aspects includes an elongated body having an internal bore extending from a power end to a discharge end having a discharge port, two or more gas generators connected to the power end and a hydraulic fluid disposed in the bore between a piston and the discharge end. The ignition of one of the gas generators drives the piston to exhaust a partial volume of the hydraulic fluid that is less than the total operational volume of the hydraulic fluid under pressure to operate at a connected device.
A liquid propellant driven hydraulic pressure supply device may include an elongated body having an internal bore extending from a power end to a discharge end having a discharge port, a hydraulic fluid disposed in the bore between a piston and the discharge end and a liquid propellant gas generator connected to the power end.
A pressure supply device in accordance to one or more aspects includes an elongated body having an internal bore extending from a power end to a discharge end having a discharge port, two or more gas generators connected to the power end and a hydraulic fluid disposed in the bore between a piston and the discharge end. The ignition of one of the gas generators drives the piston to exhaust a partial volume of the hydraulic fluid that is less than the total operational volume of the hydraulic fluid under pressure to operate ate a connected device.
E21B 23/04 - Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells operated by fluid means, e.g. actuated by explosion
A liquid propellant driven hydraulic pressure supply device may include an elongated body having an internal bore extending from a power end to a discharge end having a discharge port, a hydraulic fluid disposed in the bore between a piston and the discharge end and a liquid propellant gas generator connected to the power end.
A gas generator driven hydraulic pressure supply device for supplying hydraulic pressure to an operational device that may be associated with a well system and/or an operational device that is located subsea includes an elongated body having an internal bore extending axially from a first end to a discharge end having a discharge port, a gas generator connected at the first end and a hydraulic fluid disposed in the internal bore between a piston and the discharge end so that a portion of the hydraulic fluid is exhausted under pressure through the discharge port in response to activation of the gas generator.
A ram or shutter device includes rams operable between an open position withdrawn from a bore to a closed position to contact a tubular disposed in the bore, the rams may not seal the bore. A well system in accordance to an aspect of the disclosure includes an assembly providing a bore in communication with a wellbore, a device operable to shear a tubular disposed in the bore, and a shutter device having rams operable between an open position withdrawn from the bore to a closed position contacting the tubular in the bore.
E21B 29/12 - Cutting or destroying pipes, packers, plugs or wire lines, located in boreholes or wells, e.g. cutting of damaged pipes, of windowsDeforming of pipes in boreholes or wellsReconditioning of well casings while in the ground specially adapted for underwater installations
A slip device includes a housing forming an axial bore, an upper set of slips spaced axially above a lower set of slips, and a rack and pinion actuator radially moving the upper set of slips and the lower set of slips between a retracted position and an extended position to grip a tubular disposed in the bore. The upper set of slips and the lower set of slips can be oriented to resist downward movement of the gripped tubular and to permit upward movement of the gripped tubular. One of the upper set of slips and the lower set of slips can be oriented to resist upward movement of the gripped tubular and the other of the upper set of slips and the lower set of slips can be oriented to resist downward movement of the gripped tubular.
A pyrotechnic pressure accumulator includes an elongated body extending from a first end of a pyrotechnic section to a discharge end of a hydraulic section. A propellant charge located in a gas chamber of the pyrotechnic section, a piston movably disposed the hydraulic section, and a fluid disposed in a hydraulic chamber between the piston and the discharge end, wherein the fluid is exhausted under pressure through a discharge port in response to ignition of the propellant charge.
A pyrotechnic pressure accumulator includes an elongated body extending from a first end of a pyrotechnic section to a discharge end of a hydraulic section. A propellant charge located in a gas chamber of the pyrotechnic section, a piston movably disposed the hydraulic section, and a fluid disposed in a hydraulic chamber between the piston and the discharge end, wherein the fluid is exhausted under pressure through a discharge port in response to ignition of the propellant charge.
A subsea well safing method and apparatus adapted to secure a subsea well in the event of a perceived blowout in a manner to mitigate the environmental damage and the physical damage to the subsea wellhead equipment to promote the ability to reconnect and recover control of the well. The safing assembly is adapted to connect the marine riser to the BOP stack. Pursuant to a safing sequence, the well tubular is secured in the upper and lower safing assemblies and the tubular is then sheared between the locations at which it has been secured. Subsequently, an ejection device is actuated to physically separate the upper safing assembly and connected marine riser from the lower safing assembly that is connected to the BOP stack.
E21B 29/12 - Cutting or destroying pipes, packers, plugs or wire lines, located in boreholes or wells, e.g. cutting of damaged pipes, of windowsDeforming of pipes in boreholes or wellsReconditioning of well casings while in the ground specially adapted for underwater installations
A subsea well safing method and apparatus adapted to secure a subsea well in the event of a perceived blowout in a manner to mitigate the environmental damage and the physical damage to the subsea wellhead equipment to promote the ability to reconnect and recover control of the well. The safing assembly is adapted to connect the marine riser to the BOP stack. Pursuant to a safing sequence, the well tubular is secured in the upper and lower safing assemblies and the tubular is then sheared between the locations at which it as been secured. Subsequently, an ejection device is actuated to physically separate the upper safing assembly and connected marine riser from the lower safing assembly that is connected to the BOP stack.
E21B 29/12 - Cutting or destroying pipes, packers, plugs or wire lines, located in boreholes or wells, e.g. cutting of damaged pipes, of windowsDeforming of pipes in boreholes or wellsReconditioning of well casings while in the ground specially adapted for underwater installations
09 - Scientific and electric apparatus and instruments
41 - Education, entertainment, sporting and cultural services
42 - Scientific, technological and industrial services, research and design
Goods & Services
computer software, namely, training modules in the fields of regulatory standards compliance, industrial operations, manufacturing, construction, engineering, environmental, occupational health, safety, fire protection, business administration, human resources, accounting, and retail sales, and printed instructional materials sold as a unit Development and dissemination of training and instructional materials of others based on the customer's processes, written procedures, manuals and existing courseware custom software design, namely, creating computer-based training software
09 - Scientific and electric apparatus and instruments
41 - Education, entertainment, sporting and cultural services
42 - Scientific, technological and industrial services, research and design
Goods & Services
computer software, namely, training modules in the fields of regulatory standards compliance, industrial operations, manufacturing, construction, engineering, environmental, occupational health, safety, fire protection, business administration, human resources, accounting, and retail sales, and printed instructional materials sold as a unit Development and dissemination of training and instructional materials of others based on the customer's processes, written procedures, manuals and existing courseware custom software design, namely, creating computer-based training software
A liquid propellant driven hydraulic pressure supply device may include an elongated body having an internal bore extending from a power end to a discharge end having a discharge port, a hydraulic fluid disposed in the bore between a piston and the discharge end and a liquid propellant gas generator connected to the power end.
E21B 23/04 - Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells operated by fluid means, e.g. actuated by explosion
E21B 23/08 - Introducing or running tools by fluid pressure, e.g. through-the-flow-line tool systems
A pressure supply device in accordance to one or more aspects includes an elongated body having an internal bore extending from a power end to a discharge end having a discharge port, two or more gas generators connected to the power end and a hydraulic fluid disposed in the bore between a piston and the discharge end. The ignition of one of the gas generators drives the piston to exhaust a partial volume of the hydraulic fluid that is less than the total operational volume of the hydraulic fluid under pressure to operate ate a connected device.
An exemplary method includes using a pressure supply device (PSD) to actuate a hydraulic customer includes activating, when in the first position, a first gas generator of the multiple gas generators thereby driving the piston to the second position, pressurizing the hydraulic fluid, and discharging the pressurized hydraulic fluid to the customer; actuating the customer in response to receiving the pressurized hydraulic fluid; resetting the piston to first position by transferring a resetting hydraulic fluid into the reservoir; and exhausting gas and condensate from the gas chamber in response to resetting the piston to the first position.
An exemplary hybrid accumulator includes a piston slidably disposed in a cylinder and separating a reservoir from a pressure chamber, in use, a hydraulic fluid disposed in the reservoir and a spring disposed in the pressure chamber to act on the piston and pre-charge the hydraulic fluid to a first pressure, and a heating element in communication with the pressure chamber to increase pressure in the pressure chamber when the heating element is initiated.
A pyrotechnic pressure accumulator includes an elongated body extending from a first end of a pyrotechnic section to a discharge end of a hydraulic section. A propellant charge located in a gas chamber of the pyrotechnic section, a piston movably disposed the hydraulic section, and a fluid disposed in a hydraulic chamber between the piston and the discharge end, wherein the fluid is exhausted under pressure through a discharge port in response to ignition of the propellant charge.
B63C 11/52 - Tools specially adapted for working underwater, not otherwise provided for
E21B 34/14 - Valve arrangements for boreholes or wells in wells operated by movement of tools, e.g. sleeve valves operated by pistons or wire line tools
F15B 1/027 - Installations or systems with accumulators having accumulator charging devices
F42B 12/36 - Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect for dispensing materialsProjectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect for producing chemical or physical reactionProjectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect for signalling