Methods to fabricate objects by 3D printing of poly-4-hydroxybutyrate (P4HIB) and copolymers thereof have been developed. In one method, these objects are produced by continuous fused filament fabrication using an apparatus and conditions that overcome the problems of poor feeding of the filament resulting from the low softening temperature of the filament and heat creep along the fed filament. Methods using an apparatus including a heat sink, a melt tube, a heating block and nozzle, and a transition zone between the heat sink and heating block, with the melt tube extending through the heat sink, transition zone, and heat block to the nozzle are disclosed. 3D objects are also printed by fused pellet deposition (FPD), melt extrusion deposition (MED), selective laser melting (SLM), printing of slurries and solutions using a coagulation bath, and printing using a binding solution and polymer granules.
B29C 64/118 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
A61L 29/06 - Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
Absorbable implants for breast surgery that conform to the breast parenchyma and surrounding chest wall have been developed. These implants support newly lifted breast parenchyma, and/or a breast implant. The implants have mechanical properties sufficient to support a reconstructed breast, and allow the in-growth of tissue into the implant as it degrades. The implants have a strength retention profile allowing the support of the breast to be transitioned from the implant to regenerated host tissue, without significant loss of support. Three-dimensional implants for use in minimally invasive mastopexy/breast reconstruction procedures are also described, that confer shape to a patient's breast. These implants are self-reinforced, can be temporarily deformed, implanted in a suitably dissected tissue plane, and resume their preformed three-dimensional shape. The implants are preferably made from poly-4-hydroxybutyrate (P4HB) and copolymers thereof. The implants have suture pullout strengths that can resist the mechanical loads exerted on the reconstructed breast.
A61F 2/00 - Filters implantable into blood vesselsProstheses, i.e. artificial substitutes or replacements for parts of the bodyAppliances for connecting them with the bodyDevices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
D04H 1/728 - Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
Absorbable implants can be used to create volume and shape in the breast of a patient with regenerated tissue. The implants comprise scaffolds formed from layers of parallel filaments. The layers of filaments can be stacked and bonded together to form scaffolds with porous crisscross arrangements of filaments. The implant's scaffolds may be coated or filled with cells and tissues, including autologous fat graft, and/or a vascular pedicle may be inserted into the implant. The implants are particularly suitable for use in plastic surgery procedures, for example, to regenerate or augment breast tissue following mastectomy or in mastopexy procedures, and can provide an alternative to the use of permanent breast implants in these procedures.
Resorbable implants, coverings and receptacles comprising poly(butylene succinate) and copolymers thereof have been developed. The implants are preferably sterilized, and contain less than 20 endotoxin units per device as determined by the limulus amebocyte lysate (LAL) assay, and are particularly suitable for use in procedures where prolonged strength retention is necessary, and can include one or more bioactive agents. The implants may be made from fibers and meshes of poly(butylene succinate) and copolymers thereof, or by 3d printing molding, pultrusion or other melt or solvent processing method. The implants, or the fibers preset therein, may be oriented. These coverings and receptacles may be used to hold, or partially/fully cover, devices such as pacemakers and neurostimulators. The coverings, receptacles and implants described herein, may be made from meshes, webs, lattices, non-wovens, films, fibers, foams, molded, pultruded, machined and 3D printed forms.
A61L 31/06 - Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
A61B 17/00 - Surgical instruments, devices or methods
A61B 17/04 - Surgical instruments, devices or methods for closing wounds or holding wounds closedAccessories for use therewith for suturing woundsHolders or packages for needles or suture materials
A61B 17/72 - Intramedullary devices, e.g. pins or nails
A61F 2/00 - Filters implantable into blood vesselsProstheses, i.e. artificial substitutes or replacements for parts of the bodyAppliances for connecting them with the bodyDevices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
D04B 1/16 - Other fabrics or articles characterised primarily by the use of particular thread materials synthetic threads
D04B 1/22 - Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machinesFabrics or articles defined by such processes specially adapted for knitting goods of particular configuration
Mastopexy implants for lifting the breast of a patient create new tissue planes in the breast that provide a more durable lift, and are particularly useful in lifting breasts with a high content of fatty tissue. The implants can be implanted through stab incisions using blunt dissection, and reduce operating time, and provide an improved aesthetic appearance with minimal scar formation. The implants are designed to be transitory, and have sufficient strength retention to allow the new tissue planes to form and support the lifted breast without any significant loss of support during this regenerative period.
A61F 2/00 - Filters implantable into blood vesselsProstheses, i.e. artificial substitutes or replacements for parts of the bodyAppliances for connecting them with the bodyDevices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
Absorbable implants can be used to reconstruct the nipple with regenerated tissue resulting in improved aesthetic satisfaction. The implants are particularly suitable for use in plastic surgery procedures, for example, to reconstruct the nipple following total mastectomy and breast reconstruction. The implants may be formed from absorbable mesh and/or dry spun sheet.
A61F 2/00 - Filters implantable into blood vesselsProstheses, i.e. artificial substitutes or replacements for parts of the bodyAppliances for connecting them with the bodyDevices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
A61L 27/18 - Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
Absorbable 3D printed implants can be used to reconstruct the nipple with regenerated tissue resulting in improved aesthetic satisfaction. The implants are formed from parallel planes of filaments that are offset and bonded to each other to form macroporous networks (130) with open cell structures comprising cylindrical shapes. The macroporous network (130) may be enclosed by a shell (120) or coating, or may be at least partly filled with a hydrogel. The implants are particularly suitable for use in plastic surgery procedures, for example, to reconstruct the nipple following total mastectomy and breast reconstruction.
A61F 2/00 - Filters implantable into blood vesselsProstheses, i.e. artificial substitutes or replacements for parts of the bodyAppliances for connecting them with the bodyDevices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
9.
IMPLANTS ASSEMBLED FROM SKELETAL POLYHEDRON UNIT CELLS, COILED UNIT CELLS OR MESH UNIT CELLS
Absorbable implants can be used to create volume and shape in soft tissues with regenerated tissue. The implants comprise lattices formed from multiple unit cells. Unit cells can be coils or springs, skeletal polyhedrons, foams, or structures derived from mesh and fiber. The implants may be coated or filled with cells and tissues, and preferably with autologous fat graft. The implants are particularly suitable for use in plastic surgery procedures, for example, to regenerate or augment breast tissue following mastectomy or in mastopexy procedures, and can provide an alternative to the use of permanent breast implants in these procedures.
A61F 2/00 - Filters implantable into blood vesselsProstheses, i.e. artificial substitutes or replacements for parts of the bodyAppliances for connecting them with the bodyDevices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
A61L 27/36 - Materials for prostheses or for coating prostheses containing ingredients of undetermined constitution or reaction products thereof
Absorbable implants can be used to create volume and shape in the breast of a patient with regenerated tissue. The implants are transient comprising a reinforced matrix comprising a load bearing absorbable macroporous network with an open pore structure, at least partially filled with one or more degradable hydrogels or water-soluble polymers that degrade progressively, from the surface of the implant towards the core of the implant, and direct tissue ingrowth in the same direction. The hydrogels and water-soluble polymers help prevent fluid accumulation in the implant prior to tissue ingrowth. The macroporous networks are absorbed after tissue ingrowth has occurred, and a load bearing support is no longer necessary. The implants are particularly suitable for use in plastic surgery procedures, for example, to regenerate or augment breast tissue following mastectomy or in mastopexy procedures, and can provide an alternative to the use of permanent breast implants in these procedures.
Methods to fabricate objects by 3D printing of poly-4-hydroxybutyrate (P4HB) and copolymers thereof have been developed. In one method, these objects are produced by continuous fused filament fabrication using an apparatus and conditions that overcome the problems of poor feeding of the filament resulting from the low softening temperature of the filament and heat creep along the fed filament. Methods using an apparatus including a heat sink, a melt tube, a heating block and nozzle, and a transition zone between the heat sink and heating block, with the melt tube extending through the heat sink, transition zone, and heat block to the nozzle are disclosed. 3D objects are also printed by fused pellet deposition (FPD), melt extrusion deposition (MED), selective laser melting (SLM), printing of slurries and solutions using a coagulation bath, and printing using a binding solution and polymer granules.
A61L 29/06 - Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
B29C 64/118 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
Implants with fillable reservoirs have been developed that are suitable for rhinoplasty, breast reconstruction, ear reconstruction, and replacement, reconstruction or repair of other soft tissues. The implants can be filled with graft material prior to implantation. The implants are preferably made from resorbable polymers, can be tailored to provide different geometries, mechanical properties and resorption rates in order to provide more consistent surgical outcomes. The implants preferably have an interconnected network of unit cells with microporous outer layers and optionally some or all of the unit cells having at least one macropore in their outer layers. The implants can be loaded by injection with microfat, collagen, DCF, cells, bioactive agents, and other augmentation materials, prior to implantation.
A61F 2/18 - Internal ear or nose parts, e.g. ear-drums
A61F 2/00 - Filters implantable into blood vesselsProstheses, i.e. artificial substitutes or replacements for parts of the bodyAppliances for connecting them with the bodyDevices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
A61L 27/54 - Biologically active materials, e.g. therapeutic substances
A61L 27/58 - Materials at least partially resorbable by the body
Compositions of P4HB with high purity have been developed. The compositions are prepared by washing P4HB biomass prior to solvent extraction, and precipitating P4HB from solution. The same solvent is preferably used to wash the P4HB biomass, and as a non-solvent to precipitate the polymer from a P4HB solvent solution. The highly pure P4HB compositions are suitable for preparing implants. The implants may be used for the repair of soft and hard tissues.
C08G 63/06 - Polyesters derived from hydroxy carboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxy carboxylic acids
Resorbable multifilament yarns and monofilament fibers including poly-4-hydroxybutyrate and copolymers thereof with high tenacity or high tensile strength have been developed. The yarns and fibers are produced by cold drawirg the multifilament, yarns and monofilament fibers before hot drawing the yarns and fibers under tension at temperatures above the melt temperature of the polymer or copolymer. These yarns and fibers have prolonged strength retention in vivo making them suitable for soft tissue repairs where high strength and strength retention is required. The multifilament yarns have tenacities higher than 8.1 grams per denier, and in vivo, retain at least 65% of their initial strength at 2 weeks. The monofilament fibers retain at least 50% of their initial strength at 4 weeks in vivo. The monofilament fibers have tensile strengths higher than 500 MPa. These yarns and fibers may be used to make various medical devices for various applications.
D01F 6/62 - Monocomponent man-made filaments or the like of synthetic polymersManufacture thereof from homopolycondensation products from polyesters
A61L 17/10 - At least partly resorbable materials containing macromolecular materials
A61L 31/06 - Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
A61L 31/14 - Materials characterised by their function or physical properties
B29C 55/00 - Shaping by stretching, e.g. drawing through a dieApparatus therefor
D01F 8/14 - Conjugated, i.e. bi- or multicomponent, man-made filaments or the likeManufacture thereof from synthetic polymers with at least one polyester as constituent
Described herein are breast implant fixation devices for use in breast reconstruction and breast augmentation. Novel wraps are designed to avert lateral displacement and bottoming out of breast implants, reduce capsular contraction and implant extrusion, eliminate skin indentations and ripples caused by breast implants, and reduce or eliminate palpability. The wraps are adapted to securely fold around the breast implants, limiting relative movement between the wrap and breast implant and reducing wrinkles. Tissue in-growth into the wraps limits movement of the wrap-breast implant assembly and thereby limits movement of the breast implant.
A61F 2/00 - Filters implantable into blood vesselsProstheses, i.e. artificial substitutes or replacements for parts of the bodyAppliances for connecting them with the bodyDevices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
A mastopexy implant for maintaining the breast in an elevated and aesthetically pleasing position includes a lower pole support comprising end portions which may be affixed to the chest wall or to a previously installed upper suspension strut. The implant is loaded in an insertion device. The insertion device is inserted through a small incision and into a subcutaneous pocket created in an inferior half of the breast. The lower pole support may have various constructs and in one embodiment includes a unitary conformable mesh having a plurality of arm or band members which are attached across the breast parenchyma and to the chest wall.
A61L 31/14 - Materials characterised by their function or physical properties
A61F 2/00 - Filters implantable into blood vesselsProstheses, i.e. artificial substitutes or replacements for parts of the bodyAppliances for connecting them with the bodyDevices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
A61B 18/00 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
A61L 31/06 - Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
17.
HERNIA REPAIR, BREAST RECONSTRUCTION AND SLING DEVICES CONTAINING POLY(BUTYLENE SUCCINATE) AND COPOLYMERS THEREOF
Resorbable implants comprising poly(butylene succinate) and copolymers thereof have been developed. The implants implants are preferably sterilized, and contain less than 20 endotoxin units per device as determined by the limulus amebocyte lysate (LAL) assay, and are particularly suitable for use in procedures where prolonged strength retention is necessary, and can include one or more bioactive agents. The implants may be made from fibers and meshes of poly(butylene succinate) and copolymers thereof, or by 3d printing, and the fibers may be oriented. Coverings and receptacles made from forms of poly(butylene succinate) and copolymers thereof have also been developed for use with cardiac rhythm management devices and other implantable devices. These coverings and receptacles may be used to hold, or partially/fully cover, devices such as pacemakers and neurostimulators. The coverings and receptacles are made from meshes, webs, lattices, non-wovens, films, fibers, and foams, and contain antibiotics such as rifampin and minocycline.
A61L 27/18 - Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
A61F 2/00 - Filters implantable into blood vesselsProstheses, i.e. artificial substitutes or replacements for parts of the bodyAppliances for connecting them with the bodyDevices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
C08L 65/00 - Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chainCompositions of derivatives of such polymers
C08L 67/00 - Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chainCompositions of derivatives of such polymers
18.
MEDICAL DEVICES TO LIMIT MOVEMENT OF BREAST IMPLANTS
Breast fixation devices for use in breast reconstruction and breast augmentation limit the rotation or movement of breast implants after implantation that results in an unnatural appearance of the breast. The breast fixation devices can include a thin-walled enclosure in the shape of a pouch. A breast implant is secured inside the pouch to limit movement by applying compression to the breast implants, or using a mating or interlocking mechanism between the pouch and breast implant. The pouches containing the breast implants are implanted in the breast. Tissue in-growth into the pouch limits movement of the pouch-breast implant assembly and thereby limits rotation, migration, and displacement of the breast implant. The pouches preferably comprise poly-4-hydroxybutyrate or copolymer thereof.
Mastopexy implants for lifting the breast of a patient create new tissue planes in the breast that provide a more durable lift, and are particularly useful in lifting breasts with a high content of fatty tissue. The implants can be implanted through stab incisions using blunt dissection, and reduce operating time, and provide an improved aesthetic appearance with minimal scar formation. The implants are designed to be transitory, and have sufficient strength retention to allow the new tissue planes to form and support the lifted breast without any significant loss of support during this regenerative period.
A61F 2/00 - Filters implantable into blood vesselsProstheses, i.e. artificial substitutes or replacements for parts of the bodyAppliances for connecting them with the bodyDevices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
20.
Methods for 3D printing of poly-4-hydroxybutyrate and copolymers
Methods to fabricate objects by 3D printing of poly-4-hydroxybutyrate (P4HB) and copolymers thereof have been developed. In one method, these objects are produced by continuous fused filament fabrication using an apparatus and conditions that overcome the problems of poor feeding of the filament resulting from the low softening temperature of the filament and heat creep along the fed filament. Methods using an apparatus including a heat sink, a melt tube, a heating block and nozzle, and a transition zone between the heat sink and heating block, with the melt tube extending through the heat sink, transition zone, and heat block to the nozzle are disclosed. 3D objects are also printed by fused pellet deposition (FPD), melt extrusion deposition (MED), selective laser melting (SLM), printing of slurries and solutions using a coagulation bath, and printing using a binding solution and polymer granules.
B33Y 70/00 - Materials specially adapted for additive manufacturing
B29C 64/118 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
Nonwoven resorbable pouches that at least partially enclose implantable medical devices and improved methods for producing the implantable medical device pouches are described. The nonwoven pouches may comprise one or more drugs. Implantable medical devices that are placed in the pouches prior to implantation are prevented from migrating from the site of implantation by tissue ingrowth into the pouch. Antibiotics may be incorporated into the pouches to prevent post-operative infections. The pouches may be formed in fewer steps than conventional pouches, and without polymer coatings. Nonwoven pouches can be formed in one step by dry spinning instead of using multiple processing steps. In embodiments, the nonwoven pouches are smoother on the inside than the outside to tightly fit the implantable medical devices internally while encouraging external tissue ingrowth. In embodiments, the nonwoven pouches eliminate the use of knitted or woven multifilament fibers that can trap bacteria and result in post-operative infection.
Expandable absorbable implants have been developed that are suitable for breast reconstruction following mastectomy. The implants can be implanted in the vicinity of a tissue expander, for example, by suturing to the detached edge of the pectoralis major muscle to function as a pectoralis extender, and used to form a sling for a tissue expander. The implants, which permit tissue-ingrowth and slowly degrade, can be expanded in the breast using a tissue expander in order to form a pocket for a permanent breast implant. After expansion, the tissue expander can be removed and replaced with a permanent breast implant. The expandable implants help reduce patient discomfort resulting from tissue expansion, and avoid the need to use allografts or xenografts to create the pocket for the tissue expander. The expandable absorbable implant preferably comprises poly-4-hydroxybutyrate or copolymer thereof.
A61F 2/00 - Filters implantable into blood vesselsProstheses, i.e. artificial substitutes or replacements for parts of the bodyAppliances for connecting them with the bodyDevices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
A61L 27/54 - Biologically active materials, e.g. therapeutic substances
A61B 90/00 - Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups , e.g. for luxation treatment or for protecting wound edges
Implantable fiducial marker devices with a predefined shape can deform when stress is applied in vivo, and recover their shape when stress is removed reduce patient discomfort and palpability. The devices can be used to mold irregular tumor resection cavities into a more ideal shape for radiation therapy allowing more accurate treatment. After treatment, the devices resorb eliminating unnecessary testing that occurs when clinicians are unaware of implanted fiducial marker devices. Tissue ingrowth into the devices can also result in improved cosmetic outcomes when the devices are implanted in the breast after a lumpectomy. The devices preferably comprise poly-4-hydroxybutyrate or poly(butylene succinate) or copolymers thereof.
A61B 90/00 - Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups , e.g. for luxation treatment or for protecting wound edges
Implants with fillable reservoirs have been developed that are suitable for rhinoplasty, breast reconstruction, ear reconstruction, and replacement, reconstruction or repair of other soft tissues. The implants can be filled with graft material prior to implantation. The implants are preferably made from resorbable polymers, can be tailored to provide different geometries, mechanical properties and resorption rates in order to provide more consistent surgical outcomes. The implants preferably have an interconnected network of unit cells with microporous outer layers and optionally some or all of the unit cells having at least one macropore in their outer layers. The implants can be loaded by injection with microfat, collagen, DCF, cells, bioactive agents, and other augmentation materials, prior to implantation.
A61F 2/18 - Internal ear or nose parts, e.g. ear-drums
A61F 2/00 - Filters implantable into blood vesselsProstheses, i.e. artificial substitutes or replacements for parts of the bodyAppliances for connecting them with the bodyDevices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
A61L 27/54 - Biologically active materials, e.g. therapeutic substances
A61L 27/58 - Materials at least partially resorbable by the body
Absorbable implants for breast surgery that conform to the breast parenchyma and surrounding chest wall have been developed. These implants support newly lifted breast parenchyma, and/or a breast implant. The implants have mechanical properties sufficient to support a reconstructed breast, and allow the in-growth of tissue into the implant as it degrades. The implants have a strength retention profile allowing the support of the breast to be transitioned from the implant to regenerated host tissue, without significant loss of support. Three-dimensional implants for use in minimally invasive mastopexy/breast reconstruction procedures are also described, that confer shape to a patient's breast. These implants are self-reinforced, can be temporarily deformed, implanted in a suitably dissected tissue plane, and resume their preformed three-dimensional shape. The implants are preferably made from poly-4-hydroxybutyrate (P4HB) and copolymers thereof. The implants have suture pullout strengths that can resist the mechanical loads exerted on the reconstructed breast.
A61F 2/00 - Filters implantable into blood vesselsProstheses, i.e. artificial substitutes or replacements for parts of the bodyAppliances for connecting them with the bodyDevices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
B29C 48/25 - Component parts, details or accessoriesAuxiliary operations
D04H 1/728 - Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
Absorbable implants can be used to reconstruct the nipple with regenerated tissue resulting in improved aesthetic satisfaction. The implants are particularly suitable for use in plastic surgery procedures, for example, to reconstruct the nipple following total mastectomy and breast reconstruction. The implants may be formed from absorbable mesh and/or dry spun sheet.
A61F 2/00 - Filters implantable into blood vesselsProstheses, i.e. artificial substitutes or replacements for parts of the bodyAppliances for connecting them with the bodyDevices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
Absorbable 3D printed implants can be used to reconstruct the nipple with regenerated tissue resulting in improved aesthetic satisfaction. The implants are formed from parallel planes of filaments that are offset and bonded to each other to form macroporous networks (130) with open cell structures comprising cylindrical shapes. The macroporous network (130) may be enclosed by a shell (120) or coating, or may be at least partly filled with a hydrogel. The implants are particularly suitable for use in plastic surgery procedures, for example, to reconstruct the nipple following total mastectomy and breast reconstruction.
A61F 2/00 - Filters implantable into blood vesselsProstheses, i.e. artificial substitutes or replacements for parts of the bodyAppliances for connecting them with the bodyDevices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
Absorbable monofilament fibers and self-retaining sutures with high tensile strengths have been developed. The straight pull tensile strengths of the absorbable self-retaining sutures closely approximate, equal or exceed the average minimum knot-pull tensile standards set by the United States Pharmacopeia (USP). These higher strength absorbable self-retaining sutures can therefore be used either without needing to oversize the suture for a given procedure, or by oversizing the self-retaining suture by no more than 0.1 mm in diameter. In one embodiment, the absorbable self-retaining sutures are made from poly-4-hydroxybutyrate or copolymers thereof.
Absorbable implants can be used to create volume and shape in the breast of a patient with regenerated tissue. The implants are transient comprising a reinforced matrix comprising a load bearing absorbable macroporous network with an open pore structure, at least partially filled with one or more degradable hydrogels or water-soluble polymers that degrade progressively, from the surface of the implant towards the core of the implant, and direct tissue ingrowth in the same direction. The hydrogels and water-soluble polymers help prevent fluid accumulation in the implant prior to tissue ingrowth. The macroporous networks are absorbed after tissue ingrowth has occurred, and a load bearing support is no longer necessary. The implants are particularly suitable for use in plastic surgery procedures, for example, to regenerate or augment breast tissue following mastectomy or in mastopexy procedures, and can provide an alternative to the use of permanent breast implants in these procedures.
Methods to fabricate objects by 3D printing of poly-4-hydroxybutyrate (P4HB) and copolymers thereof have been developed. In one method, these objects are produced by continuous fused filament fabrication using an apparatus and conditions that overcome the problems of poor feeding of the filament resulting from the low softening temperature of the filament and heat creep along the fed filament. Methods using an apparatus including a heat sink, a melt tube, a heating block and nozzle, and a transition zone between the heat sink and heating block, with the melt tube extending through the heat sink, transition zone, and heat block to the nozzle are disclosed. 3D objects are also printed by fused pellet deposition (FPD), melt extrusion deposition (MED), selective laser melting (SLM), printing of slurries and solutions using a coagulation bath, and printing using a binding solution and polymer granules.
B29C 64/118 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
B33Y 70/00 - Materials specially adapted for additive manufacturing
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
Absorbable implants can be used to create volume and shape in the breast of a patient with regenerated tissue. The implants comprise scaffolds formed from layers of parallel filaments. The layers of filaments can be stacked and bonded together to form scaffolds with porous crisscross arrangements of filaments. The implant's scaffolds may be coated or filled with cells and tissues, including autologous fat graft, and/or a vascular pedicle may be inserted into the implant. The implants are particularly suitable for use in plastic surgery procedures, for example, to regenerate or augment breast tissue following mastectomy or in mastopexy procedures, and can provide an alternative to the use of permanent breast implants in these procedures.
Absorbable implants can be used to create volume and shape in the breast of a patient with regenerated tissue. The implants comprise scaffolds formed from layers of parallel filaments. The layers of filaments can be stacked and bonded together to form scaffolds with porous crisscross arrangements of filaments. The implant's scaffolds may be coated or filled with cells and tissues, including autologous fat graft, and/or a vascular pedicle may be inserted into the implant. The implants are particularly suitable for use in plastic surgery procedures, for example, to regenerate or augment breast tissue following mastectomy or in mastopexy procedures, and can provide an alternative to the use of permanent breast implants in these procedures.
Mastopexy implants for lifting the breast of a patient create new tissue planes in the breast that provide a more durable lift, and are particularly useful in lifting breasts with a high content of fatty tissue. The implants can be implanted through stab incisions using blunt dissection, and reduce operating time, and provide an improved aesthetic appearance with minimal scar formation. The implants are designed to be transitory, and have sufficient strength retention to allow the new tissue planes to form and support the lifted breast without any significant loss of support during this regenerative period.
Resorbable implants comprising poly(butylene succinate) and copolymers thereof have been developed. The implants are preferably sterilized, and contain less than 20 endotoxin units per device as determined by the limulus amebocyte lysate (LAL) assay, and are particularly suitable for use in procedures where prolonged strength retention is necessary, and can include one or more bioactive agents. The implants may be made from fibers and meshes of poly(butylene succinate) and copolymers thereof, or by 3d printing, and the fibers may be oriented. Coverings and receptacles made from forms of poly(butylene succinate) and copolymers thereof have also been developed for use with cardiac rhythm management devices and other implantable devices. These coverings and receptacles may be used to hold, or partially/fully cover, devices such as pacemakers and neurostimulators. The coverings and receptacles are made from meshes, webs, lattices, non-wovens, films, fibers, and foams, and contain antibiotics such as rifampin and minocycline.
A61L 27/18 - Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
A61F 2/00 - Filters implantable into blood vesselsProstheses, i.e. artificial substitutes or replacements for parts of the bodyAppliances for connecting them with the bodyDevices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
C08L 65/00 - Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chainCompositions of derivatives of such polymers
C08L 67/00 - Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chainCompositions of derivatives of such polymers
39.
Closed cell foams including poly-4-hydroxybutyrate and copolymers thereof
3, without substantial loss of the polymer's weight average molecular weight, have been developed. The closed cells foams have an open cell content of generally less than 50%, and more preferably an open cell content of less than 20%, and the cells have a maximum diameter of less than 5 mm. The foam may include poly-4-hydroxybutyrate or a copolymer thereof. Preferably, the foam is derived by heating a foam polymer formula to a temperature above the melt temperature of the polymer to form a melt polymer system, adding a blowing agent to produce a foamable melt, extruding the foamable melt through a die to a lower pressure to cause foaming, cooling of the foam, and solidification of the foam. These foam structures can be used for fabrication of medical products.
C08J 9/12 - Working-up of macromolecular substances to porous or cellular articles or materialsAfter-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
A61K 47/34 - Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
A61L 15/26 - Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bondsDerivatives thereof
A61L 15/42 - Use of materials characterised by their function or physical properties
A61L 26/00 - Chemical aspects of, or use of materials for, liquid bandages
A61L 27/18 - Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
A61L 31/06 - Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
A61L 31/14 - Materials characterised by their function or physical properties
C08G 63/06 - Polyesters derived from hydroxy carboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxy carboxylic acids
C08L 67/04 - Polyesters derived from hydroxy carboxylic acids, e.g. lactones
Methods to produce laminates including layers of constructs made from P4HB and copolymers thereof have been developed. These laminates may be used as medical implants, or further processed to make medical implants. The laminates are produced at a temperature equal to or greater than the softening points of the P4HB or copolymers thereof. The layers may include oriented forms of the constructs. Orientation can be preserved during lamination so that the laminate is also oriented, when the laminates are formed at temperatures less than the de-orientation temperatures of the layers. The laminate layers may include, for example, films, textiles, including woven, knitted, braided and non-woven textiles, foams, thermoforms, and fibers. The laminates preferably include one or more oriented P4HB films.
A61L 31/06 - Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
A61L 27/18 - Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
A61L 31/14 - Materials characterised by their function or physical properties
A61L 31/16 - Biologically active materials, e.g. therapeutic substances
B29C 43/28 - Compression moulding, i.e. applying external pressure to flow the moulding materialApparatus therefor of articles of indefinite length incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
C08G 63/06 - Polyesters derived from hydroxy carboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxy carboxylic acids
41.
VACUUM MEMBRANE THERMOFORMED POLY-4-HYDROXYBUTYRATE MEDICAL IMPLANTS
Methods to produce thermoformed implants comprising poly-4-hydroxybutyrate homopolymer, copolymer, or blend thereof, including surgical meshes, have been developed. These thermoforms are preferably produced from porous substrates of poly-4-hydroxybutyrate homopolymer or copolymer thereof, such as surgical meshes, by vacuum membrane thermoforming. The porous thermoformed implant is formed by placing a porous substrate of poly-4-hydroxybutyrate homopolymer or copolymer thereof over a mold, covering the substrate and mold with a membrane, applying a vacuum to the membrane so that the membrane and substrate are drawn down on the mold and tension is applied to the substrate, and heating the substrate while it is under tension to form the thermoform. The method is particularly useful in forming medical implants of poly-4-hydroxybutyrate and copolymers thereof, including hernia meshes, mastopexy devices, breast reconstruction devices, and implants for plastic surgery, without exposing the resorbable implants to water and without shrinking the porous substrate during molding.
A61L 15/26 - Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bondsDerivatives thereof
A61L 27/18 - Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
A61L 27/54 - Biologically active materials, e.g. therapeutic substances
A61L 31/16 - Biologically active materials, e.g. therapeutic substances
A61L 27/48 - Composite materials, i.e. layered or containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with macromolecular fillers
B29C 51/00 - Shaping by thermoforming, e.g. shaping sheets in matched moulds or by deep-drawingApparatus therefor
A61L 29/12 - Composite materials, i.e. layered or containing one material dispersed in a matrix of the same or different material
A61L 31/06 - Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
A61L 31/12 - Composite materials, i.e. layered or containing one material dispersed in a matrix of the same or different material
Full contour absorbable implants for breast surgery redistribute breast volume between the breast's upper and lower poles in exact and desirable ratios. The implants preferably redistribute breast volume so that the upper pole breast volume is 20-40% of the total volume, and the lower pole breast volume is 60-80% of the total volume. The implants are also designed to provide specific curvatures to the poles of the breast, and to angulate the nipple areolar complex slightly skyward so that the patient's nipple is positioned at an angle above the nipple meridian reference line. The implants are designed to be transitory, with sufficient strength retention to allow transition from support of the breast by the implant to support by regenerated host tissue growing in and around the implants, without any significant loss of support during or subsequent to remodeling. The implants may optionally be used with permanent breast implants.
A61F 2/00 - Filters implantable into blood vesselsProstheses, i.e. artificial substitutes or replacements for parts of the bodyAppliances for connecting them with the bodyDevices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
Full contour absorbable implants for breast surgery redistribute breast volume between the breast's upper and lower poles in exact and desirable ratios. The implants preferably redistribute breast volume so that the upper pole breast volume is 20-40% of the total volume, and the lower pole breast volume is 60-80% of the total volume. The implants are also designed to provide specific curvatures to the poles of the breast, and to angulate the nipple areolar complex slightly skyward so that the patient's nipple is positioned at an angle above the nipple meridian reference line. The implants are designed to be transitory, with sufficient strength retention to allow transition from support of the breast by the implant to support by regenerated host tissue growing in and around the implants, without any significant loss of support during or subsequent to remodeling. The implants may optionally be used with permanent breast implants.
A61F 2/00 - Filters implantable into blood vesselsProstheses, i.e. artificial substitutes or replacements for parts of the bodyAppliances for connecting them with the bodyDevices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
Mastopexy implants for lifting the breast of a patient create new tissue planes in the breast that provide a more durable lift, and are particularly useful in lifting breasts with a high content of fatty tissue. The implants can be implanted through stab incisions using blunt dissection, and reduce operating time, and provide an improved aesthetic appearance with minimal scar formation. The implants are designed to be transitory, and have sufficient strength retention to allow the new tissue planes to form and support the lifted breast without any significant loss of support during this regenerative period.
Implantable fiducial marker devices with a predefined shape can deform when stress is applied in vivo, and recover their shape when stress is removed reduce patient discomfort and palpability. The devices can be used to mold irregular tumor resection cavities into a more ideal shape for radiation therapy allowing more accurate treatment. After treatment, the devices resorb eliminating unnecessary testing that occurs when clinicians are unaware of implanted fiducial marker devices. Tissue ingrowth into the devices can also result in improved cosmetic outcomes when the devices are implanted in the breast after a lumpectomy. The devices preferably comprise poly-4-hydroxybutyrate or poly(butylene succinate) or copolymers thereof.
A61B 90/00 - Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups , e.g. for luxation treatment or for protecting wound edges
46.
Articles of poly(butylene succinate) and copolymers thereof
Resorbable implants, coverings and receptacles comprising poly(butylene succinate) and copolymers thereof have been developed. The implants are preferably sterilized, and contain less than 20 endotoxin units per device as determined by the limulus amebocyte lysate (LAL) assay, and are particularly suitable for use in procedures where prolonged strength retention is necessary, and can include one or more bioactive agents. The implants may be made from fibers and meshes of poly(butylene succinate) and copolymers thereof, or by 3d printing molding, pultrusion or other melt or solvent processing method. The implants, or the fibers preset therein, may be oriented. These coverings and receptacles may be used to hold, or partially/fully cover, devices such as pacemakers and neurostimulators. The coverings, receptacles and implants described herein, may be made from meshes, webs, lattices, non-wovens, films, fibers, foams, molded, pultruded, machined and 3D printed forms.
A61F 2/00 - Filters implantable into blood vesselsProstheses, i.e. artificial substitutes or replacements for parts of the bodyAppliances for connecting them with the bodyDevices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
A61L 17/10 - At least partly resorbable materials containing macromolecular materials
A61L 31/14 - Materials characterised by their function or physical properties
A61B 17/04 - Surgical instruments, devices or methods for closing wounds or holding wounds closedAccessories for use therewith for suturing woundsHolders or packages for needles or suture materials
D04B 1/22 - Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machinesFabrics or articles defined by such processes specially adapted for knitting goods of particular configuration
B29C 45/00 - Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mouldApparatus therefor
B33Y 80/00 - Products made by additive manufacturing
Devices to repair bone defects prevent the formation of depressions and palpable tissue at bone repair sites. The devices can be used to repair burr holes in the cranium, providing an improved cosmetic result that reduces or eliminates functional handicaps that can result from combing and hairdressing. The devices are secured in bone defects with filament elements, by expanding the device inside the bone defect, or by gluing. Tissue in-growth into the device regenerates bone at the defect site, and prevents the formation of depressions or palpable tissue. The devices preferably comprise a ceramic and poly-4-hydroxybutyrate or copolymer thereof, or a ceramic and poly(butylene succinate) or copolymer thereof.
Devices (200) to repair bone defects prevent the formation of depressions and palpable tissue at bone repair sites. The devices can be used to repair burr holes in the cranium, providing an improved cosmetic result that reduces or eliminates functional handicaps that can result from combing and hairdressing. The devices are secured in bone defects with filament elements (210), by expanding the device inside the bone defect, or by gluing. Tissue in-growth into the device regenerates bone at the defect site, and prevents the formation of depressions or palpable tissue. The devices preferably comprise a ceramic and poly-4-hydroxybutyrate or copolymer thereof, or a ceramic and poly (butylene succinate) or copolymer thereof.
Described herein are breast implant fixation devices for use in breast reconstruction and breast augmentation. Novel wraps are designed to avert lateral displacement and bottoming out of breast implants, reduce capsular contraction and implant extrusion, eliminate skin indentations and ripples caused by breast implants, and reduce or eliminate palpability. The wraps are adapted to securely fold around the breast implants, limiting relative movement between the wrap and breast implant and reducing wrinkles. Tissue in-growth into the wraps limits movement of the wrap-breast implant assembly and thereby limits movement of the breast implant.
Described herein are breast implant fixation devices for use in breast reconstruction and breast augmentation. Novel wraps are designed to avert lateral displacement and bottoming out of breast implants, reduce capsular contraction and implant extrusion, eliminate skin indentations and ripples caused by breast implants, and reduce or eliminate palpability. The wraps are adapted to securely fold around the breast implants, limiting relative movement between the wrap and breast implant and reducing wrinkles. Tissue in-growth into the wraps limits movement of the wrap-breast implant assembly and thereby limits movement of the breast implant.
A61F 2/00 - Filters implantable into blood vesselsProstheses, i.e. artificial substitutes or replacements for parts of the bodyAppliances for connecting them with the bodyDevices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
53.
MEDICAL DEVICES CONTAINING POLY(BUTYLENE SUCCINATE) AND COPOLYMERS THEREOF
Resorbable implants, coverings and receptacles comprising poly(butylene succinate) and copolymers thereof have been developed. The implants are preferably sterilized, and contain less than 20 endotoxin units per device as determined by the limulus amebocyte lysate (LAL) assay, and are particularly suitable for use in procedures where prolonged strength retention is necessary, and can include one or more bioactive agents. The implants may be made from fibers and meshes of poly(butylene succinate) and copolymers thereof, or by 3d printing molding, pultrusion or other melt or solvent processing method. The implants, or the fibers preset therein, may be oriented.. These coverings and receptacles may be used to hold, or partially/fully cover, devices such as pacemakers and neurostimulators. The coverings, receptacles and implants described herein, may be made from meshes, webs, lattices, non-wovens, films, fibers, foams, molded, pultruded, machined and 3D printed forms.
Resorbable implants, coverings and receptacles comprising poly(butylene succinate) and copolymers thereof have been developed. The implants are preferably sterilized, and contain less than 20 endotoxin units per device as determined by the limulus amebocyte lysate (LAL) assay, and are particularly suitable for use in procedures where prolonged strength retention is necessary, and can include one or more bioactive agents. The implants may be made from fibers and meshes of poly(butylene succinate) and copolymers thereof, or by 3d printing molding, pultrusion or other melt or solvent processing method. The implants, or the fibers preset therein, may be oriented. These coverings and receptacles may be used to hold, or partially/fully cover, devices such as pacemakers and neurostimulators. The coverings, receptacles and implants described herein, may be made from meshes, webs, lattices, non-wovens, films, fibers, foams, molded, pultruded, machined and 3D printed forms.
Resorbable implants, coverings and receptacles comprising poly(butylene succinate) and copolymers thereof have been developed. The implants are preferably sterilized, and contain less than 20 endotoxin units per device as determined by the limulus amebocyte lysate (LAL) assay, and are particularly suitable for use in procedures where prolonged strength retention is necessary, and can include one or more bioactive agents. The implants may be made from fibers and meshes of poly(butylene succinate) and copolymers thereof, or by 3d printing molding, pultrusion or other melt or solvent processing method. The implants, or the fibers preset therein, may be oriented. These coverings and receptacles may be used to hold, or partially/fully cover, devices such as pacemakers and neurostimulators. The coverings, receptacles and implants described herein, may be made from meshes, webs, lattices, non-wovens, films, fibers, foams, molded, pultruded, machined and 3D printed forms.
A61L 31/06 - Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
A61B 17/04 - Surgical instruments, devices or methods for closing wounds or holding wounds closedAccessories for use therewith for suturing woundsHolders or packages for needles or suture materials
A61B 17/72 - Intramedullary devices, e.g. pins or nails
A61F 2/00 - Filters implantable into blood vesselsProstheses, i.e. artificial substitutes or replacements for parts of the bodyAppliances for connecting them with the bodyDevices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
D04B 1/16 - Other fabrics or articles characterised primarily by the use of particular thread materials synthetic threads
D04B 1/22 - Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machinesFabrics or articles defined by such processes specially adapted for knitting goods of particular configuration
A61B 17/00 - Surgical instruments, devices or methods
B29K 67/00 - Use of polyesters as moulding material
B29K 105/00 - Condition, form or state of moulded material
Resorbable implants, coverings and receptacles comprising poly(butylene succinate) and copolymers thereof have been developed. The implants are preferably sterilized, and contain less than 20 endotoxin units per device as determined by the limulus amebocyte lysate (LAL) assay, and are particularly suitable for use in procedures where prolonged strength retention is necessary, and can include one or more bioactive agents. The implants may be made from fibers and meshes of poly(butylene succinate) and copolymers thereof, or by 3d printing molding, pultrusion or other melt or solvent processing method. The implants, or the fibers preset therein, may be oriented. These coverings and receptacles may be used to hold, or partially/fully cover, devices such as pacemakers and neurostimulators. The coverings, receptacles and implants described herein, may be made from meshes, webs, lattices, non-wovens, films, fibers, foams, molded, pultruded, machined and 3D printed forms.
A61F 2/00 - Filters implantable into blood vesselsProstheses, i.e. artificial substitutes or replacements for parts of the bodyAppliances for connecting them with the bodyDevices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
A61L 17/10 - At least partly resorbable materials containing macromolecular materials
A61L 31/14 - Materials characterised by their function or physical properties
A61B 17/04 - Surgical instruments, devices or methods for closing wounds or holding wounds closedAccessories for use therewith for suturing woundsHolders or packages for needles or suture materials
D04B 1/22 - Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machinesFabrics or articles defined by such processes specially adapted for knitting goods of particular configuration
B29C 45/00 - Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mouldApparatus therefor
B33Y 80/00 - Products made by additive manufacturing
Resorbable implants, coverings and receptacles comprising poly(butylene succinate) and copolymers thereof have been developed. The implants are preferably sterilized, and contain less than 20 endotoxin units per device as determined by the limulus amebocyte lysate (LAL) assay, and are particularly suitable for use in procedures where prolonged strength retention is necessary, and can include one or more bioactive agents. The implants may be made from fibers and meshes of poly(butylene succinate) and copolymers thereof, or by 3d printing molding, pultrusion or other melt or solvent processing method. The implants, or the fibers preset therein, may be oriented. These coverings and receptacles may be used to hold, or partially/fully cover, devices such as pacemakers and neurostimulators. The coverings, receptacles and implants described herein, may be made from meshes, webs, lattices, non-wovens, films, fibers, foams, molded, pultruded, machined and 3D printed forms.
A61F 2/00 - Filters implantable into blood vesselsProstheses, i.e. artificial substitutes or replacements for parts of the bodyAppliances for connecting them with the bodyDevices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
A61L 17/10 - At least partly resorbable materials containing macromolecular materials
A61L 31/14 - Materials characterised by their function or physical properties
A61B 17/04 - Surgical instruments, devices or methods for closing wounds or holding wounds closedAccessories for use therewith for suturing woundsHolders or packages for needles or suture materials
D04B 1/22 - Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machinesFabrics or articles defined by such processes specially adapted for knitting goods of particular configuration
B29C 45/00 - Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mouldApparatus therefor
B33Y 80/00 - Products made by additive manufacturing
Absorbable implants can be used to create volume and shape in soft tissues with regenerated tissue. The implants comprise lattices formed from multiple unit cells. Unit cells can be coils or springs, skeletal polyhedrons, foams, or structures derived from mesh and fiber. The implants may be coated or filled with cells and tissues, and preferably with autologous fat graft. The implants are particularly suitable for use in plastic surgery procedures, for example, to regenerate or augment breast tissue following mastectomy or in mastopexy procedures, and can provide an alternative to the use of permanent breast implants in these procedures.
Absorbable implants can be used to create volume and shape in soft tissues with regenerated tissue. The implants comprise lattices formed from multiple unit cells. Unit cells can be coils or springs, skeletal polyhedrons, foams, or structures derived from mesh and fiber. The implants may be coated or filled with cells and tissues, and preferably with autologous fat graft. The implants are particularly suitable for use in plastic surgery procedures, for example, to regenerate or augment breast tissue following mastectomy or in mastopexy procedures, and can provide an alternative to the use of permanent breast implants in these procedures.
A61F 2/00 - Filters implantable into blood vesselsProstheses, i.e. artificial substitutes or replacements for parts of the bodyAppliances for connecting them with the bodyDevices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
A61L 27/36 - Materials for prostheses or for coating prostheses containing ingredients of undetermined constitution or reaction products thereof
A mastopexy implant for maintaining the breast in an elevated and aesthetically pleasing position includes a lower pole support comprising end portions which may be affixed to the chest wall or to a previously installed upper suspension strut. The implant is loaded in an insertion device. The insertion device is inserted through a small incision and into a subcutaneous pocket created in an inferior half of the breast. The lower pole support may have various constructs and in one embodiment includes a unitary conformable mesh having a plurality of arm or band members which are attached across the breast parenchyma and to the chest wall.
A61L 31/14 - Materials characterised by their function or physical properties
A61F 2/00 - Filters implantable into blood vesselsProstheses, i.e. artificial substitutes or replacements for parts of the bodyAppliances for connecting them with the bodyDevices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
A61B 18/00 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
A61L 31/06 - Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
A61B 17/00 - Surgical instruments, devices or methods
A61B 90/00 - Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups , e.g. for luxation treatment or for protecting wound edges
Absorbable implants for breast surgery that conform to the breast parenchyma and surrounding chest wall have been developed. These implants support newly lifted breast parenchyma, and/or a breast implant. The implants have mechanical properties sufficient to support a reconstructed breast, and allow the in-growth of tissue into the implant as it degrades. The implants have a strength retention profile allowing the support of the breast to be transitioned from the implant to regenerated host tissue, without significant loss of support. Three-dimensional implants for use in minimally invasive mastopexy/breast reconstruction procedures are also described, that confer shape to a patient's breast. These implants are self-reinforced, can be temporarily deformed, implanted in a suitably dissected tissue plane, and resume their preformed three-dimensional shape. The implants are preferably made from poly-4-hydroxybutyrate (P4HB) and copolymers thereof. The implants have suture pullout strengths that can resist the mechanical loads exerted on the reconstructed breast.
A61F 2/00 - Filters implantable into blood vesselsProstheses, i.e. artificial substitutes or replacements for parts of the bodyAppliances for connecting them with the bodyDevices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
A61L 27/58 - Materials at least partially resorbable by the body
D04H 1/728 - Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
Nonwoven resorbable pouches that at least partially enclose implantable medical devices and improved methods for producing the implantable medical device pouches are described. The nonwoven pouches may comprise one or more drugs. Implantable medical devices that are placed in the pouches prior to implantation are prevented from migrating from the site of implantation by tissue ingrowth into the pouch. Antibiotics may be incorporated into the pouches to prevent post-operative infections. The pouches may be formed in fewer steps than conventional pouches, and without polymer coatings. Nonwoven pouches can be formed in one step by dry spinning instead of using multiple processing steps. In embodiments, the nonwoven pouches are smoother on the inside than the outside to tightly fit the implantable medical devices internally while encouraging external tissue ingrowth. In embodiments, the nonwoven pouches eliminate the use of knitted or woven multifilament fibers that can trap bacteria and result in post-operative infection.
A61K 31/00 - Medicinal preparations containing organic active ingredients
A61K 31/195 - Carboxylic acids, e.g. valproic acid having an amino group
A61K 31/496 - Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene or sparfloxacin
A61L 31/14 - Materials characterised by their function or physical properties
A61L 31/16 - Biologically active materials, e.g. therapeutic substances
A61B 17/00 - Surgical instruments, devices or methods
A61B 50/30 - Containers specially adapted for packaging, protecting, dispensing, collecting or disposing of surgical or diagnostic appliances or instruments
A61N 1/375 - Constructional arrangements, e.g. casings
67.
RESORBABLE NONWOVEN POUCHES FOR MEDICAL DEVICE IMPLANTS
Nonwoven resorbable pouches that at least partially enclose implantable medical devices and improved methods for producing the implantable medical device pouches are described. The nonwoven pouches may comprise one or more drugs. Implantable medical devices that are placed in the pouches prior to implantation are prevented from migrating from the site of implantation by tissue ingrowth into the pouch. Antibiotics may be incorporated into the pouches to prevent post-operative infections. The pouches may be formed in fewer steps than conventional pouches, and without polymer coatings. Nonwoven pouches can be formed in one step by dry spinning instead of using multiple processing steps. In embodiments, the nonwoven pouches are smoother on the inside than the outside to tightly fit the implantable medical devices internally while encouraging external tissue ingrowth. In embodiments, the nonwoven pouches eliminate the use of knitted or woven multifilament fibers that can trap bacteria and result in post-operative infection.
A61F 2/00 - Filters implantable into blood vesselsProstheses, i.e. artificial substitutes or replacements for parts of the bodyAppliances for connecting them with the bodyDevices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
A61K 35/12 - Materials from mammalsCompositions comprising non-specified tissues or cellsCompositions comprising non-embryonic stem cellsGenetically modified cells
Absorbable monofilament fibers and self-retaining sutures with high tensile strengths have been developed. The straight pull tensile strengths of the absorbable self-retaining sutures closely approximate, equal or exceed the average minimum knot-pull tensile standards set by the United States Pharmacopeia (USP). These higher strength absorbable self-retaining sutures can therefore be used either without needing to oversize the suture for a given procedure, or by oversizing the self-retaining suture by no more than 0.1 mm in diameter. In one embodiment, the absorbable self-retaining sutures are made from poly-4-hydroxybutyrate or copolymers thereof.
Methods for producing absorbable self-retaining sutures that have high tensile strengths and pronounced sheath-core structures wherein the sheath is harder than the core are also provided. The self-retaining sutures may be made by spinning and orienting a monofilament fiber of poly-4-hydroxybutyrate or copolymer thereof and inserting retainers in monofilament fibers.
Oriented resorbable implants made from poly-4-hydroxybutyrate (P4HB) and copolymers thereof, have been developed that contain one or more antimicrobial agents to prevent colonization of the implants, and reduce or prevent the occurrence of infection following implantation in a patient. These oriented implants are particularly suitable for use in procedures where prolonged strength retention is necessary and there is a risk of infection. Coverings and receptacles made from poly-4-hydroxybutyrate and copolymers thereof, containing antimicrobial agents, have also been developed for use with implantable devices to prevent colonization of these devices, and to reduce or prevent the occurrence of infection following implantation of these devices in a patient. These coverings and receptacles may be used to hold, or partially or fully cover, devices such as pacemakers and neurostimulators. Preferably, the coverings and receptacles are made from meshes, non-wovens, films, fibers, and foams, and contain rifampin and minocycline.
invivoinvivovivo. The monofilament fibers have tensile strengths higher than 500 MPa. These yarns and fibers may be used to make various medical devices for various applications, including mesh sutures.
Breast fixation devices for use in breast reconstruction and breast augmentation limit the rotation or movement of breast implants after implantation that results in an unnatural appearance of the breast. The breast fixation devices can include a thin-walled enclosure in the shape of a pouch. A breast implant is secured inside the pouch to limit movement by applying compression to the breast implants, or using a mating or interlocking mechanism between the pouch and breast implant. The pouches containing the breast implants are implanted in the breast. Tissue in-growth into the pouch limits movement of the pouch-breast implant assembly and thereby limits rotation, migration, and displacement of the breast implant. The pouches preferably comprise poly-4-hydroxybutyrate or copolymer thereof.
Breast fixation devices for use in breast reconstruction and breast augmentation limit the rotation or movement of breast implants after implantation that results in an unnatural appearance of the breast. The breast fixation devices can include a thin-walled enclosure in the shape of a pouch. A breast implant is secured inside the pouch to limit movement by applying compression to the breast implants, or using a mating or interlocking mechanism between the pouch and breast implant. The pouches containing the breast implants are implanted in the breast. Tissue in-growth into the pouch limits movement of the pouch-breast implant assembly and thereby limits rotation, migration, and displacement of the breast implant. The pouches preferably comprise poly-4-hydroxybutyrate or copolymer thereof.
A61F 2/00 - Filters implantable into blood vesselsProstheses, i.e. artificial substitutes or replacements for parts of the bodyAppliances for connecting them with the bodyDevices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
74.
METHODS FOR 3D PRINTING OF POLY-4-HYDROXYBUTYRATE AND COPOLYMERS
Methods to fabricate objects by 3D printing of poly-4-hydroxybutyrate (P4HB) and copolymers thereof have been developed. In one method, these objects are produced by continuous fused filament fabrication using an apparatus and conditions that overcome the problems of poor feeding of the filament resulting from the low softening temperature of the filament and heat creep along the fed filament. Methods using an apparatus including a heat sink, a melt tube, a heating block and nozzle, and a transition zone between the heat sink and heating block, with the melt tube extending through the heat sink, transition zone, and heat block to the nozzle are disclosed. 3D objects are also printed by fused pellet deposition (FPD), melt extrusion deposition (MED), selective laser melting (SLM), printing of slurries and solutions using a coagulation bath, and printing using a binding solution and polymer granules.
B29C 64/106 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
B29C 64/112 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
B29C 64/118 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B29C 64/165 - Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
Methods to fabricate objects by 3D printing of poly-4-hydroxybutyrate (P4HB) and copolymers thereof have been developed. In one method, these objects are produced by continuous fused filament fabrication using an apparatus and conditions that overcome the problems of poor feeding of the filament resulting from the low softening temperature of the filament and heat creep along the fed filament. Methods using an apparatus including a heat sink, a melt tube, a heating block and nozzle, and a transition zone between the heat sink and heating block, with the melt tube extending through the heat sink, transition zone, and heat block to the nozzle are disclosed. 3D objects are also printed by fused pellet deposition (FPD), melt extrusion deposition (MED), selective laser melting (SLM), printing of slurries and solutions using a coagulation bath, and printing using a binding solution and polymer granules.
B29C 64/118 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
Resorbable three-dimensional implants that can be temporarily deformed, implanted by minimally invasive means, and resume their original shape in vivo, have been developed. These implants are particularly suitable for use in minimally invasive procedures for tissue reinforcement, repair of hernias, and applications where it is desirable for the implant to contour in vivo to an anatomical shape, such as the inguinofemoral region. In the preferred embodiment, the implants are made from meshes of poly-4-hydroxybutyrate monofilament that have reinforced outlying borders that allow the meshes to form three-dimensional shapes that can be temporarily deformed. These implants can resume three-dimensional shapes after being temporarily deformed that contour to the host's tissue or an anatomical shape, for example, in the repair of a hernia, and particularly a hernia in the inguinofemoral region. The implants can contour to the host's tissue for example, of the inguinofemoral region, without the implants wrinkling, bunching or folding.
A61F 2/00 - Filters implantable into blood vesselsProstheses, i.e. artificial substitutes or replacements for parts of the bodyAppliances for connecting them with the bodyDevices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
77.
MEDICAL DEVICES CONTAINING POLY(BUTYLENE SUCCINATE) AND COPOLYMERS THEREOF
Resorbable implants comprising poly(butylene succinate) and copolymers thereof have been developed. The implants implants are preferably sterilized, and contain less than 20 endotoxin units per device as determined by the limulus amebocyte lysate (LAL) assay, and are particularly suitable for use in procedures where prolonged strength retention is necessary, and can include one or more bioactive agents. The implants may be made from fibers and meshes of poly(butylene succinate) and copolymers thereof, or by 3d printing, and the fibers may be oriented. Coverings and receptacles made from forms of poly(butylene succinate) and copolymers thereof have also been developed for use with cardiac rhythm management devices and other implantable devices. These coverings and receptacles may be used to hold, or partially/fully cover, devices such as pacemakers and neurostimulators. The coverings and receptacles are made from meshes, webs, lattices, non-wovens, films, fibers, and foams, and contain antibiotics such as rifampin and minocycline.
Resorbable implants comprising poly(butylene succinate) and copolymers thereof have been developed. The implants implants are preferably sterilized, and contain less than 20 endotoxin units per device as determined by the limulus amebocyte lysate (LAL) assay, and are particularly suitable for use in procedures where prolonged strength retention is necessary, and can include one or more bioactive agents. The implants may be made from fibers and meshes of poly(butylene succinate) and copolymers thereof, or by 3d printing, and the fibers may be oriented. Coverings and receptacles made from forms of poly(butylene succinate) and copolymers thereof have also been developed for use with cardiac rhythm management devices and other implantable devices. These coverings and receptacles may be used to hold, or partially/fully cover, devices such as pacemakers and neurostimulators. The coverings and receptacles are made from meshes, webs, lattices, non-wovens, films, fibers, and foams, and contain antibiotics such as rifampin and minocycline.
A61L 27/18 - Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
A61F 2/00 - Filters implantable into blood vesselsProstheses, i.e. artificial substitutes or replacements for parts of the bodyAppliances for connecting them with the bodyDevices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
A61L 27/48 - Composite materials, i.e. layered or containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with macromolecular fillers
A61L 31/16 - Biologically active materials, e.g. therapeutic substances
A61L 17/00 - Materials for surgical sutures or for ligaturing blood vessels
D02G 3/04 - Blended or other yarns or threads containing components made from different materials
D02G 3/44 - Yarns or threads characterised by the purpose for which they are designed
C08L 65/00 - Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chainCompositions of derivatives of such polymers
C08L 67/00 - Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chainCompositions of derivatives of such polymers
79.
YARNS AND FIBERS OF POLY(BUTYLENE SUCCINATE) AND COPOLYMERS THEREOF, AND METHODS OF USE THEROF
Resorbable implants comprising poly(butylene succinate) and copolymers thereof have been developed. The implants implants are preferably sterilized, and contain less than 20 endotoxin units per device as determined by the limulus amebocyte lysate (LAL) assay, and are particularly suitable for use in procedures where prolonged strength retention is necessary, and can include one or more bioactive agents. The implants may be made from fibers and meshes of poly(butylene succinate) and copolymers thereof, or by 3d printing, and the fibers may be oriented. Coverings and receptacles made from forms of poly(butylene succinate) and copolymers thereof have also been developed for use with cardiac rhythm management devices and other implantable devices. These coverings and receptacles may be used to hold, or partially/fully cover, devices such as pacemakers and neurostimulators. The coverings and receptacles are made from meshes, webs, lattices, non-wovens, films, fibers, and foams, and contain antibiotics such as rifampin and minocycline.
Resorbable implants comprising poly(butylene succinate) and copolymers thereof have been developed. The implants are preferably sterilized, and contain less than 20 endotoxin units per device as determined by the limulus amebocyte lysate (LAL) assay, and are particularly suitable for use in procedures where prolonged strength retention is necessary, and can include one or more bioactive agents. The implants may be made from fibers and meshes of poly(butylene succinate) and copolymers thereof, or by 3d printing, and the fibers may be oriented. Coverings and receptacles made from forms of poly(butylene succinate) and copolymers thereof have also been developed for use with cardiac rhythm management devices and other implantable devices. These coverings and receptacles may be used to hold, or partially/fully cover, devices such as pacemakers and neurostimulators. The coverings and receptacles are made from meshes, webs, lattices, non-wovens, films, fibers, and foams, and contain antibiotics such as rifampin and minocycline.
A61L 17/12 - Homopolymers or copolymers of glycolic or lactic acid
A61L 27/58 - Materials at least partially resorbable by the body
A61F 2/00 - Filters implantable into blood vesselsProstheses, i.e. artificial substitutes or replacements for parts of the bodyAppliances for connecting them with the bodyDevices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
A61L 27/54 - Biologically active materials, e.g. therapeutic substances
A61L 27/18 - Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
C08L 65/00 - Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chainCompositions of derivatives of such polymers
C08L 67/00 - Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chainCompositions of derivatives of such polymers
A61L 27/48 - Composite materials, i.e. layered or containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with macromolecular fillers
A61L 31/16 - Biologically active materials, e.g. therapeutic substances
A61L 17/00 - Materials for surgical sutures or for ligaturing blood vessels
81.
Hernia repair, breast reconstruction and sling devices containing poly(butylene succinate) and copolymers thereof
Resorbable implants comprising poly(butylene succinate) and copolymers thereof have been developed. The implants implants are preferably sterilized, and contain less than 20 endotoxin units per device as determined by the limulus amebocyte lysate (LAL) assay, and are particularly suitable for use in procedures where prolonged strength retention is necessary, and can include one or more bioactive agents. The implants may be made from fibers and meshes of poly(butylene succinate) and copolymers thereof, or by 3d printing, and the fibers may be oriented. Coverings and receptacles made from forms of poly(butylene succinate) and copolymers thereof have also been developed for use with cardiac rhythm management devices and other implantable devices. These coverings and receptacles may be used to hold, or partially/fully cover, devices such as pacemakers and neurostimulators. The coverings and receptacles are made from meshes, webs, lattices, non-wovens, films, fibers, and foams, and contain antibiotics such as rifampin and minocycline.
A61L 27/18 - Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
A61F 2/00 - Filters implantable into blood vesselsProstheses, i.e. artificial substitutes or replacements for parts of the bodyAppliances for connecting them with the bodyDevices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
C08L 65/00 - Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chainCompositions of derivatives of such polymers
C08L 67/00 - Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chainCompositions of derivatives of such polymers
A61L 27/48 - Composite materials, i.e. layered or containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with macromolecular fillers
A61L 31/16 - Biologically active materials, e.g. therapeutic substances
A61L 17/00 - Materials for surgical sutures or for ligaturing blood vessels
82.
EXPANDABLE ABSORBABLE IMPLANTS FOR BREAST RECONSTRUCTION AND AUGMENTATION
Expandable absorbable implants have been developed that are suitable for breast reconstruction following mastectomy. The implants can be implanted in the vicinity of a tissue expander, for example, by suturing to the detached edge of the pectoralis major muscle to function as a pectoralis extender, and used to form a sling for a tissue expander. The implants, which permit tissue-ingrowth and slowly degrade, can be expanded in the breast using a tissue expander in order to form a pocket for a permanent breast implant. After expansion, the tissue expander can be removed and replaced with a permanent breast implant. The expandable implants help reduce patient discomfort resulting from tissue expansion, and avoid the need to use allografts or xenografts to create the pocket for the tissue expander. The expandable absorbable implant preferably comprises poly-4-hydroxybutyrate or copolymer thereof.
A61B 90/00 - Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups , e.g. for luxation treatment or for protecting wound edges
Expandable absorbable implants have been developed that are suitable for breast reconstruction following mastectomy. The implants can be implanted in the vicinity of a tissue expander, for example, by suturing to the detached edge of the pectoralis major muscle to function as a pectoralis extender, and used to form a sling for a tissue expander. The implants, which permit tissue-ingrowth and slowly degrade, can be expanded in the breast using a tissue expander in order to form a pocket for a permanent breast implant. After expansion, the tissue expander can be removed and replaced with a permanent breast implant. The expandable implants help reduce patient discomfort resulting from tissue expansion, and avoid the need to use allografts or xenografts to create the pocket for the tissue expander. The expandable absorbable implant preferably comprises poly-4-hydroxybutyrate or copolymer thereof.
A61F 2/00 - Filters implantable into blood vesselsProstheses, i.e. artificial substitutes or replacements for parts of the bodyAppliances for connecting them with the bodyDevices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
A61L 27/54 - Biologically active materials, e.g. therapeutic substances
A61B 90/00 - Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups , e.g. for luxation treatment or for protecting wound edges
A61B 17/00 - Surgical instruments, devices or methods
Full contour absorbable implants for breast surgery redistribute breast volume between the breast's upper and lower poles in exact and desirable ratios. The implants preferably redistribute breast volume so that the upper pole breast volume is 20-40% of the total volume, and the lower pole breast volume is 60-80% of the total volume. The implants are also designed to provide specific curvatures to the poles of the breast, and to angulate the nipple areolar complex slightly skyward so that the patient's nipple is positioned at an angle above the nipple meridian reference line. The implants are designed to be transitory, with sufficient strength retention to allow transition from support of the breast by the implant to support by regenerated host tissue growing in and around the implants, without any significant loss of support during or subsequent to remodeling. The implants may optionally be used with permanent breast implants.
Full contour absorbable implants for breast surgery redistribute breast volume between the breast's upper and lower poles in exact and desirable ratios. The implants preferably redistribute breast volume so that the upper pole breast volume is 20-40% of the total volume, and the lower pole breast volume is 60-80% of the total volume. The implants are also designed to provide specific curvatures to the poles of the breast, and to angulate the nipple areolar complex slightly skyward so that the patient's nipple is positioned at an angle above the nipple meridian reference line. The implants are designed to be transitory, with sufficient strength retention to allow transition from support of the breast by the implant to support by regenerated host tissue growing in and around the implants, without any significant loss of support during or subsequent to remodeling. The implants may optionally be used with permanent breast implants.
A61F 2/00 - Filters implantable into blood vesselsProstheses, i.e. artificial substitutes or replacements for parts of the bodyAppliances for connecting them with the bodyDevices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
A mastopexy implant for maintaining the breast in an elevated and aesthetically pleasing position includes a lower pole support comprising end portions which may be affixed to the chest wall or to a previously installed upper suspension strut. The implant is loaded in an insertion device. The insertion device is inserted through a small incision and into a subcutaneous pocket created in an inferior half of the breast. The lower pole support may have various constructs and in one embodiment includes a unitary conformable mesh having a plurality of arm or band members which are attached across the breast parenchyma and to the chest wall.
A61L 31/14 - Materials characterised by their function or physical properties
A61F 2/00 - Filters implantable into blood vesselsProstheses, i.e. artificial substitutes or replacements for parts of the bodyAppliances for connecting them with the bodyDevices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
A61B 18/00 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
A61L 31/06 - Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
A61B 17/00 - Surgical instruments, devices or methods
A61B 90/00 - Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups , e.g. for luxation treatment or for protecting wound edges
Methods to produce thermoformed implants comprising poly-4-hydroxybutyrate homopolymer, copolymer, or blend thereof, including surgical meshes, have been developed. These thermoforms are preferably produced from porous substrates of poly-4-hydroxybutyrate homopolymer or copolymer thereof, such as surgical meshes, by vacuum membrane thermoforming. The porous thermoformed implant is formed by placing a porous substrate of poly-4-hydroxybutyrate homopolymer or copolymer thereof over a mold, covering the substrate and mold with a membrane, applying a vacuum to the membrane so that the membrane and substrate are drawn down on the mold and tension is applied to the substrate, and heating the substrate while it is under tension to form the thermoform. The method is particularly useful in forming medical implants of poly-4-hydroxybutyrate and copolymers thereof, including hernia meshes, mastopexy devices, breast reconstruction devices, and implants for plastic surgery, without exposing the resorbable implants to water and without shrinking the porous substrate during molding.
Methods to produce thermoformed implants comprising poly-4-hydroxybutyrate homopolymer, copolymer, or blend thereof, including surgical meshes, have been developed. These thermoforms are preferably produced from porous substrates of poly-4-hydroxybutyrate homopolymer or copolymer thereof, such as surgical meshes, by vacuum membrane thermoforming. The porous thermoformed implant is formed by placing a porous substrate of poly-4-hydroxybutyrate homopolymer or copolymer thereof over a mold, covering the substrate and mold with a membrane, applying a vacuum to the membrane so that the membrane and substrate are drawn down on the mold and tension is applied to the substrate, and heating the substrate while it is under tension to form the thermoform. The method is particularly useful in forming medical implants of poly-4-hydroxybutyrate and copolymers thereof, including hernia meshes, mastopexy devices, breast reconstruction devices, and implants for plastic surgery, without exposing the resorbable implants to water and without shrinking the porous substrate during molding.
B29C 51/04 - Combined thermoforming and prestretching, e.g. biaxial stretching
A61L 15/26 - Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bondsDerivatives thereof
A61L 27/18 - Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
A61L 27/54 - Biologically active materials, e.g. therapeutic substances
A61L 31/16 - Biologically active materials, e.g. therapeutic substances
A61L 27/48 - Composite materials, i.e. layered or containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with macromolecular fillers
B29C 51/00 - Shaping by thermoforming, e.g. shaping sheets in matched moulds or by deep-drawingApparatus therefor
A61L 29/12 - Composite materials, i.e. layered or containing one material dispersed in a matrix of the same or different material
A61L 31/06 - Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
A61L 31/12 - Composite materials, i.e. layered or containing one material dispersed in a matrix of the same or different material
Compositions of P4HB with high purity have been developed. The compositions are prepared by washing P4HB biomass prior to solvent extraction, and precipitating P4HB from solution. The same solvent is preferably used to wash the P4HB biomass, and as a non-solvent to precipitate the polymer from a P4HB solvent solution. The highly pure P4HB compositions are suitable for preparing implants. The implants may be used for the repair of soft and hard tissues.
C12P 7/625 - Polyesters of hydroxy carboxylic acids
G01N 33/50 - Chemical analysis of biological material, e.g. blood, urineTesting involving biospecific ligand binding methodsImmunological testing
A61L 27/18 - Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
C08G 63/06 - Polyesters derived from hydroxy carboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxy carboxylic acids
Implants with fillable reservoirs have been developed that are suitable for rhinoplasty, breast reconstruction, ear reconstruction, and replacement, reconstruction or repair of other soft tissues. The implants can be filled with graft material prior to implantation. The implants are preferably made from resorbable polymers, can be tailored to provide different geometries, mechanical properties and resorption rates in order to provide more consistent surgical outcomes. The implants preferably have an interconnected network of unit cells with microporous outer layers and optionally some or all of the unit cells having at least one macropore in their outer layers. The implants can be loaded by injection with microfat, collagen, DCF, cells, bioactive agents, and other augmentation materials, prior to implantation.
Implants with fillable reservoirs have been developed that are suitable for rhinoplasty, breast reconstruction, ear reconstruction, and replacement, reconstruction or repair of other soft tissues. The implants can be filled with graft material prior to implantation. The implants are preferably made from resorbable polymers, can be tailored to provide different geometries, mechanical properties and resorption rates in order to provide more consistent surgical outcomes. The implants preferably have an interconnected network of unit cells with microporous outer layers and optionally some or all of the unit cells having at least one macropore in their outer layers. The implants can be loaded by injection with microfat, collagen, DCF, cells, bioactive agents, and other augmentation materials, prior to implantation.
A61F 2/18 - Internal ear or nose parts, e.g. ear-drums
A61F 2/00 - Filters implantable into blood vesselsProstheses, i.e. artificial substitutes or replacements for parts of the bodyAppliances for connecting them with the bodyDevices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
A61L 27/54 - Biologically active materials, e.g. therapeutic substances
A61L 27/58 - Materials at least partially resorbable by the body
Absorbable implants for breast surgery that conform to the breast parenchyma and surrounding chest wall have been developed. These implants support newly lifted breast parenchyma, and/or a breast implant. The implants have mechanical properties sufficient to support a reconstructed breast, and allow the in-growth of tissue into the implant as it degrades. The implants have a strength retention profile allowing the support of the breast to be transitioned from the implant to regenerated host tissue, without significant loss of support. Three-dimensional implants for use in minimally invasive mastopexy/breast reconstruction procedures are also described, that confer shape to a patient's breast. These implants are self-reinforced, can be temporarily deformed, implanted in a suitably dissected tissue plane, and resume their preformed three-dimensional shape. The implants are preferably made from poly-4-hydroxybutyrate (P4HB) and copolymers thereof. The implants have suture pullout strengths that can resist the mechanical loads exerted on the reconstructed breast.
A61F 2/00 - Filters implantable into blood vesselsProstheses, i.e. artificial substitutes or replacements for parts of the bodyAppliances for connecting them with the bodyDevices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
A61B 17/00 - Surgical instruments, devices or methods
B29C 35/02 - Heating or curing, e.g. crosslinking or vulcanising
Calendered surgical meshes comprising polyhydroxyalkanoate polymers have been developed. These meshes, preferably made from poly-4-hydroxybutyrate or copolymer thereof, have a thickness that is between 50 to 99% of the thickness of the mesh prior to calendering, and a burst strength that is not less than 20% of the burst strength of the mesh prior to calendering. The thinner calendered meshes are particularly suitable for surgical applications where a thinner profile mesh with high burst strength is required, and where it is advantageous to have a mesh with a smooth surface. The meshes may be partially or fully resorbable, and are particularly suitable for use in the treatment of pelvic organ prolapse.
A61L 27/18 - Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
A61L 27/54 - Biologically active materials, e.g. therapeutic substances
C08L 67/04 - Polyesters derived from hydroxy carboxylic acids, e.g. lactones
A61F 2/00 - Filters implantable into blood vesselsProstheses, i.e. artificial substitutes or replacements for parts of the bodyAppliances for connecting them with the bodyDevices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
Calendered surgical meshes comprising polyhydroxyalkanoate polymers have been developed. These meshes, preferably made from poly-4-hydroxybutyrate or copolymer thereof, have a thickness that is between 50 to 99% of the thickness of the mesh prior to calendering, and a burst strength that is not less than 20% of the burst strength of the mesh prior to calendering. The thinner calendered meshes are particularly suitable for surgical applications where a thinner profile mesh with high burst strength is required, and where it is advantageous to have a mesh with a smooth surface. The meshes may be partially or fully resorbable, and are particularly suitable for use in the treatment of pelvic organ prolapse.
A61F 2/00 - Filters implantable into blood vesselsProstheses, i.e. artificial substitutes or replacements for parts of the bodyAppliances for connecting them with the bodyDevices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
C08G 63/06 - Polyesters derived from hydroxy carboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxy carboxylic acids
D01F 6/62 - Monocomponent man-made filaments or the like of synthetic polymersManufacture thereof from homopolycondensation products from polyesters
A61L 27/18 - Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
A61L 27/54 - Biologically active materials, e.g. therapeutic substances
D01D 10/00 - Physical treatment of man-made filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
96.
Methods of manufacturing mesh sutures from poly-4-hydroxybutyrate and copolymers thereof
Resorbable multifilament yarns and monofilament fibers including poly-4-hydroxybutyrate and copolymers thereof with high tenacity or high tensile strength have been developed. The yarns and fibers are produced by cold drawing the multifilament yarns and monofilament fibers before hot drawing the yarns and fibers under tension at temperatures above the melt temperature of the polymer or copolymer. These yarns and fibers have prolonged strength retention in vivo making them suitable for soft tissue repairs where high strength and strength retention is required. The multifilament yarns have tenacities higher than 8.1 grams per denier, and in vivo, retain at least 65% of their initial strength at 2 weeks. The monofilament fibers retain at least 50% of their initial strength at 4 weeks in vivo. The monofilament fibers have tensile strengths higher than 500 MPa. These yarns and fibers may be used to make various medical devices for various applications, including mesh sutures.
A61K 9/00 - Medicinal preparations characterised by special physical form
D01F 6/62 - Monocomponent man-made filaments or the like of synthetic polymersManufacture thereof from homopolycondensation products from polyesters
A61L 31/06 - Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
A61L 31/14 - Materials characterised by their function or physical properties
B29C 55/00 - Shaping by stretching, e.g. drawing through a dieApparatus therefor
D01F 8/14 - Conjugated, i.e. bi- or multicomponent, man-made filaments or the likeManufacture thereof from synthetic polymers with at least one polyester as constituent
D02G 3/04 - Blended or other yarns or threads containing components made from different materials
A61L 17/10 - At least partly resorbable materials containing macromolecular materials
D04C 1/02 - Braid or lace, e.g. pillow-laceProcesses for the manufacture thereof made from particular materials
B29K 73/00 - Use of other polymers having oxygen as the only hetero atom in the main chain, as moulding material
Biocompatible coatings and spin finishes that can be applied to polyhydroxyalkanoate (PHA) polymers, and medical devices made from PHA polymers, have been developed. The coatings impart good lubricity to PHA polymers, particularly to fibers and braids made from these materials, making the coatings ideal for use on medical devices such as PHA braided sutures. The spin finishes can be applied to PHA fibers to facilitate their manufacture, and also for their conversion to other products, including medical textiles. The spin finishes serve to protect multifilament fiber bundles, and keep them intact following extrusion, and also to impart lubricity to the fiber bundles and monofilament fibers so that they are not damaged in subsequent processing steps particularly in textile processing. The coating reduces tissue drag of, for example, braided sutures.
A61F 2/00 - Filters implantable into blood vesselsProstheses, i.e. artificial substitutes or replacements for parts of the bodyAppliances for connecting them with the bodyDevices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
A61B 17/04 - Surgical instruments, devices or methods for closing wounds or holding wounds closedAccessories for use therewith for suturing woundsHolders or packages for needles or suture materials
Methods have been discovered that make it possible to continuously extrude tubes of P4HB and copolymers thereof. These methods allow tubes of P4HB and copolymers thereof to be produced without radial deformation of the tubes despite the slow crystallization of the polymer and copolymers. The methods can produce tubes of P4HB and copolymers thereof with tightly defined outside and inside diameters which are required for medical application. These tubes are produced by radial expansion at temperatures above the melting temperature of P4HB and copolymers thereof, and using low tube cooling temperatures and prolonged cooling times. The tubes made from P4HB and copolymers thereof are flexible, and can be prepared with high elongation to break values.
B29C 48/09 - Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
B29C 48/00 - Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired formApparatus therefor
B29C 48/88 - Thermal treatment of the stream of extruded material, e.g. cooling
B29B 13/06 - Conditioning or physical treatment of the material to be shaped by drying
B29C 48/80 - Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
B29C 55/24 - Shaping by stretching, e.g. drawing through a dieApparatus therefor of tubes radial
A61L 31/16 - Biologically active materials, e.g. therapeutic substances
B29C 48/10 - Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels flexible, e.g. blown foils
B29C 48/90 - Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
A61L 31/06 - Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
B29B 13/04 - Conditioning or physical treatment of the material to be shaped by cooling
A61L 29/14 - Materials characterised by their function or physical properties
A61L 31/14 - Materials characterised by their function or physical properties
A61L 31/18 - Materials at least partially X-ray or laser opaque
B29K 67/00 - Use of polyesters as moulding material
Methods have been discovered that make it possible to continuously extrude tubes of P4HB and copolymers thereof. These methods allow tubes of P4HB and copolymers thereof to be produced without radial deformation of the tubes despite the slow crystallization of the polymer and copolymers. The methods can produce tubes of P4HB and copolymers thereof with tightly defined outside and inside diameters which are required for medical application. These tubes are produced by radial expansion at temperatures above the melting temperature of P4HB and copolymers thereof, and using low tube cooling temperatures and prolonged cooling times. The tubes made from P4HB and copolymers thereof are flexible, and can be prepared with high elongation to break values.