Systems and methods for enhanced radio frequency (RF) communications with orbital modulation and UBDM encryption include a first RF signal which is encrypted with a UBDM technique. At least a second RF signal is modulated in the transmitter. A composite signal is formed from the first RF signal and the second RF signal and transmitted through at least one RF channel having a spectral mask. The first RF signal and the second RF signal are transmitted at the same time and frequency. The first RF signal and the second RF signal are received at a receiver. The second RF signal is demodulated and signal interference between the first RF signal and the second RF signal is canceled. The first RF signal is decrypted.
H04B 1/12 - Neutralising, balancing, or compensation arrangements
H04B 1/00 - Details of transmission systems, not covered by a single one of groups Details of transmission systems not characterised by the medium used for transmission
H04B 1/10 - Means associated with receiver for limiting or suppressing noise or interference
A method and system for traffic management of transpositional modulation fortified communications includes at least one transpositional modulation (TM) channel having a TM signal with a quantity of data. The at least one TM channel with TM signal does not exceed a spectral mask of an original carrier of an RF channel. The TM signal is transmitted between two locations and through at least one of a plurality of access points. At least one access traffic steering and splitting rule is implemented with a traffic management module, wherein a transmission path of the TM signal is, at least in part, controlled by the access traffic steering and splitting rule.
System and methods for wideband, near-field, inductively-coupled communications include a computing device and a tag configured for wideband near-field coupled communications with the computing device. The tag has a controller and a memory, the memory storing a quantity of data, and an inductively-coupled antenna. When the tag is positioned within a predetermined distance of the computing device, at least a portion of the quantity of data is transferred from the memory of the tag to the computing device at a rate of at least 100 Mbit/s using the inductively-coupled antenna. The tag may be a non-self-powered device which is free from an internal power supply, wherein the tag is energized from inductive power coupling with an external power source, such as the computing device.
G06K 7/10 - Methods or arrangements for sensing record carriers by electromagnetic radiation, e.g. optical sensingMethods or arrangements for sensing record carriers by corpuscular radiation
H04W 4/80 - Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
H04W 12/47 - Security arrangements using identity modules using near field communication [NFC] or radio frequency identification [RFID] modules
A system and method for self-interference cancellation using a full duplex adaptive array includes at least four ports within the network array, with at least two transmission elements at a first port and a second port, and at least one receiving element at a third port and a fourth port. A signal is transmitted along a first network path from the two transmission elements of the first port to the receiving element of the fourth port. The signal is transmitted along a second network path from the two transmission elements of the first port to the receiving element of the third port. A weight is applied to at least one of the two transmission elements of the first port, which modifies the signal transmitted along the second network path to cancel signal interference caused by the signal at the third port during full duplex operation of the network array.
A system and method for self-interference cancellation using a full duplex adaptive array includes at least four ports within the network array, with at least two transmission elements at a first port and a second port, and at least one receiving element at a third port and a fourth port. A signal is transmitted along a first network path from the two transmission elements of the first port to the receiving element of the fourth port. The signal is transmitted along a second network path from the two transmission elements of the first port to the receiving element of the third port. A weight is applied to at least one of the two transmission elements of the first port, which modifies the signal transmitted along the second network path to cancel signal interference caused by the signal at the third port during full duplex operation of the network array.
Systems and methods for enhanced radio frequency (RF) communications include transmitting, with a transmitter, a first RF signal to a receiver through at least one RF channel having a spectral mask. At least a second RF signal is modulated in the transmitter. The modulated second RF signal is transmitted to the receiver through at least one RF channel, and wherein the modulated second RF signal is transmitted at a same time and frequency as the first RF signal. The first RF signal and the modulated second RF signal are received at the same time. The modulated second RF signal is demodulated at the receiver. Signal interference between the first RF signal and the second RF signal is canceled at the receiver.
Systems and methods for enhanced radio frequency (RF) communications include transmitting, with a transmitter, a first RF signal to a receiver through at least one RF channel having a spectral mask. At least a second RF signal is modulated in the transmitter. The modulated second RF signal is transmitted to the receiver through at least one RF channel, and wherein the modulated second RF signal is transmitted at a same time and frequency as the first RF signal. The first RF signal and the modulated second RF signal are received at the same time. The modulated second RF signal is demodulated at the receiver. Signal interference between the first RF signal and the second RF signal is canceled at the receiver.
A method and system for secure routing of data packets includes a data stream on a first communication network formed from a plurality of data packets. A source security certificate engine is implemented on a first computerized device. The source security certificate engine: assigns a certificate signature to a data packet of the data stream on a per-packet level; assigns a network route number to the data packet of the data stream to thereby encrypt the data packet; generates at least one encryption key; and selects a carrier network path from available carrier channels, wherein the encrypted data packet is communicated over the selected carrier network path. A destination security certificate engine implemented on a second computerized device, decrypts the encrypted data packet using the at least one encryption key. The data packet may be carried in a transpositional modulation (TM) signal communicated on a TM channel.
G06F 21/57 - Certifying or maintaining trusted computer platforms, e.g. secure boots or power-downs, version controls, system software checks, secure updates or assessing vulnerabilities
9.
Secure routing of data packets including with use with transpositional modulation fortified communications
A method and system for secure routing of data packets includes a data stream on a first communication network formed from a plurality of data packets. A source security certificate engine is implemented on a first computerized device. The source security certificate engine: assigns a certificate signature to a data packet of the data stream on a per-packet level; assigns a network route number to the data packet of the data stream to thereby encrypt the data packet; generates at least one encryption key; and selects a carrier network path from available carrier channels, wherein the encrypted data packet is communicated over the selected carrier network path. A destination security certificate engine implemented on a second computerized device, decrypts the encrypted data packet using the at least one encryption key. The data packet may be carried in a transpositional modulation (TM) signal communicated on a TM channel.
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for communicating signals using a multi-dimensional symbol constellation. In one example, a process for modulating a carrier signal includes the actions of mapping data to symbols of a multi-dimensional symbol constellation that includes at least three dimensions, each dimension of the constellation represented by a respective modulation signal. The dimensions of the constellation include first and second dimensions each of which are represented by respective in-phase modulation values and quadrature phase modulation values of a quadrature amplitude modulation (QAM) signal, and a third dimension represented by a transpositional modulation (TM) signal. The method further includes modulating a carrier signal with the TM signal and the QAM signal.
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for modulating and demodulating transpositional modulated (TM) signals. One aspect features a method of modulating a carrier signal that includes the operations of generating a non-transpositional modulation (non-TM) signal from a first data signal, where the non-TM signal has a frequency spectrum that occupies a bandwidth. Generating a TM signal by generating a modulation from a second data signal, and shifting the modulation signal in frequency to an upper or lower sideband in the frequency spectrum of the non-TM signal which lies within the bandwidth of the non-TM signal, and where the power of the first modulated signal is less than a power of the non-TM signal. Combining the non-TM signal with the TM signal on a common carrier signal to provide a combined signal. Transmitting the combined signal.
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for detecting electronic counter measure (ECM) signals and embedding covert messages in radar or sonar signals. In one aspect, a method for detecting ECM signals includes receiving a radar return signal from an object. The method includes determining whether radar return signal includes a TM signal, and identifying the radar return signal as a skin return signal or an electronic counter measure signal based on whether the radar return signal includes the TM signal.
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for modulating and demodulating transpositional modulated (TM) signals. One aspect features a method of modulating a carrier signal that includes the operations of generating a non-transpositional modulation (non-TM) signal from a first data signal, where the non-TM signal has a frequency spectrum that occupies a bandwidth. Generating a TM signal by generating a modulation from a second data signal, and shifting the modulation signal in frequency to an upper or lower sideband in the frequency spectrum of the non-TM signal which lies within the bandwidth of the non-TM signal, and where the power of the first modulated signal is less than a power of the non-TM signal. Combining the non-TM signal with the TM signal on a common carrier signal to provide a combined signal. Transmitting the combined signal.
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for modulating and demodulating transpositional modulated (TM) signals. One aspect features a method of modulating a carrier signal that includes the operations of generating a non-transpositional modulation (non-TM) signal from a first data signal, where the non-TM signal has a frequency spectrum that occupies a bandwidth. Generating a TM signal by generating a modulation from a second data signal, and shifting the modulation signal in frequency to an upper or lower sideband in the frequency spectrum of the non-TM signal which lies within the bandwidth of the non-TM signal, and where the power of the first modulated signal is less than a power of the non-TM signal. Combining the non-TM signal with the TM signal on a common carrier signal to provide a combined signal. Transmitting the combined signal.
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for communicating signals using a multi-dimensional symbol constellation. In one example, a process for modulating a carrier signal includes the actions of mapping data to symbols of a multi-dimensional symbol constellation that includes at least three dimensions, each dimension of the constellation represented by a respective modulation signal. The dimensions of the constellation include first and second dimensions each of which are represented by respective in-phase modulation values and quadrature phase modulation values of a quadrature amplitude modulation (QAM) signal, and a third dimension represented by a transpositional modulation (TM) signal. The method further includes modulating a carrier signal with the TM signal and the QAM signal.
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for communicating signals using a multi-dimensional symbol constellation. In one example, a process for modulating a carrier signal includes the actions of mapping data to symbols of a multi-dimensional symbol constellation that includes at least three dimensions, each dimension of the constellation represented by a respective modulation signal. The dimensions of the constellation include first and second dimensions each of which are represented by respective in-phase modulation values and quadrature phase modulation values of a quadrature amplitude modulation (QAM) signal, and a third dimension represented by a transpositional modulation (TM) signal. The method further includes modulating a carrier signal with the TM signal and the QAM signal.
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for communicating signals using a multi-dimensional symbol constellation. In one example, a process for modulating a carrier signal includes the actions of mapping data to symbols of a multi-dimensional symbol constellation that includes at least three dimensions, each dimension of the constellation represented by a respective modulation signal. The dimensions of the constellation include first and second dimensions each of which are represented by respective in-phase modulation values and quadrature phase modulation values of a quadrature amplitude modulation (QAM) signal, and a third dimension represented by a transpositional modulation (TM) signal. The method further includes modulating a carrier signal with the TM signal and the QAM signal.
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for modulating and demodulating transpositional modulated (TM) signals. One aspect features a method of modulating a carrier signal that include the actions of generating a TM signal by generating a sinusoidal signal, and modulating the sinusoidal signal based on a data signal to provide the TM signal. Inserting the TM signal into a carrier signal to provide a TM modulated carrier signal. Modulating the TM modulated carrier signal with a non-TM signal to provide a combined signal. Transmitting the combined signal.
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for modulating and demodulating transpositional modulated (TM) signals. One aspect features a method of modulating a carrier signal that include the actions of generating a TM signal by generating a sinusoidal signal, and modulating the sinusoidal signal based on a data signal to provide the TM signal. Inserting the TM signal into a carrier signal to provide a TM modulated carrier signal. Modulating the TM modulated carrier signal with a non-TM signal to provide a combined signal. Transmitting the combined signal.
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for determining, by a first device, that a second device is within range for direct communications and that the second device is capable of performing transpositional modulation (TM) communications. Determining to use transpositional modulation to send data to the second device. Sending the data to the second device using a TM signal.
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for transmitting, by a first device, a transmission signal that includes a carrier signal modulated with a TM signal. Receiving a response signal from a second device in response to the transmission signal. Determining, whether the response signal includes the TM signal.
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium for receiving, by a first device, a first signal from a second device, the first signal including a carrier signal modulated with a first modulation signal. Detecting a frequency of the carrier signal by performing a carrier extraction (CAREX) process on the first signal. Adding a second modulation signal to the carrier signal of the first signal to produce a combined signal, wherein the second modulation signal is a transpositional modulation (TM) signal and the first modulation signal is a non-TM signal. Transmitting the combined signal.
Systems and methods for transpositional modulation and demodulation are provided. One such method for generating a signal includes the steps of providing a look-up table having a plurality of quarter-cycle waveforms, each of said quarter-cycle waveforms associated with a respective input level; receiving an input signal; and outputting quarter-cycle waveforms associated with levels of the received input signal. Systems for transpositional modulation are also provided. One such system for generating a signal includes a look-up table having a plurality of quarter-cycle waveforms. Each of the quarter-cycle waveforms are associated with a respective input level, and the look-up table is configured to receive an input signal, and output quarter-cycle waveforms associated with levels of the received input signal.
H04L 27/02 - Amplitude-modulated carrier systems, e.g. using on/off keyingSingle sideband or vestigial sideband modulation
H04L 7/033 - Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal- generating means, e.g. using a phase-locked loop
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for modulating and demodulating transpositional modulated (TM) signals. One aspect features a method of modulating a carrier signal that include the actions of generating a TM signal by generating a sinusoidal signal, and modulating the sinusoidal signal based on a data signal to provide the TM signal. Inserting the TM signal into a carrier signal to provide a TM modulated carrier signal. Modulating the TM modulated carrier signal with a non-TM signal to provide a combined signal. Transmitting the combined signal.
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for transmitting, by a first device, a transmission signal that includes a carrier signal modulated with a TM signal. Receiving a response signal from a second device in response to the transmission signal. Determining, whether the response signal includes the TM signal.
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium for receiving, by a first device, a first signal from a second device, the first signal including a carrier signal modulated with a first modulation signal. Detecting a frequency of the carrier signal by performing a carrier extraction (CAREX) process on the first signal. Adding a second modulation signal to the carrier signal of the first signal to produce a combined signal, wherein the second modulation signal is a transpositional modulation (TM) signal and the first modulation signal is a non-TM signal. Transmitting the combined signal.
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for determining, by a first device, that a second device is within range for direct communications and that the second device is capable of performing transpositional modulation (TM) communications. Determining to use transpositional modulation to send data to the second device. Sending the data to the second device using a TM signal.
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for determining, by a first device, that a second device is within range for direct communications and that the second device is capable of performing transpositional modulation (TM) communications. Determining to use transpositional modulation to send data to the second device. Sending the data to the second device using a TM signal.
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium for receiving, by a first device, a first signal from a second device, the first signal including a carrier signal modulated with a first modulation signal. Detecting a frequency of the carrier signal by performing a carrier extraction (CAREX) process on the first signal. Adding a second modulation signal to the carrier signal of the first signal to produce a combined signal, wherein the second modulation signal is a transpositional modulation (TM) signal and the first modulation signal is a non-TM signal. Transmitting the combined signal.
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for transmitting, by a first device, a transmission signal that includes a carrier signal modulated with a TM signal. Receiving a response signal from a second device in response to the transmission signal. Determining, whether the response signal includes the TM signal.
Methods, systems, and apparatus for receiving an input signal, where the input signal includes a carrier signal modulated with a first modulation signal and a second modulation signal, and where the second modulation signal is a TM signal. Demodulating the first modulation signal from the input signal. Modulating an un-modulated carrier signal with the first modulation signal to generate a third signal, where the third signal includes the carrier signal modulated by the first modulation signal. And, removing the first modulation signal from the input signal by subtracting the third signal from the input signal to extract the TM signal from the input signal.
Methods, systems, and apparatus for detecting a center frequency of an input signal, the input signal including a carrier signal modulated with a modulation signal. Detecting a frequency of a second signal. Determining a difference signal between the center frequency of the input signal and the frequency of the second signal. Modifying the frequency of the second signal based on the difference signal to provide the carrier signal. And, outputting the carrier signal.
H04L 27/144 - Demodulator circuitsReceiver circuits with demodulation using spectral properties of the received signal, e.g. by using frequency selective- or frequency sensitive elements
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium for receiving, by a first device, a first signal from a second device, the first signal including a carrier signal modulated with a first modulation signal. Detecting a frequency of the carrier signal by performing a carrier extraction (CAREX) process on the first signal. Adding a second modulation signal to the carrier signal of the first signal to produce a combined signal, wherein the second modulation signal is a transpositional modulation (TM) signal and the first modulation signal is a non-TM signal. Transmitting the combined signal.
Systems, methods and devices for transmitting and receiving and demodulating transpositional modulated signals, for increasing information bandwidth of defined communication channels, and for time-delay shifting an input signal in accordance to an input control signal are provided. One such method of increasing the information bandwidth of a defined communication channel includes receiving a first modulated signal having a first carrier signal frequency; receiving a second modulated signal having a second carrier signal frequency, the second modulated signal being modulated with information independent of information modulating the first carrier signal, the second carrier signal frequency being harmonically or sub-harmonically related to the first carrier signal frequency; and combining the first and second signals.
H04L 7/033 - Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal- generating means, e.g. using a phase-locked loop
H04L 27/10 - Frequency-modulated carrier systems, i.e. using frequency-shift keying
H04L 27/30 - Systems using multi-frequency codes wherein each code element is represented by a combination of frequencies
Methods, systems, and apparatus for receiving an input signal, where the input signal includes a carrier signal modulated with a first modulation signal and a second modulation signal, and where the second modulation signal is a TM signal. Demodulating the first modulation signal from the input signal. Modulating an un-modulated carrier signal with the first modulation signal to generate a third signal, where the third signal includes the carrier signal modulated by the first modulation signal. And, removing the first modulation signal from the input signal by subtracting the third signal from the input signal to extract the TM signal from the input signal.
Method and apparatus for detecting a center frequency of an input signal, the input signal including a carrier signal modulated with a modulation signal. Detecting a frequency of a second signal. Determining a difference signal between the center frequency of the input signal and the frequency of the second signal. Modifying the frequency of the second signal based on the difference signal to provide the carrier signal. And, outputting the carrier signal.
Transpositional Modulation, TM: The idea behind it can be seen as superimposing two different modulations in the same time/frequency resource. More in details: TM produces first a conventionally modulated (QAM, PSK... ) carrier signal, extracts its carrier, slightly modifies it so that the carrier wave also carries information at the pace of one bit per carrier wave period (more than 1 Gbit/s for LTE), and superimposes both signals for transmission. At the receiver, successive interference cancellation is performed: First conventionally modulated signal is detected, subtracted from received signal, and then TM signal is detected. The TM modulation implies third harmonic processing at the transmitter and receiver.
Methods, systems, and apparatus for detecting a center frequency of an input signal, the input signal including a carrier signal modulated with a modulation signal. Detecting a frequency of a second signal. Determining a difference signal between the center frequency of the input signal and the frequency of the second signal. Modifying the frequency of the second signal based on the difference signal to provide the carrier signal. And, outputting the carrier signal.
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for transmitting, by a first device, a transmission signal that includes a carrier signal modulated with a TM signal. Receiving a response signal from a second device in response to the transmission signal. Determining, whether the response signal includes the TM signal.
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for determining, by a first device, that a second device is within range for direct communications and that the second device is capable of performing transpositional modulation (TM) communications. Determining to use transpositional modulation to send data to the second device. Sending the data to the second device using a TM signal.
Methods, systems, and apparatus for detecting a center frequency of an input signal, the input signal including a carrier signal modulated with a modulation signal. Detecting a frequency of a second signal. Determining a difference signal between the center frequency of the input signal and the frequency of the second signal. Modifying the frequency of the second signal based on the difference signal to provide the carrier signal. And, outputting the carrier signal.
Methods, systems, and apparatus for detecting a center frequency of an input signal, the input signal including a carrier signal modulated with a modulation signal. Detecting a frequency of a second signal. Determining a difference signal between the center frequency of the input signal and the frequency of the second signal. Modifying the frequency of the second signal based on the difference signal to provide the carrier signal. And, outputting the carrier signal.
Methods, systems, and apparatus for receiving an input signal, where the input signal includes a carrier signal modulated with a first modulation signal and a second modulation signal, and where the second modulation signal is a TM signal. Demodulating the first modulation signal from the input signal. Modulating an un-modulated carrier signal with the first modulation signal to generate a third signal, where the third signal includes the carrier signal modulated by the first modulation signal. And, removing the first modulation signal from the input signal by subtracting the third signal from the input signal to extract the TM signal from the input signal.
Methods, systems, and apparatus for receiving an input signal, where the input signal includes a carrier signal modulated with a first modulation signal and a second modulation signal, and where the second modulation signal is a TM signal. Demodulating the first modulation signal from the input signal. Modulating an unmodulated carrier signal with the first modulation signal to generate a third signal, where the third signal includes the carrier signal modulated by the first modulation signal. And, removing the first modulation signal from the input signal by subtracting the third signal from the input signal to extract the TM signal from the input signal.
Systems and methods for transpositional modulation and demodulation are provided. One such method for generating a signal includes the steps of providing a look-up table having a plurality of quarter-cycle waveforms, each of said quarter-cycle waveforms associated with a respective input level; receiving an input signal; and outputting quarter-cycle waveforms associated with levels of the received input signal. Systems for transpositional modulation are also provided. One such system for generating a signal includes a look-up table having a plurality of quarter-cycle waveforms. Each of the quarter-cycle waveforms are associated with a respective input level, and the look-up table is configured to receive an input signal, and output quarter-cycle waveforms associated with levels of the received input signal.
H04L 27/02 - Amplitude-modulated carrier systems, e.g. using on/off keyingSingle sideband or vestigial sideband modulation
H04L 7/033 - Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal- generating means, e.g. using a phase-locked loop
Systems, methods and devices for transmitting and receiving and demodulating transpositional modulated signals, for increasing information bandwidth of defined communication channels, and for time-delay shifting an input signal in accordance to an input control signal are provided. One such method of increasing the information bandwidth of a defined communication channel includes receiving a first modulated signal having a first carrier signal frequency; receiving a second modulated signal having a second carrier signal frequency, the second modulated signal being modulated with information independent of information modulating the first carrier signal, the second carrier signal frequency being harmonically or sub-harmonically related to the first carrier signal frequency; and combining the first and second signals.
H04L 7/033 - Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal- generating means, e.g. using a phase-locked loop
H04L 27/10 - Frequency-modulated carrier systems, i.e. using frequency-shift keying
H04L 27/30 - Systems using multi-frequency codes wherein each code element is represented by a combination of frequencies
Systems and methods for transpositional modulation and demodulation are provided. One such method for generating a signal includes the steps of providing a look-up table having a plurality of quarter-cycle waveforms, each of said quarter-cycle waveforms associated with a respective input level; receiving an input signal; and outputting quarter-cycle waveforms associated with levels of the received input signal. Systems for transpositional modulation are also provided. One such system for generating a signal includes a look-up table having a plurality of quarter-cycle waveforms. Each of the quarter-cycle waveforms are associated with a respective input level, and the look-up table is configured to receive an input signal, and output quarter-cycle waveforms associated with levels of the received input signal.
H04L 27/02 - Amplitude-modulated carrier systems, e.g. using on/off keyingSingle sideband or vestigial sideband modulation
H04L 7/033 - Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal- generating means, e.g. using a phase-locked loop
Systems and methods for transpositional modulation and demodulation are provided. One such method for generating a signal includes the steps of providing a look-up table having a plurality of quarter-cycle waveforms, each of said quarter-cycle waveforms associated with a respective input level; receiving an input signal; and outputting quarter-cycle waveforms associated with levels of the received input signal. Systems for transpositional modulation are also provided. One such system for generating a signal includes a look-up table having a plurality of quarter-cycle waveforms. Each of the quarter-cycle waveforms are associated with a respective input level, and the look-up table is configured to receive an input signal, and output quarter-cycle waveforms associated with levels of the received input signal.
The present invention provides an advanced adaptive predistortion linearization technique to dramatically reduce nonlinear distortion in power amplifiers over a very wide instantaneous bandwidth (up to 2 GHz) and over a wide range of amplifier types, input frequencies, signal types, amplitudes, temperature, and other environmental and signal conditions. In an embodiment of the invention, the predistortion linearization circuitry comprises (1) a higher-order polynomial model of an amplifier's gain and phase characteristics—higher than a third-order polynomial model; (2) an adaptive calibration technique; and (3) a heuristic calibration technique. The higher-order polynomial model is generated by introducing, for example, a plurality of multi-tone test signals with varying center frequency and spacing into the power amplifier. From the power amplifier's corresponding output, the nonlinearities are modeled by employing a higher-order curve fit to capture the irregularities in the nonlinear transfer function. Different distortion transfer functions can be implemented for different operating conditions. The adaptive calibration technique is based on a feedback analysis technique, which updates the applicable distortion transfer function by analyzing the error signal between the introduced input signal and the output signal in real-time. The heuristic calibration technique implements different distortion transfer functions based on historical operating conditions and optimal configurations of the power amplifier.
The present invention provides an advanced adaptive predistortion linearization technique to dramatically reduce nonlinear distortion in power amplifiers over a very wide instantaneous bandwidth (up to 2 GHz) and over a wide range of amplifier types, input frequencies, signal types, amplitudes, temperature, and other environmental and signal conditions. In an embodiment of the invention, the predistortion linearization circuitry comprises (1) a higher-order polynomial model of an amplifier's gain and phase characteristics—higher than a third-order polynomial model; (2) an adaptive calibration technique; and (3) a heuristic calibration technique. The higher-order polynomial model is generated by introducing, for example, a plurality of multi-tone test signals with varying center frequency and spacing into the power amplifier. From the power amplifier's corresponding output, the nonlinearities are modeled by employing a higher-order curve fit to capture the irregularities in the nonlinear transfer function. Different distortion transfer functions can be implemented for different operating conditions. The adaptive calibration technique is based on a feedback analysis technique, which updates the applicable distortion transfer function by analyzing the error signal between the introduced input signal and the output signal in real-time. The heuristic calibration technique implements different distortion transfer functions based on historical operating conditions and optimal configurations of the power amplifier.
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for modulating and demodulating transpositional modulated (TM) signals. One aspect features a method of modulating a carrier signal that include the actions of generating a TM signal by generating a sinusoidal signal, and modulating the sinusoidal signal based on a data signal to provide the TM signal. Inserting the TM signal into a carrier signal to provide a TM modulated carrier signal. Modulating the TM modulated carrier signal with a non-TM signal to provide a combined signal. Transmitting the combined signal.