A method for automated steering by machine vision receives a point cloud that is generated using a stereo camera. A location of a row is determined based on the point cloud and a steering angle is generated based on the location of the row. The center of the row is detected using a Hough transform detection algorithm and a horizontal projection of the point cloud.
Method of measuring ionosphere scintillation phase index Sigma-Phi, the method including, for each of N satellites being tracked, calculating a phase prediction at an i-th sample; for each of the N satellites, calculating an individual loop discriminator signal based on the phase prediction; rejecting the i-th samples of some of the N satellites, where K non-rejected satellites remain; calculating common loop discriminator signal based on the individual loop discriminator signals of non-rejected K satellites; calculating a phase estimate and a Doppler frequency estimate at the i-th sample for each of the N satellites based on individual loop discriminator signal; calculating test statistic based on the phase estimate at the i-th sample and an observed phase for each of the N satellites; calculating index Sigma-Phi as standard deviation estimation of the test statistic for each of the N satellites; and outputting the index Sigma-Phi for each of the N satellites.
G01S 19/07 - Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
G01S 19/14 - Receivers specially adapted for specific applications
G01S 19/29 - Acquisition or tracking of signals transmitted by the system carrier related
G01S 19/37 - Hardware or software details of the signal processing chain
G01S 19/39 - Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
Dual-fed antenna includes a ground plane; first and second metal patch radiators positioned over the ground plane, the first and second metal patch radiators are mirror images of each other; the first and second metal patch radiators separated by a meander-shaped gap, thereby forming an interdigitated structure, with each radiator having at least three digits; each digit shorted to the ground plane using a corresponding metal pin; each radiator having a coaxial feed implemented as a connector connected to it through the ground plane, or an aperture-coupled feed. Matching networks can be connected to the coaxial feeds at both ports or to microstrip lines connected to the slots of the aperture-coupled feeds. Each radiator can have tuning pins on an opposite side of the radiator from the digits, where each tuning pin can have a capacitive load. A dielectric plate can be placed between the radiators and the ground plane.
Method for detecting motion of an object using GNSS signals, including (i) measuring distances between a GNSS antenna and GNSS satellites with carrier phases at a first time; (ii) computing distances between known positions of antenna and satellites at first time; (iii) for each satellite, calculating first set of residuals=distances in (i)— distances in (ii); (iv) measuring distances between antenna and satellites with carrier phases at a second time; (v) computing distances between known positions of antenna and satellites at second time; (vi) for each satellite, calculating second set of residuals=distances in (iv)— distances in (v); (vii) differencing first and second sets of residuals; (viii) computing a metric based on set of differences in (vii); (ix) comparing metric to a threshold; (x) based on comparison in (ix), determining if object moved or possibly moved between first time and second time.
A method for machine operator command attenuation includes the step of detecting a position of a boom, stick, and bucket of a hydraulic implement of a construction machine. Movement of the stick is detected by a controller. The controller determines if the movement of the stick will cause excavation below a desired grade. If the movement will not cause excavation below a desired grade, the controller will take no action. If the movement will cause excavation below a desired grade, the controller will command the boom to raise.
E02F 3/43 - Control of dipper or bucket position; Control of sequence of drive operations
E02F 3/32 - Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam working downwardly and towards the machine, e.g. with backhoes
A vehicle autosteering system having a controller determines steering commands based on GNSS receiver position data, inertial measurement system data, and steering shaft rotation encoder data. The controller outputs a signal to drive an electric motor that rotates the vehicles steering shaft, changing the steering angle and guiding the vehicle along a predefined path e.g., a straight line.
B60W 10/20 - Conjoint control of vehicle sub-units of different type or different function including control of steering systems
G05D 1/02 - Control of position or course in two dimensions
G01S 19/49 - Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an inertial position system, e.g. loosely-coupled
A01B 69/04 - Special adaptations of automatic tractor steering, e.g. electric system for contour ploughing
A Global Navigation Satellite System (GNSS) receiver for processing GNSS satellite signals use reloadable channel implementation. The configuration of each channel for processing GNSS signals can be saved and loaded to the same or different channels in order to reduce the time required for channel configuration.
An integrated compact radio antenna system for receiving and transmitting 5G signals and receiving GNSS signals is described. The system comprises a high-precision GNSS antenna and a MIMO 5G multi-element antenna system. All the antennas within the proposed compact system are integrated with a shielded housing that enables electronic components of GNSS receiver and 5G modem to be arranged inside. The proposed integrated system has the following advantages: 1) compactness, 2) high efficiency of MIMO 5G antenna system, 3) a high degree of decoupling between 5G antennas, 4) a high degree of decoupling between 5G and GNSS antennas.
H01Q 5/20 - Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
An apparatus for detecting global navigation satellite system (GNSS) spoofing, including a GNSS receiver that includes a first radio-frequency front-end (RF1) connected to antenna 1; a second radio-frequency front-end (RF2) connected to antenna 2; a digital section connected to both RF1 and RF2 and controlled with a single frequency oscillator. The digital section generates a first set of GNSS raw measurements based on signals received from antenna 1; generates a second set of GNSS raw measurements based on signals received from antenna 2; computes single differences between simultaneous raw measurements, generated with the signals received from the antenna 1 and the antenna 2 for the same GNSS satellite; compares the single differences with a threshold; and issues a spoofing alert when more than one of the single differences is below a threshold.
A Global Navigation Satellite System (GNSS) receiver for processing GNSS satellite signals use a quasi-asynchronous sampling frequency grid to process the received signals. The GNSS receiver includes a plurality of RF paths configured to receive Global Navigation Satellite System (GNSS) signals from an antenna and transmit the GNSS signals in a frequency range for digitizing the GNSS signals. A phase-locked loop is configured to generate a clock signal and a plurality of clock dividers are configured to receive the clock signal and divide the clock signal. Each of a plurality of navigation systems receive a clock signal from one of the plurality of clock dividers.
A method and system for zone mapping displays a geographic area to a user and receives input from the user identifying a zone of the geographic area. An identification of an agricultural material to be applied in the zone is also received and an application plan is generated in response. The application plan is generated based on features identified in the zone, the agricultural material to be applied, and application requirements and restrictions associated with the agricultural material that are identified by the manufacturer of the material and, in some cases, governmental agencies. The agricultural machine tracks the application of the agricultural material and transmits application information for storage in the zone mapping system for later retrieval in response to requests, such as compliance requests.
A01M 7/00 - Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
B60K 35/00 - Arrangement or adaptations of instruments
G01C 21/00 - Navigation; Navigational instruments not provided for in groups
B60K 35/28 - characterised by the type of the output information, e.g. video entertainment or vehicle dynamics information; characterised by the purpose of the output information, e.g. for attracting the attention of the driver
G06F 3/0484 - Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
A broadband GNSS antenna has a broadband patch radiator with top slot excitation and a one-groove slotted vertical choke-ring structure around the patch radiator. The patch radiator includes a radiator ground plane, a slotted-fed radiation patch, a broadband feeding network, and a set of elements with vertical currents. The vertical choke-ring structure contains a top conducting surface with a set of slots, a bottom conducting surface and an adjacent vertical conducting cylinder.
H01Q 9/00 - Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
13.
METHOD AND APPARATUS FOR OFDM-BASED LOCAL POSITIONING SYSTEM
A method and apparatus is provided for determining a mobile station's position by utilizing modified Wi-Fi signals and transmitting and receiving Wi-Fi signals by a plurality of base stations, receiving signals transmitted by these base stations (which have known coordinates) and located in some proximity to the mobile station, and calculating position coordinates of the mobile station (also referred to herein as a mobile object) based on the signals.
G01S 5/02 - Position-fixing by co-ordinating two or more direction or position-line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
H04W 64/00 - Locating users or terminals for network management purposes, e.g. mobility management
A method and apparatus for determining a position and attitude of a marker having encoded information includes the step of acquiring an image of a marker by a stereo camera. A center of the marker is determined and then a position of the marker is determined based on the center of the marker. A plurality of vertices on the marker about the center of the marker are then determined. Using the plurality of vertices, a pitch, roll, and heading of the marker are determined. An attitude of the marker is determined based on the pitch, roll, and heading of the marker. The method and/or apparatus for determining a position and attitude of a marker can be used in various applications to determine the position and attitude of objects on which the marker is located.
G06V 10/22 - Image preprocessing by selection of a specific region containing or referencing a pattern; Locating or processing of specific regions to guide the detection or recognition
G06T 7/73 - Determining position or orientation of objects or cameras using feature-based methods
G06V 20/56 - Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
15.
Digital reconfigurable apparatus for spectrum analysis and intreference rejection
Digital anti-jam apparatus includes a CPU; N spectrum analysis and band rejection (SABR) modules, each receiving a digital quadrature signal input, outputting a spectral data output, and outputting a quadrature output with interference band rejected; the CPU first places the SABR modules into a spectral analysis (SA) mode, and upon detection of interference, places the SABR modules into a band rejection (BR) mode while the interference continues; N N-to-1 multiplexers, whose quadrature outputs are connected to corresponding SABR modules, wherein the CPU controls whether to connect an input of each multiplexer either to the quadrature signal input or to the quadrature band-reject output of any other SABR module; a (N+1)-to-1 multiplexer, connected to the quadrature signal input or to the quadrature output of any SABR module; and a frequency conversion module, that receives output of the (N+1)-to-1 multiplexer and shifts a spectrum of the digital quadrature signal input.
A Global Navigation Satellite System (GNSS) receiver for processing GNSS satellite signals use a quasi-asynchronous sampling frequency grid to process the received signals. The GNSS receiver includes a plurality of RF paths configured to receive Global Navigation Satellite System (GNSS) signals from an antenna and transmit the GNSS signals in a frequency range for digitizing the GNSS signals. A phase-locked loop is configured to generate a clock signal and a plurality of clock dividers are configured to receive the clock signal and divide the clock signal. Each of a plurality of navigation systems receive a clock signal from one of the plurality of clock dividers.
Navigation receiver comprising navigation system (200) includes a plurality of range frequency paths configured to receive Global Navigation Satellite Systems (GNSS) signals from an antenna and transmit the GNSS signals in a frequency range for digitizing the GNSS signals. Navigation system includes a number of Analog Digital Converters (101); a plurality of signal processors forming a plurality of signal paths (102); requantizers (103); navigation channels (104); time control (105) transmitting tick signal (S106). The navigation receiver also includes a central processing unit (CPU) system (110) which includes CPU (107), BUS (databus) (108), and memory (109), which receives data readiness flag signal (S i l l). The navigation system and the CPU system connect by interface blocks (202) and (203). The invention provides increased speed of processing of navigation data.
A method for automated steering by machine vision receives a point cloud that is generated using a stereo camera. A location of a row is determined based on the point cloud and a steering angle is generated based on the location of the row. The center of the row is detected using a Hough transform detection algorithm and a horizontal projection of the point cloud.
A Global Navigation Satellite System receiver comprises: a plurality of radio frequency paths; a navigation system (200); a plurality of analog to digital convertors (101); a plurality of signal processors (102); a plurality of re-quantizers (103); a plurality of Navigation system to central processing unit (CPU) System interface blocks (202); a MUX interconnect (201); a time control unit (105); a CPU system (210) operating based on the tick signal, the CPU system operating at a speed based on a CPU Clock (CLKcpu) and comprising: a memory (109); a multi-channel data manager (205); a plurality of channels (104); a direct memory access channel reload (207); a CPU (107). The invention is aimed at increasing the speed of processing navigation data.
A navigation receiver receives a global navigation satellite system signal and processes the signal in a manner that lowers the load on a processor used in the navigation receiver. The navigation receiver includes multiple components that are assembled and configured to detect and respond to events, such as the generation of signals, using a relaxed tick signal that lowers the load on the processor of the navigation receiver.
Method of demodulation of M-CPFSK signal, includes receiving the M-CPFSK radio signal; moving it to zero frequency; sampling at no less than double a frequency of symbols; storing the samples with their amplitude and phase for at least L4 symbols; demodulating the sampled signal in three stages, wherein each stage includes iterating over symbol values within a block of symbols, of length is L1, L2 and then L3; in the first stage, N1 symbol sequences out of all possible symbol sequences are iterated over, at the second stage, N2 symbol sequences out of all possible symbol sequences are iterated over, and at the third stage, N3 symbol sequences out of all possible symbol sequences are iterated over, to obtain final symbol values; symbol values obtained at previous stage is used in a next stage to reduce a number of symbol sequences; and determining encoded bits based on final symbol values.
H04L 27/148 - Demodulator circuits; Receiver circuits with demodulation using spectral properties of the received signal, e.g. by using frequency selective- or frequency sensitive elements using filters, including PLL-type filters
A method and apparatus for processing global navigation satellite signals, or radar signals, specifies an arrival time of a signal having a shape similar to a known pseudo-random noise sequence (PRN) of rectangular pulses. Two quadrature signals are generated and six correlations are calculated and multiplied by a correlation coefficient. The results of one of quadrature signals are summed and a timing error is estimated. An improved signal arrival time is generated by adding the estimated timing error to the predicted signal arrival time is generated.
A right-hand circularly-polarized patch antenna comprising a ground plane and a patch connected to each other with one or more wires for which the wire shape and location of the end points are selected such that they do not cause an antenna mismatch, and the electrical current carried in the wires produces an extra electromagnetic field subtracted from the patch field in the nadir direction.
An apparatus includes an antenna, RF path, Analog to Digital convertor (ADC), filter, and navigation channel for processing a received GNSS signal based on a navigation clock. A communication modem is configured to receive the signal via a first antenna, RF path, and ADC and process the received signal in order to generate a signal based on a modem clock. The communication modem is further configured to transmit the signal based on the modem clock using a R+1 antenna via a R+1 RF path and a Digital to Analog Convertor (DAC). A multichannel synchronous signal analysis system (MSSAS) receives outputs of the ADCs and processes them using a plurality of decimators and plurality data receivers. Each of the decimators is configured to process the outputs of the ADCs and output data to one of a plurality of data receivers. A CPU is configured to control all of the devices.
A method and apparatus for mitigation of GNSS-signal interference using an adaptive notch filter (ANF) operates based on signals received from one or more satellites of a Global Navigation Satellite System (GNSS) such as GPS, GLONASS, etc. In one embodiment, an apparatus comprises a notch filter having a tunable zero frequency of a transfer function receives an input signal and generates an output signal. A bandpass filter coupled to the output of the notch filter receives the output signal. An adaptive block is coupled to the bandpass filter and adjusts the notch filter parameters in order to achieve the minimization of a specific cost function.
A method and apparatus for determining a position and attitude of a marker having encoded information includes the step of acquiring an image of a marker by a stereo camera. A center of the marker is determined and then a position of the marker is determined based on the center of the marker. A plurality of vertices on the marker about the center of the marker are then determined. Using the plurality of vertices, a pitch, roll, and heading of the marker are determined. An attitude of the marker is determined based on the pitch, roll, and heading of the marker. The method and/or apparatus for determining a position and attitude of a marker can be used in various applications to determine the position and attitude of objects on which the marker is located.
A method and apparatus for fast searching GNSS signals performed on a GNSS receiver includes the steps of receiving a signal having a known pseudo random noise code. State information of a code generator is stored when a pseudo random noise code is generated. Several NCO, including a Doppler NCO are used to search GNSS signal for several supposed Doppler’s simultaneously. A search window associated with the received signal is reviewed a first time to identify a source of the received signal. After it is determined if a source of the received signal can be identified, the state information is loaded into the code generator prior to reviewing the search window a second time etc. Search windows is shifting by all length PRN Code. The loading of state information allows sequential review of the search window without readjustment of a fast search module which speeds the process of analyzing the received signals.
An apparatus for forming wideband pseudo random noise signals includes a set of channels each comprising an NCO having a controlled frequency and phase and a PRN code generator, the NCO generating a strobe that is output to the PRN code generator. The PRN code generator forms a new sequence element of +1 or −1 in response to the strobe. The apparatus also comprises a first modulator having a plurality of weight coefficients, a plurality of multipliers each multiplying one of the weight coefficients, an adder outputting a sum of the plurality of multipliers output signals, and a mixer with a quadrature output signal multiplying the adder's output by sine and cosine of a low intermediate frequency. The apparatus also includes a processor controlling the set of channels, a transceiver module to receive and/or transmit quadrature signals, and an interface connecting the output of the mixer and the transceiver module.
H03K 3/84 - Generating pulses having a predetermined statistical distribution of a parameter, e.g. random pulse generators
G01S 1/04 - Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves - Details
G01S 7/02 - RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES - Details of systems according to groups , , of systems according to group
G01S 19/03 - Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
G01S 19/23 - Testing, monitoring, correcting or calibrating of a receiver element
H04B 1/713 - Spread spectrum techniques using frequency hopping
H04B 15/00 - Suppression or limitation of noise or interference
H04L 27/02 - Amplitude-modulated carrier systems, e.g. using on/off keying; Single sideband or vestigial sideband modulation
29.
METHOD AND APPARATUS FOR LOWERING PROCESSOR LOADING
A navigation receiver receives a global navigation satellite system signal and processes the signal in a manner that lowers the load on a processor used in the navigation receiver. The navigation receiver includes multiple components that are assembled and configured to detect and respond to events, such as the generation of signals, using a relaxed tick signal that lowers the load on the processor of the navigation receiver.
Method of demodulation of M-CPFSK signal, includes receiving the M-CPFSK radio signal; moving it to zero frequency; sampling at no less than double a frequency of symbols; storing the samples with their amplitude and phase for at least L4 symbols; demodulating the sampled signal in three stages, wherein each stage includes iterating over symbol values within a block of symbols, of length is L1, L2 and then L3; in the first stage, N1 symbol sequences out of all possible symbol sequences are iterated over, at the second stage, N2 symbol sequences out of all possible symbol sequences are iterated over, and at the third stage, N3 symbol sequences out of all possible symbol sequences are iterated over, to obtain final symbol values; symbol values obtained at previous stage is used in a next stage to reduce a number of symbol sequences; and determining encoded bits based on final symbol values.
H04L 27/148 - Demodulator circuits; Receiver circuits with demodulation using spectral properties of the received signal, e.g. by using frequency selective- or frequency sensitive elements using filters, including PLL-type filters
Method of reducing multipath effects on phase measurements, including receiving radio signals with different pseudo-random codes transmitted by at least four base stations, each at particular frequency received by one channel; measuring delay difference and phase difference from different pairs of base stations; calculating a current position of the receiver based on the measured phase differences and delay differences, wherein the base stations differ in pseudo-random codes at same frequencies or differ in carrier frequency or polarization type if using the same pseudo-random codes, and wherein a number of channels in the receiver exceeds a number of channels needed for the calculating of the current position; detecting anomalous jumps in phase of one or more channels, based on first or second derivative of the phase, as being indicative of multipath signal reception; removing those channels from calculation of current position; and calculating current position based on remaining channels.
G01S 5/02 - Position-fixing by co-ordinating two or more direction or position-line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
G01S 5/10 - Position of receiver fixed by co-ordinating a plurality of position lines defined by path-difference measurements
33.
GLOBAL NAVIGATION SYSTEM/RADAR COMMON SIGNAL PROCESSING
A method and apparatus for processing global navigation satellite signals, or radar signals, specifies an arrival time of a signal having a shape similar to a known pseudo-random noise sequence (PRN) of rectangular pulses. Two quadrature signals are generated and six correlations are calculated and multiplied by a correlation coefficient. The results of one of quadrature signals are summed and a timing error is estimated. An improved signal arrival time is generated by adding the estimated timing error to the predicted signal arrival time is generated.
An apparatus includes an antenna, RF path, Analog to Digital converter (ADC), filter, and navigation channel for processing a received GNSS signal based on a navigation clock. A communication modem is configured to receive the signal via a first antenna, RF path, and ADC and process the received signal in order to generate a signal based on a modem clock. The communication modem is further configured to transmit the signal based on the modem clock using a R+1 antenna via a R+1 RF path and a Digital to Analog Converter (DAC). A multichannel synchronous signal analysis system (MSSAS) receives outputs of the ADCs and processes them using a plurality of decimators and plurality data receivers. Each of the decimators is configured to process the outputs of the ADCs and output data to one of a plurality of data receivers. A CPU is configured to control all of the devices.
G01S 19/33 - Multimode operation in different systems which transmit time stamped messages, e.g. GPS/GLONASS
H04L 7/027 - Speed or phase control by the received code signals, the signals containing no special synchronisation information extracting the synchronising or clock signal from the received signal spectrum, e.g. by using a resonant or bandpass circuit
35.
METHOD AND APPARATUS FOR FORMING WIDEBAND PRN SIGNALS
An apparatus for forming wideband pseudo random noise signals includes a set of channels each comprising an NCO having a controlled frequency and phase and a PRN code generator, the NCO generating a strobe that is output to the PRN code generator. The PRN code generator forms a new sequence element of +1 or -1 in response to the strobe. The apparatus also comprises a first modulator having a plurality of weight coefficients, a plurality of multipliers each multiplying one of the weight coefficients, an adder outputting a sum of the plurality of multipliers output signals, and a mixer with a quadrature output signal multiplying the adder's output by sine and cosine of a low intermediate frequency. The apparatus also includes a processor controlling the set of channels, a transceiver module to receive and/or transmit quadrature signals, and an interface connecting the output of the mixer and the transceiver module.
The Skolkovo Institute of Science and Technology (Russia)
Inventor
Rapoport, Lev Borisovich
Tormagov, Timofey
Di Federico, Ivan Giovanni
Abstract
A method for path planning for a machine to traverse an area includes calculating a spline trajectory based on a plurality of control points of a first path. A subset of the plurality of control points having an equal step is selected. A direction of the normal to the spline trajectory for each of the selected points is determined. Control points within the subset that are a solution to a second order cone programming class optimization problem along each normal to the spline trajectory are searched for and the spline trajectory is extended to a border of the area to create a second path adjacent to the first path based on the control points. The optimization problem can minimize the weighted sum of the average curvature at junction points of elementary sections of the spline trajectory and/or the average width overlap of adjacent paths.
Systems and methods for calculating a plant spread and a plant density of vegetation are provided. An ultrasonic signal is transmitted towards vegetation by one or more transducers. A plurality of echo signals is received as reflections of the ultrasonic signal by the one or more transducers. A plant spread of the vegetation is calculated based on a first echo signal of the plurality of echo signals and a last echo signal of the plurality of echo signals. A plant density of the vegetation is calculated based on the plurality of echo signals. The plant spread and the plant density of the vegetation are output.
Systems and methods for calculating a plant spread and a plant density of vegetation are provided. An ultrasonic signal is transmitted towards vegetation by one or more transducers. A plurality of echo signals is received as reflections of the ultrasonic signal by the one or more transducers. A plant spread of the vegetation is calculated based on a first echo signal of the plurality of echo signals and a last echo signal of the plurality of echo signals. A plant density of the vegetation is calculated based on the plurality of echo signals. The plant spread and the plant density of the vegetation are output.
G01S 7/539 - RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES - Details of systems according to groups , , of systems according to group using analysis of echo signal for target characterisation; Target signature; Target cross-section
G01S 7/52 - RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES - Details of systems according to groups , , of systems according to group
G01S 15/04 - Systems determining presence of a target
G01S 15/42 - Simultaneous measurement of distance and other coordinates
G01S 15/86 - Combinations of sonar systems with lidar systems; Combinations of sonar systems with systems not using wave reflection
39.
METHOD AND APPARATUS FOR FAST SEARCHING GNSS SIGNALS
A method and apparatus for fast searching GNSS signals performed on a GNSS receiver includes the steps of receiving a signal having a known pseudo random noise code. State information of a code generator is stored when a pseudo random noise code is generated. Several NCO, including a Doppler NCO are used to search GNSS signal for several supposed Doppler's simultaneously. A search window associated with the received signal is reviewed a first time to identify a source of the received signal. After it is determined if a source of the received signal can be identified, the state information is loaded into the code generator prior to reviewing the search window a second time etc. Search windows is shifting by all length PRN Code. The loading of state information allows sequential review of the search window without readjustment of a fast search module which speeds the process of analyzing the received signals.
Systems and methods for determining a swing angle of a swing boom of a vehicle are provided. Sensor data is received from sensors disposed on a swing boom and a body of a vehicle. It is determined whether the swing boom is static or moving relative to the body based on the sensor data. In response to determining that the swing boom is static, the received sensor data is corrected based on an observed swing angle and an estimated swing angle is calculated based on the corrected sensor data. In response to determining that the swing boom is moving, the estimated swing angle is calculated based on the received sensor data. The estimated swing angle is output.
G01B 21/22 - Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for testing the alignment of axes
G01P 15/08 - Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values
G01P 15/18 - Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
41.
AN IMU BASED SYSTEM FOR VERTICAL AXIS JOINT ANGLE ESTIMATION FOR SWING BOOM EXCAVATORS
Systems and methods for determining a swing angle of a swing boom of a vehicle are provided. Sensor data is received from sensors disposed on a swing boom and a body of a vehicle. It is determined whether the swing boom is static or moving relative to the body based on the sensor data. In response to determining that the swing boom is static, the received sensor data is corrected based on an observed swing angle and an estimated swing angle is calculated based on the corrected sensor data. In response to determining that the swing boom is moving, the estimated swing angle is calculated based on the received sensor data. The estimated swing angle is output.
An antenna comprising a ground plane, a composite radiation patch, and an excitation circuit is described herein. The composite radiation patch is disposed on a printed circuit board and comprises a conducting plate and a plurality of conductive strips. The composite radiation patch comprises an outer region and an inner region separated by a circle of a given radius. The conducting plate comprises 1) a first set of arcuate slots disposed on the circle and 2) a second set of slots each contacting an external perimeter of the conducting plate at one end and a corresponding slot of the first set of arcuate slots at another end. The plurality of conductive strips is disposed within the outer region of the composite radiation patch, with one or more of the plurality of conductive strips galvanically contacting the conducting plate. The excitation circuit is disposed on the printed circuit board for exciting a right hand circularly polarized wave. The excitation circuit comprises a plurality of microstrip lines and a feeding network to which the plurality of microstrip lines are connected.
H01Q 21/20 - Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along, or adjacent to, a curvilinear path
A combined cellular/GNSS (global navigation satellite systems) antenna is provided. The combined cellular/GNSS antenna comprises an external area and an internal area delineated by a circumference of a circle. The combined cellular GNSS antenna further comprises a cellular antenna and a GNSS antenna. The cellular antenna comprises a set of cellular radiators disposed in the external area and connected to a cellular feeding network for excitation of the set of cellular radiators. The GNSS antenna comprises radiation elements disposed in the internal area and has a center located substantially at a center of the circle.
2 within an attraction domain; and for any spatial and orientation coordinates of the robot outside the attraction domain, the system continues maneuvering until the robot is inside the attraction domain.
2 plane are defined by Lurie-Postnikov functions and is less than 1; for spatial and orientation coordinates outside the attraction domain with V(z)>1, terminating the programmed path and generating notification.
An earthmoving machine and method for automatically controlling cyclical operations of the earthmoving machine are disclosed. The earthmoving machine includes a plurality of machine elements each controlled by one or more respective actuators. the method comprises: determining a current machine state; calculating control signals for at least one actuator when the current machine state corresponds to a cyclical operation; and transmitting the control signals to the at least one actuator to automatically control the cyclical operation.
Systems and methods for adjusting a height of an implement mounted on a body of a vehicle as the vehicle travels over a terrain are provided. Sensor data is received from a set of sensors disposed on the vehicle. A trajectory associated with the vehicle is determined based on the received sensor data. A profile of the terrain is estimated based on the determined trajectory associated with the vehicle. A ditch is detected in the terrain and compensation values for adjusting the height of the implement are determined based on the estimated profile of the terrain to compensate for the detected ditch. One or more control signals are transmitted to one or more actuators for adjusting the height of the implement based on the determined compensation values.
Systems and methods for adjusting a height of an implement (104) mounted on a body (102) of a vehicle (100) as the vehicle travels over a terrain (108) are provided. Sensor data is received from a set of sensors (122,124) disposed on the vehicle. A trajectory associated with the vehicle is determined based on the received sensor data. A profile of the terrain is estimated based on the determined trajectory associated with the vehicle. A ditch is detected in the terrain and compensation values for adjusting the height of the implement are determined based on the estimated profile of the terrain to compensate for the detected ditch. One or more control signals are transmitted to one or more actuators (118) for adjusting the height of the implement based on the determined compensation values.
G05B 13/02 - Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
A material independent mass flow sensor is used to generate signals that can be used to calculate mass flow of grain harvested by a combine. A method for determining a mass of material includes the steps of receiving data from a three-measurement transducer and determining an angular center of mass location of an object based on the data from the three-measurement transducer. A coefficient of friction of the object is determined. A velocity of the object is determined. A mass of the object is determined. The mass of the object can be determined based on the angular center of mass location of the object, the coefficient of friction of the object, and the velocity of the object.
G01F 1/30 - Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow by drag-force, e.g. vane type or impact flowmeter for fluent solid material
A01D 41/127 - Control or measuring arrangements specially adapted for combines
G01N 19/02 - Measuring coefficient of friction between materials
A material independent mass flow sensor is used to generate signals that can be used to calculate mass flow of grain harvested by a combine. A method for determining a mass of material includes the steps of receiving data from a three-measurement transducer and determining an angular center of mass location of an object based on the data from the three-measurement transducer. A coefficient of friction of the object is determined. A velocity of the object is determined. A mass of the object is determined. The mass of the object can be determined based on the angular center of mass location of the object, the coefficient of friction of the object, and the velocity of the object.
A01D 41/127 - Control or measuring arrangements specially adapted for combines
G01F 1/30 - Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow by drag-force, e.g. vane type or impact flowmeter for fluent solid material
G01F 1/80 - Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
G01N 19/02 - Measuring coefficient of friction between materials
51.
Method and apparatus for receiving chip-by-chip multiplexed CSK signals
G01S 19/27 - Acquisition or tracking of signals transmitted by the system creating, predicting or correcting ephemeris or almanac data within the receiver
A method and system for zone mapping displays a geographic area to a user and receives input from the user identifying a zone of the geographic area. An identification of an agricultural material to be applied in the zone is also received and an application plan is generated in response. The application plan is generated based on features identified in the zone, the agricultural material to be applied, and application requirements and restrictions associated with the agricultural material that are identified by the manufacturer of the material and, in some cases, governmental agencies. The agricultural machine tracks the application of the agricultural material and transmits application information for storage in the zone mapping system for later retrieval in response to requests, such as compliance requests.
A01M 7/00 - Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
B60K 35/00 - Arrangement or adaptations of instruments
G05D 1/00 - Control of position, course, altitude, or attitude of land, water, air, or space vehicles, e.g. automatic pilot
G06F 3/0484 - Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
A method for mapping a height of a crop in a field divided into a plurality of areas includes determining a height of a cutting bar of an agricultural machine and receiving data from a crop height sensor. The height of crops sensed by the crop height sensor is determined based on the height of the cutting bar and data from the crop height sensor. The crop height is then associated with one of a plurality of areas of the field based on a location of the crop height sensor. In one embodiment, the height of a reel of the agricultural machine is also used in determining the height of crops. The crop height data is used to generate a field map that is used to generate a field treatment plan.
A method for the application of agricultural fluid to a field includes determining a location of each of a plurality of nozzles of an agricultural spraying machine. A flow rate for each of the nozzles is determined based on each respective nozzle's location in the field. A field map is used to determine a crop requirement and application restriction associated with a nozzle's location. The field map contains indications of crop requirements and application restrictions. The flow rate for a nozzle is determined by comparing the nozzle's location to the field map. A flow rate signal is transmitted to each of the nozzles based on its determined flow rate.
A method and system for zone mapping displays a geographic area to a user and receives input from the user identifying a zone of the geographic area. An identification of an agricultural material to be applied in the zone is also received and an application plan is generated in response. The application plan is generated based on features identified in the zone, the agricultural material to be applied, and application requirements and restrictions associated with the agricultural material that are identified by the manufacturer of the material and, in some cases, governmental agencies. The agricultural machine tracks the application of the agricultural material and transmits application information for storage in the zone mapping system for later retrieval in response to requests, such as compliance requests.
A method for mapping a height of a crop in a field divided into a plurality of areas includes determining a height of a cutting bar of an agricultural machine and receiving data from a crop height sensor. The height of crops sensed by the crop height sensor is determined based on the height of the cutting bar and data from the crop height sensor. The crop height is then associated with one of a plurality of areas of the field based on a location of the crop height sensor. In one embodiment, the height of a reel of the agricultural machine is also used in determining the height of crops. The crop height data is used to generate a field map that is used to generate a field treatment plan.
A method for the application of agricultural fluid to a field includes determining a location of each of a plurality of nozzles of an agricultural spraying machine. A flow rate for each of the nozzles is determined based on each respective nozzle's location in the field. A field map is used to determine a crop requirement and application restriction associated with a nozzle's location. The field map contains indications of crop requirements and application restrictions. The flow rate for a nozzle is determined by comparing the nozzle's location to the field map. A flow rate signal is transmitted to each of the nozzles based on its determined flow rate.
A01C 23/00 - Distributing devices specially adapted for liquid manure or other fertilising liquid, including ammonia, e.g. transport tanks or sprinkling wagons
A01C 23/04 - Distributing under pressure; Distributing mud; Adaptation of watering systems for fertilising-liquids
A01M 7/00 - Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
B05B 12/12 - Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material discharged, of ambient medium or of target responsive to conditions of ambient medium or target, e.g. humidity, temperature
B05B 12/16 - Arrangements for controlling delivery; Arrangements for controlling the spray area for controlling the spray area
58.
Method and device for determining a vehicle position
The present disclosure describes a method and an apparatus for determining a corrected position of a vehicle based on a stable landmark. The method includes determining a last known position vector of the vehicle; capturing an image within a vicinity of a vehicle using an imaging device; identifying a stable landmark within the captured image based on a previously constructed reference map of the vicinity of the vehicle; determining a correction for a position of the vehicle based on the determined last known position vector of the vehicle and the identified stable landmark; and determining an updated position of the vehicle based on the determined correction.
A GNSS-UHF antenna, including a first PCB having four sets of radiating elements, a second PCB below the first PCB, a metal plate below the second PCB, which form a quadrifilar helical antenna for operating with right-hand circularly polarized GNSS signals and simultaneously form a monopole antenna for operating with linearly polarized UHF signals; for each set of radiating elements, a corresponding downward-extending conductor connected to the second PCB at a first end and connected to the set of radiating elements at a second end through an inductor; a first coaxial cable outputting GNSS signals; the first cable includes a partial loop between the second shield and the metal plate; and a second cable outputting the UHF and its braiding connected to the metal plate.
H01Q 1/24 - Supports; Mounting means by structural association with other equipment or articles with receiving set
H01Q 5/314 - Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
H01Q 21/28 - Combinations of substantially independent non-interacting antenna units or systems
60.
GNSS receiver with synchronization to external timescale
GNSS timing receiver with synchronization of raw GNSS measurements to an external timescale. Synchronization is achieved by using a hardware Time Interval Measurement Unit (TIMU). The TIMU measures time intervals between two pulse signals and makes additional processing of these measurements. The first pulse signal is generated inside the GNSS receiver. The second pulse signal is the external pulse signal generated by an external time reference device. This time interval is used to control the time instant when the output GNSS measurement will be taken. In the first embodiment all actual GNSS measurements are physically taken at time instants indicated by external pulse signal. These measurements are used as output GNSS measurements. In another embodiment all actual GNSS measurements are taken at their default time instants indicated by internal pulse signal. But output GNSS measurements are calculated at the time instants indicated by the external pulse signal.
GNSS receiver which includes RF front end, connected to GNSS antenna, an ADC converting the satellite signals into digitized signals, a digital section, including a processor receiving the digitized signals, forming raw measurements with pseudoranges measured between the antenna and satellites, and estimating target parameters, including receiver position and receiver time offset by (i) extrapolating the target parameters from previous epoch to current epoch using a dynamic model; (ii) computing a quasi-measurement for each satellite based on extrapolated target parameters and GNSS satellite positions; (iii) detecting and rejecting raw measurements with anomalous errors by testing differences between the raw measurements and respective quasi-measurements against predefined thresholds; (iv) substituting quasi-measurements for rejected raw measurements; (v) estimating target parameters using unrejected raw measurements and substituted quasi-measurements; (vi) outputting estimated target parameters.
Systems and methods for stabilizing a header of a combine harvester are provided. A vertical disturbance signal indicative of a vertical disturbance on the header and a lateral tilt disturbance signal indicative of a lateral tilt disturbance on the header are received from one or more sensors disposed on the header. A compensated vertical displacement value is determined based on the vertical disturbance signal and a compensated lateral tilt displacement value is determined based on the lateral tilt disturbance signal. One or more control signals are transmitted to one or more actuators to vertically displace the header based on the compensated vertical displacement value to compensate for the vertical disturbance and to rotationally displace the header about a pivot joint based on the compensated lateral tilt disturbance signal to compensate for the lateral tilt disturbance.
Systems and methods for stabilizing a header of a combine harvester are provided. A vertical disturbance signal indicative of a vertical disturbance on the header and a lateral tilt disturbance signal indicative of a lateral tilt disturbance on the header are received from one or more sensors disposed on the header. A compensated vertical displacement value is determined based on the vertical disturbance signal and a compensated lateral tilt displacement value is determined based on the lateral tilt disturbance signal. One or more control signals are transmitted to one or more actuators to vertically displace the header based on the compensated vertical displacement value to compensate for the vertical disturbance and to rotationally displace the header about a pivot joint based on the compensated lateral tilt disturbance signal to compensate for the lateral tilt disturbance.
A self-leveling laser transmitter is provided. The laser transmitter comprises a rotation head and an accelerometer mounted on the rotation head. An acceleration signal is received from the accelerometer and one or more tilt adjustment signals for adjusting a tilt of the rotation head to a leveled orientation are generated based on the acceleration signal. One or more actuators adjust the tilt of the rotation head based on the one or more tilt adjustment signals.
A self-leveling laser transmitter is provided. The laser transmitter comprises a rotation head and an accelerometer mounted on the rotation head. An acceleration signal is received from the accelerometer and one or more tilt adjustment signals for adjusting a tilt of the rotation head to a leveled orientation are generated based on the acceleration signal. One or more actuators adjust the tilt of the rotation head based on the one or more tilt adjustment signals.
A method and apparatus for determining the precise location of a target on a surface by utilizing a plurality of objects that are fixed in their position proximate to the location, thereby constituting a plurality of fixed reference points, upon which the target(s) resides or is otherwise located. The plurality of fixed references points are used either in conjunction with images of the target or certain distance measurements between the target and the fixed reference points to determine the precise location of the target(s) on the surface.
A system and method are provided for determining the position and orientation of an implement on a work machine in a non-contact manner using machine vision. A 3D camera, which is mounted on the vehicle with a field of view that includes components on the implement (e.g., markers in some examples), determines a three-dimensional position in a local coordinate system of each of the components. A global positioning system in cooperation with an inertial measurement unit determines a three-dimensional position and orientation of the 3D camera in a global coordinate system. A computing system calculates a three-dimensional position in the global coordinate system for the components using the local three-dimensional positions of the components and the global three-dimensional position and orientation of the 3D camera. The position and orientation of the implement can then be calculated based on the calculated global three-dimensional positions of the components.
G01S 19/47 - Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being an inertial measurement, e.g. tightly coupled inertial
G06T 7/70 - Determining position or orientation of objects or cameras
H04N 13/254 - Image signal generators using stereoscopic image cameras in combination with electromagnetic radiation sources for illuminating objects
Determining vehicle orientation based on GNSS signals received by three antennas that are logically combined into two pairs, with one antenna common for both pairs. GNSS receiver measures first carrier phase difference within each pair of antennas, represented as sum of an integer number of periods of the carrier frequency and a fractional part of the period. The fractional parts are used to compute orientation of the vector connecting the antennas phase centers within each pair, excluding integer ambiguity resolution. Vehicle attitude is calculated from the orientation of two non-collinear vectors with a common origin, measured by two pairs of antennas. Each antenna has an RF front end. All RF front ends, heterodynes, digital navigation processors of this receiver are clocked from one common clock oscillator. All carrier phase measurements of the three antennas are performed on a common time scale.
G01S 19/54 - Determining attitude using long or short baseline interferometry
G01C 21/16 - Navigation; Navigational instruments not provided for in groups by using measurement of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
G01S 19/47 - Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being an inertial measurement, e.g. tightly coupled inertial
69.
Method and apparatus for single camera optical measurements
An optical measurement system and method that utilizes a single camera in combination with a specially configured target object which significantly improves optical measuring accuracy with respect to the measurement of distance, height difference and position.
A laser measuring system including first and second laser base stations and a laser receiver is provided. The laser receiver detects a first laser signal from the first laser base station. Location information associated with the first laser base station is extracted from the detected first laser signal. The laser receiver detects a second laser signal from the second laser base station. Location information associated with the second laser base station is extracted from the detected second laser signal. A position of the laser receiver is determined based on the extracted location information associated with the first laser base station and the extracted location information associated with the second laser base station.
G01B 11/00 - Measuring arrangements characterised by the use of optical techniques
G01S 5/16 - Position-fixing by co-ordinating two or more direction or position-line determinations; Position-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves
G01S 17/08 - Systems determining position data of a target for measuring distance only
G01B 7/14 - Measuring arrangements characterised by the use of electric or magnetic techniques for measuring distance or clearance between spaced objects or spaced apertures
G01B 7/004 - Measuring arrangements characterised by the use of electric or magnetic techniques for measuring coordinates of points
G01S 3/78 - Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
G01S 3/789 - Systems for determining direction or deviation from predetermined direction using rotating or oscillating beam systems, e.g. using mirrors, prisms
G01C 15/00 - Surveying instruments or accessories not provided for in groups
71.
LASER MEASURING SYSTEM WITH MULTIPLE SYNCHRONOUS BASES
A laser measuring system including first and second laser base stations (102-A, 102-B or 102-C) and a laser receiver (104) is provided. The laser receiver detects a first laser signal from the first laser base station. Location information associated with the first laser base station is extracted from the detected first laser signal. The laser receiver detects a second laser signal from the second laser base station. Location information associated with the second laser base station is extracted from the detected second laser signal. A position of the laser receiver is determined based on the extracted location information associated with the first laser base station and the extracted location information associated with the second laser base station.
G01S 3/789 - Systems for determining direction or deviation from predetermined direction using rotating or oscillating beam systems, e.g. using mirrors, prisms
G01S 5/16 - Position-fixing by co-ordinating two or more direction or position-line determinations; Position-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves
72.
Using SDP relaxation for optimization of the satellites set chosen for positioning
A method of determining coordinates, including receiving GNSS (global navigation satellite system) signals from at least five satellites, wherein at least two of the five satellites belong to one constellation, and the remaining satellites belong to at least one other constellation; processing the GNSS signals to measure code and phase measurements for each of the satellites and each of the GNSS signals; selecting a subset of the GNSS signals as an optimal set for coordinate calculation, where the selecting is based on Semi-Definite Programming (SDP) relaxation as applied to an optimization of a PDOP (positional dilution of precision) criterion; calculating coordinates of a receiver based on the code and phase measurements of the selected subset; and outputting the calculated coordinates. The total number of signals in the optimal set should not exceed the predefined number of m signals.
An antenna system includes a right-hand circularly polarized antenna for receiving Global Navigation Satellite System (GNSS) signals and located on a receiver housing; a vertical semitransparent screen for providing an Down/Up ratio
of −13 dB or better for at least some GNSS frequencies; the semitransparent screen being connected to a ground plane of the antenna; the ground plane being connected to a conductive receiver housing; the semitransparent screen further comprising a horizontal slot to which sets of lumped impedance elements are connected. Each set includes several lumped elements; where the lumped elements are capacitors and/or inductors and/or resistors; where the lumped elements in each set are connected in parallel or series; and the semitransparent screen including at least 4 segments arranged symmetrically around the center of the antenna and connected to each other.
Navigation receiver includes antennas receiving signals from different satellite constellations, Low Noise Amplifiers, a Block of Analog Filters, a Block of Quadrature mixers (BQM) translating in phase and quadrature signals to an intermediate frequency, analog converters digitizing the in phase and quadrature signals, a Block of Digital Quadrature Mixers (BDQM) shifting the digitized signals to zero frequency, a Set Block of Digital Filters (SBDF) band-pass filtering the shifted signals, and reducing a sampling rate, and a Block of Digital Processing (BDP) calculating coordinates, all series-connected; a Block of Digital Generators (BDG) for fine control of the BDQM; and a Block of Analog Generators (BAG) that defines which signal is processed by its corresponding BQM; SBDF including Blocks of Digital Filters (BDFs), each BDF including a chain of Blocks of MultiRate Filters for antialiasing filtering/down-sampling of shifted signals, programmable commutators for controlling decimation, and FIR-filters; each BDF controlled by control block.
A laser measuring system comprising a laser transmitter and a laser receiver is provided. The laser transmitter includes one or more laser sources for projecting an initial laser pulse and a reflective surface. The laser receiver includes a first reflective surface for reflecting the initial laser pulse to provide a first reflected laser pulse, and a second reflective surface for reflecting the initial laser pulse to provide a second reflected laser pulse. The laser receiver further includes a photo detection unit for receiving 1) a first double reflected laser pulse produced by the first reflected laser pulse reflecting off the reflective surface of the laser transmitter, and 2) a second double reflected laser pulse produced by the second reflected laser pulse reflecting off the reflective surface of the laser transmitter. The laser receiver determines an orientation angle associated with the laser receiver based on the first and second double reflected laser pulse.
A laser measuring system comprising a laser transmitter and a laser receiver is provided. The laser transmitter includes one or more laser sources for projecting an initial laser pulse and a reflective surface. The laser receiver includes a first reflective surface for reflecting the initial laser pulse to provide a first reflected laser pulse, and a second reflective surface for reflecting the initial laser pulse to provide a second reflected laser pulse. The laser receiver further includes a photo detection unit for receiving 1) a first double reflected laser pulse produced by the first reflected laser pulse reflecting off the reflective surface of the laser transmitter, and 2) a second double reflected laser pulse produced by the second reflected laser pulse reflecting off the reflective surface of the laser transmitter. The laser receiver determines an orientation angle associated with the laser receiver based on the first and second double reflected laser pulse.
G01S 17/10 - Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
G01S 7/4861 - Circuits for detection, sampling, integration or read-out
G01S 3/04 - Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves - Details
G01S 17/875 - Combinations of systems using electromagnetic waves other than radio waves for determining attitude
77.
Method and apparatus for building vibrostable GNSS receivers to receive and process navigation signals from multiple navigation systems
A method and apparatus are provided for processing navigation signals with improved stability in a multi-frequency, multi-system environment. Satellite signals, which are transmitted by a plurality of satellites from a plurality of different global navigation satellite systems, are received on a common radio path and processed in separate digital satellite channels, with each of the separate digital satellite channels corresponding to a respective satellite signal. A common quartz-locked-loop (QLL) discriminator signal is generated based on correlation signals from each of the separate digital satellite channels. Based on the common QLL discriminator signal, guiding signals are generated, with each of the guiding signals corresponding to a respective one of the separate digital satellite channels, for reducing phase-related tracking errors in the respective satellite signal processed in its corresponding digital satellite channel.
A method for machine grade assist includes determining whether user input will cause an implement of a machine to dig below a desired grade. User input to move a stick of an excavator can be blocked and/or delayed using hydraulic pressure so that movement of both the stick and the boom of the excavator can be synchronized to prevent a bucket of the excavator from digging below a desired grade when the stick is moved.
F15B 9/09 - Servomotors with follow-up action, i.e. in which the position of the actuated member conforms with that of the controlling member with servomotors of the reciprocatable or oscillatable type controlled by valves affecting the fluid feed or the fluid outlet of the servomotor with electrical control means
E02F 3/65 - Component parts, e.g. drives, control devices
A method for machine grade assist includes determining whether user input will cause an implement of a machine to dig below a desired grade. User input to move a stick (104) of an excavator (100) can be blocked and/or delayed using hydraulic pressure so that movement of both the stick and the boom (102) of the excavator can be synchronized to prevent a bucket (106) of the excavator from digging below a desired grade (404) when the stick is moved.
A method and apparatus for dithering hydraulic valves to mitigate static friction (“stiction”) associated with the hydraulic valves. A first hydraulic valve and a second hydraulic valve are dithered to mitigate stiction associated with those valves. The dithering of the first and second hydraulic valves also cause dithering of a main hydraulic valve associated with the first and second hydraulic valves. Accordingly, stiction of three hydraulic valves of a hydraulic system is mitigated.
F15B 20/00 - Safety arrangements for fluid actuator systems; Applications of safety devices in fluid actuator systems; Emergency measures for fluid actuator systems
F15B 21/12 - Fluid oscillators or pulse generators
81.
DITHERING HYDRAULIC VALVES TO MITIGATE STATIC FRICTION
A method and apparatus for dithering hydraulic valves to mitigate static friction ("stiction") associated with the hydraulic valves. A first hydraulic valve and a second hydraulic valve are dithered to mitigate stiction associated with those valves. The dithering of the first and second hydraulic valves also cause dithering of a main hydraulic valve associated with the first and second hydraulic valves. Accordingly, stiction of three hydraulic valves of a hydraulic system is mitigated.
F15B 13/043 - Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure with electrically-controlled pilot valves
A method for coordinating machines to perform a task includes establishing a plurality of communication channels between a plurality of agricultural machines located in a geographic area. Data pertaining to capabilities of each of the plurality of machines, and location in some cases, is received and a collaborative plan to complete a task using the plurality of machines is determined. At least a portion of the collaborative plan is transmitted to each of the plurality of machines. The collaborative plan can be based on the location and capabilities of each of the plurality of machines. The collaborative plan can include a plurality of operations for each of the plurality of machines to perform.
A method for coordinating machines to perform a task includes establishing a plurality of communication channels between a plurality of agricultural machines located in a geographic area. Data pertaining to capabilities of each of the plurality of machines, and location in some cases, is received and a collaborative plan to complete a task using the plurality of machines is determined. At least a portion of the collaborative plan is transmitted to each of the plurality of machines. The collaborative plan can be based on the location and capabilities of each of the plurality of machines. The collaborative plan can include a plurality of operations for each of the plurality of machines to perform.
G06Q 10/04 - Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
A universal multi-channel receiver for receiving and processing signals from different navigation systems is provided. The universal receiver is implemented as an ASIC receiver with a number of universal channels. The receiver with universal channels is capable of receiving and processing signals from navigation satellites located within a direct access zone. The universal receiver has a plurality of channels that share the same memory. The universal receiver can determine its coordinates using any of the existing navigation systems (GPS, GLONASS, Beidou and GALILEO). The receiver can receive and process any (PN) signals.
In one embodiment, a method for processing harvest yield data includes the steps of receiving load data from a grain cart and receiving harvest yield data from a combine harvester. The load data and harvest yield data are post-processed to generate enhanced harvest yield data. The combine harvester and the grain cart can operate in an on-the-go unloading harvest operation or a stationary unloading harvest operation. Post-processing can include creating a field boundary for a harvest area, determining a start time and start position for the combine harvester within the field boundary, and determining an end time and end position for the combine harvester within the field boundary. The total grain yield weight estimated by a yield monitor can be calibrated to match the grain cart total scale weight.
A method for processing harvest yield data includes the steps of receiving load data from a grain cart and receiving harvest yield data from a combine harvester. The load data and harvest yield data are post-processed to generate enhanced harvest yield data. The combine harvester and the grain cart can operate in an on-the-go unloading harvest operation or a stationary unloading harvest operation. Post-processing can include creating a field boundary for a harvest area, determining a start time and start position for the combine harvester within the field boundary, and determining an end time and end position for the combine harvester within the field boundary. The total grain yield weight estimated by a yield monitor can be calibrated to match the grain cart total scale weight.
A vision-based sensor system is provided for heavy equipment or other machinery that determines the pose or position of the blade with respect to the heavy equipment vehicle where the sensor system comprises a vision-based blade position system having an image acquisition device and vision system processor.
A vision-based sensor system is provided for heavy equipment or other machinery that determines the pose or position of the blade with respect to the heavy equipment vehicle where the sensor system comprises a vision-based blade position system having an image acquisition device and vision system processor.
A GNSS compact antenna comprising a conducting ground plane and a driven element for exciting right hand circularly polarized waves having a multi-segment structure such that the area around the driven element is divided into elementary cells with conductors and circuit elements arranged therein. The antenna includes a set of circuit elements connecting the neighboring elementary cells and the driven element. Each elementary cell has a horizontal conductor over the ground plane, and each elementary cell can have a vertical conductor and a circuit element connecting the horizontal and vertical conductors. The horizontal conductor comprises a set of characteristic points to which circuit elements, connecting neighboring elementary cells or any elementary cell and the driven element, are connected. Both the impedance of each circuit elements and the design of each elementary cell can be different, but the antenna has four-fold rotational symmetry relative to the vertical axis.
A method for determining attitude of an object having multiple GNSS antennas, the method including receiving GNSS signals from at least five satellites, wherein at least 2 of the five belong to a different satellite constellation than the other satellites; processing each of the GNSS signals to generate pseudorange code and carrier phase measurements; resolving carrier phase ambiguities for all the received GNSS signals; generating unbiased carrier phase measurements based on the resolving; determining the attitude, including heading, pitch, and roll angles ψ,θ,ϕ, respectively, by solving a quadratically constrained quadratic minimization problem through finding a minimum of a linear function subject to a linear matrix inequality constraint; and outputting the attitude.
A method and system are provided for estimating the g-sensitivity of a quartz oscillator, which includes rotating the quartz oscillator successively around each of a plurality of axes constituting a full-rank system, measuring a frequency of the quartz oscillator at a predetermined rate as a function of time during rotation, and estimating an integral g-sensitivity vector while the quartz oscillator is rotated. Estimation can be performed utilizing a data fitting and estimation model, e.g., a Least Square Method (LSM) in one example, using the frequency measurements obtained while the quartz oscillator is in rotation around the axes. The method and system are especially useful for measuring g-sensitivity of quartz oscillators that are incorporated in high-precision systems, such as navigation receivers, which operate in environments that are subjected to vibrational effects and other mechanical forces.
H03L 1/00 - Stabilisation of generator output against variations of physical values, e.g. power supply
G01P 15/18 - Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
H03B 5/04 - Modifications of generator to compensate for variations in physical values, e.g. power supply, load, temperature
G01P 15/03 - Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces by using non-electrical means