A sensor includes a substrate having a curved surface, a piezoelectric element, and an adhesive disposed between the piezoelectric element and the curved surface along a vertical direction. The adhesive attaches the piezoelectric element to the substrate. The adhesive has an exterior bond surface that has a tapered shape along the vertical direction from the piezoelectric element to the curved surface.
H01L 41/113 - Piezo-electric or electrostrictive elements with mechanical input and electrical output
H01L 41/08 - Piezo-electric or electrostrictive elements
H01L 41/313 - Applying piezo-electric or electrostrictive parts or bodies onto an electrical element or another base by laminating or bonding of piezo-electric or electrostrictive bodies by metal fusing or with adhesives
TYCO ELECTRONICS AMP KOREA CO., LTD. (Republic of Korea)
Inventor
Hoffman, James
Wagner, David Eric
Kim, Young-Deok
Abstract
A strain gauge includes a resistor formed of a doped silicon material, a conductive shield, and an isolation element disposed between the resistor and the conductive shield. The isolation element electrically isolates the resistor from the conductive shield.
G01B 7/16 - Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
Semiconductor MEMS pressure sensors that can produce a linear and large output signal when subject to a small pressure, without an increase to the front to back span error. One example can experience large deflections without causing catastrophic damage to the membrane. The pressure sensor can include a silicon layer having opposing surfaces, an etched pattern in of the surfaces of the silicon layer, and an etched cavity on the opposite surface of the silicon layer to form a membrane. The etched patterned can include a series of concentric stiffening ribs, an inverted boss, large depression areas next to the membrane edge and/or the boss, and piezoresistive strain concentrators. The ribs and depressions can be formed onto the silicon membrane by anisotropic or isotropic etch techniques. Piezoresistive devices can be diffused into the membrane in the regions near the strain concentrators to form a Wheatstone bridge or other measurement structure.
G01L 9/00 - Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
The present disclosure provides a sensor comprising a connector, a sensor body and a sensing circuit assembly. The sensor body and the connector are fixedly connected and enclose to form an accommodation cavity. The sensing circuit assembly is disposed in the accommodation cavity and configured to generate a sensing signal. The connector comprises a connector body, a supporting plate disposed inside the connector body, and at least one conduction pin fixedly connected to the supporting plate and electrically connected to the sensing circuit assembly. One side surface of the supporting plate is provided with an annular sealing groove surrounding a peripheral of the conduction pin. According to the sensor provided by the present disclosure, the waterproof and sealing performance of the connector is improved while decreasing the glue consumption in packaging, and the manufacturing cost is reduced.
The present disclosure provides an electromagnetic compatibility circuit, a sensor circuit and a sensor. The electromagnetic compatibility circuit comprises a first input inductance element, a first input capacitor, a second input inductance element, a second input capacitor and a third input capacitor. According to the electromagnetic compatibility circuit, the sensor circuit and the sensor provided by the present disclosure, the first input inductance element and the first input capacitor form a first input LC filter circuit at the input terminal; then the second input inductance element and the second input capacitor form a second input LC filter circuit at the input terminal, and the first input capacitor and the second input capacitor are connected to the case ground terminal, so that harmonics at the input terminal are derived through the case ground terminal; meanwhile, filtering is performed by the third input capacitor provided between the input terminal and the circuit ground terminal.
Pressure sensors that can be reliability operated with the maximum current flowing through the device restricted to 10 uA or below, or below 50 uA in a single-fault condition. This can provide at least a reduced need for the final medical device architect to consider potential risks from excessive current to the patient, simplifying the design and manufacturability of the medical device. An additional benefit is that the sensors are generally more accurate at lower current flow, as self-heating of the resistors and parasitic leakages are reduced, if the signal-to-noise problem is resolved.
A61B 5/00 - Measuring for diagnostic purposes ; Identification of persons
G01L 1/22 - Measuring force or stress, in general by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
G01L 1/18 - Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
G01L 9/00 - Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
G01K 7/16 - Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat using resistive elements
Pressure sensor systems that include a pressure sensor die and other components in a small, space-efficient package, where the package allow gas or liquid to reach either or both sides of a membranes of the pressure sensor die. A package can include a substrate and a cap, where either or both the substrate and the cap divide the package internally into two chambers. The substrate can have a solid bottom layer, a middle layer having a slot or path running a portion of the length of the layer, and a top layer having two through-holes that provide access to the slot or path. The cap can have two ports. A first port can lead to a first chamber where a top side of a pressure sensor is in the first chamber. A second port can lead to a second chamber and the slot or path, where the slot or path leads to a bottom side of the pressure sensor.
G01L 13/02 - Devices or apparatus for measuring differences of two or more fluid pressure values using elastically-deformable members or pistons as sensing elements
G01L 9/02 - Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers
G01L 9/00 - Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
Pressure sensor systems and methods of assembling pressure sensor systems that reduce the need for accurate placement of a pressure sensor die in a pressure sensor package, reduce leakage in pressure sensor systems, and provides a consistent attachment of a pressure sensor die to a package.
G01L 1/22 - Measuring force or stress, in general by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
Reliable flow sensors with enclosures that have predictable thermal variations and reduced mechanical tolerances for a more consistent fluid flow and more consistent flow measurements. Thermal variations can be made predictable by using etched structures in silicon blocks. Mechanical tolerances can be reduced using lithography and high-precision semiconductor manufacturing equipment and techniques.
G01F 1/69 - Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element of resistive type
G01F 1/684 - Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
G01F 1/696 - Circuits therefor, e.g. constant-current flow meters
Sensor devices and methods of operating for use with catheter-based treatments of microcardial microvascular obstruction by infusion of fluids having protective agents into vasculature are provided herein. Such catheter devices can include a first lumen configured for advancement over a guidewire and for passage of fluid having protective agents after removal of the guidewire and a second lumen for inflation of an angioplasty balloon and can further include a temperature and/or pressure sensor mounted on the catheter body. Such catheter devices can further include use of a distal occlusive membrane between the angioplasty balloon and distal end to facilitate infusion into microvasculature. The occlusive membrane can be deployed by relative movement of concentric channels, thereby reducing the need for additional lumen while optimizing the size of the catheter device and lumens.
Contact-force-sensing systems that can provide additional information about the forces that are applied by catheters and other devices to cell walls and other surfaces. One example can provide directional information for a contact-force-sensing system. For example, magnitude, plane angle, and off-plane angle information can be provided by a contact-force-sensing system. Another example can provide guiding functionality for a contact-force-sensing system. For example, a contact-force-sensing system can provide tactile response to a surgeon or operator to allow a device to be accurately guided though a body.
G01L 7/18 - Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements using liquid as the pressure-sensitive medium, e.g. liquid-column gauges
A load cell that includes a beam extending from a fixed section to a load section including a deflection section that moves under a load and a central beam section spaced from the deflection section. At least one strain gauge is coupled to the beam for detecting movement of the beam. A stop element including a bearing surface is also provided and coupled to the beam and configured such that the bearing surface does not engage the beam in a first position and engages the beam in a second position.
G01G 3/14 - Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances wherein the weighing element is in the form of a solid body stressed by pressure or tension during weighing measuring variations of electrical resistance
G01G 23/00 - Auxiliary devices for weighing apparatus
A pressure sensing device includes a support structure 105, an isolated diaphragm 104, a working oil 126, and a MEMS die sensing element 102. The support structure 105 defines a portion of a sealed cavity 124. The isolated diaphragm 104 is mounted to the support structure 105. The isolated diaphragm 104 has in inner side 134 that defines an end of the sealed cavity 124 and an outer side 136 opposite the inner side 134. The working oil 126 is contained within the sealed cavity 124. The MEMS die sensing element 102 is enclosed within the support structure 105. The MEMS die sensing element 102 is exposed to the working oil 126 within the sealed cavity 124. A pressure exerted on the outer side 136 of the isolated diaphragm 104 by a fluid medium is transferred via the working oil 126 to the MEMS die sensing element 102 to measure the pressure of the fluid medium.
G01L 9/00 - Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
G01L 19/00 - MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE - Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
G01L 19/06 - Means for preventing overload or deleterious influence of the measured medium on the measuring device or vice versa
A pressure sensing device includes a support structure, an isolated diaphragm, a working oil, and a MEMS die sensing element. The support structure defines a portion of a sealed cavity. The isolated diaphragm is mounted to the support structure. The isolated diaphragm has in inner side that defines an end of the sealed cavity and an outer side opposite the inner side. The working oil is contained within the sealed cavity. The MEMS die sensing element is enclosed within the support structure. The MEMS die sensing element is exposed to the working oil within the sealed cavity. A pressure exerted on the outer side of the isolated diaphragm by a fluid medium is transferred via the working oil to the MEMS die sensing element to measure the pressure of the fluid medium. The working oil has a low vapor pressure and a low volatility content.
G01L 9/00 - Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
G01L 19/06 - Means for preventing overload or deleterious influence of the measured medium on the measuring device or vice versa
15.
Modular sensor package having adhesive-free seal to housing
A sensor assembly comprising a housing defining a cavity, and a pressure sensor package arranged within the cavity. The pressure sensor package includes a substrate having an aperture defined therethrough, a semiconductor die including a sensing diaphragm attached to the substrate such that the diaphragm is exposed via the aperture, and at least one electrically conductive element in electrical communication with the semiconductor die arranged on the substrate. A sealing element, such as an elastomeric o-ring, provides a seal between the housing and the substrate. A connector is secured to the housing via a crimped connection for establishing electrical connections between the pressure sensor package and an external system.
G01L 7/08 - Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges of the flexible-diaphragm type
G01L 9/00 - Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
16.
Pressure sensor cap having flow path with dimension variation
Pressure sensors that may be used in flowrate monitoring or measuring systems, where the pressure sensors may enable simple, low-cost designs that are readily implemented. One example may provide a pressure sensor having a built-in flow path with a dimensional variation. Pressures of a fluid on each side of the dimensional variation may be compared to each other. The measured differential pressure may then be converted to a flowrate through the flow path.
G01F 1/40 - Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction - Details of construction of the flow constriction devices
G01F 1/36 - Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
G01L 1/10 - Measuring force or stress, in general by measuring variations of frequency of stressed vibrating elements, e.g. of stressed strings
A differential pressure sensor includes one or more semiconductor dies which are thinned at portions of the die to create a chamber defining a sensitive diaphragm, having piezoresistive elements defined at a surface of the diaphragm. A first diaphragm is in fluid communication with a first fluid on an upper surface of the first diaphragm and is in fluid communication with a second fluid on a lower surface of the first diaphragm. A second diaphragm is in fluid communication with ambient pressure at an upper and a lower surface of the second diaphragm. The piezoresistive elements corresponding to the second diaphragm are electrically connected to the piezoresistive elements of the first diaphragm so as to compensate the output of the second diaphragm with respect to the output of the first diaphragm.
G01L 19/04 - Means for compensating for effects of changes of temperature
G01L 13/02 - Devices or apparatus for measuring differences of two or more fluid pressure values using elastically-deformable members or pistons as sensing elements
A differential pressure sensor includes a first sensor housing member having a first fluid inlet port for receiving a first fluid at a first pressure and a second sensor housing member having a second fluid inlet port for receiving a second fluid at a second pressure. A pressure-sensing subassembly includes a semiconductor pressure-sensing die having a sensitive diaphragm for sensing pressure. The pressure-sensing subassembly is configured for insertion into the differential pressure sensor such that once inserted the first fluid inlet port is in fluid communication with a first surface of the sensitive diaphragm and the second fluid inlet port is in fluid communication with a second surface of the sensitive diaphragm.
G01L 9/00 - Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
G01L 13/02 - Devices or apparatus for measuring differences of two or more fluid pressure values using elastically-deformable members or pistons as sensing elements
A differential pressure sensor includes a first sensor housing member having a first fluid inlet port for receiving a first fluid at a first pressure and a second sensor housing member having a second fluid inlet port for receiving a second fluid at a second pressure. A pressure-sensing subassembly includes a semiconductor pressure-sensing die having a sensitive diaphragm for sensing pressure. The pressure-sensing subassembly is configured for insertion into the differential pressure sensor such that once inserted the first fluid inlet port is in fluid communication with a first surface of the sensitive diaphragm and the second fluid inlet port is in fluid communication with a second surface of the sensitive diaphragm.
G01L 13/02 - Devices or apparatus for measuring differences of two or more fluid pressure values using elastically-deformable members or pistons as sensing elements
Pressure sensors and associated structures that may have reduced light sensitivity. An example may provide structures reducing light at a component on a membrane of a pressure sensor.
G01L 27/00 - Testing or calibrating of apparatus for measuring fluid pressure
G01L 19/00 - MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE - Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
A61B 90/00 - Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups , e.g. for luxation treatment or for protecting wound edges
G01L 9/00 - Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
A61B 17/00 - Surgical instruments, devices or methods, e.g. tourniquets
21.
Differential pressure sensor incorporating common mode error compensation
A differential pressure sensor may provide a common mode corrected differential pressure reading. The differential pressure sensor may include two pressure sensing diaphragms. The pressure sensor may be configured so that the first diaphragm measures the differential pressure between two sections of a fluid. The pressure sensor may also be configured so that the second diaphragm measures the common mode error experienced by the die at the time the differential pressure is read by the first diaphragm. Electrical connectors may be configured so that the differential pressure outputs a common mode error corrected differential pressure reading based on the readings of the first and second diaphragm.
G01L 9/06 - Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers of piezo-resistive devices
G01L 9/08 - Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of piezoelectric devices
G01L 13/02 - Devices or apparatus for measuring differences of two or more fluid pressure values using elastically-deformable members or pistons as sensing elements
G01L 19/02 - Arrangements for preventing, or for compensating for, effects of inclination or acceleration of the measuring device; Zero-setting means
G01L 19/04 - Means for compensating for effects of changes of temperature
G01L 19/06 - Means for preventing overload or deleterious influence of the measured medium on the measuring device or vice versa
G01L 27/00 - Testing or calibrating of apparatus for measuring fluid pressure
G01L 9/00 - Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
A multilayer backing absorber for use with an ultrasonic transducer comprises a plurality of absorber elements, each absorber element having at least one metal layer and at least one adhesive layer, wherein the backing absorber is adapted to be coupled to a vibrating layer of the ultrasonic transducer.
B06B 1/06 - Processes or apparatus for generating mechanical vibrations of infrasonic, sonic or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
G10K 11/00 - Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
23.
Ultrasonic and strain dual mode sensor for contact switch
A device for detecting a touch at a surface of a substrate comprises a piezoelectric element positioned at a back surface of the substrate to be touched. A drive circuit is configured to apply a frequency modulated drive signal to the piezoelectric element to detect resonance at the substrate. A first detector arrangement coupled to the piezoelectric element is configured to generate a first output signal indicative of a sensed touch or no touch condition according to detected voltage changes and responsive to the frequency modulated drive signal applied to the piezoelectric element. A second detector arrangement coupled to the piezoelectric element is configured to generate a second output signal indicative of a sensed touch or no touch condition according to a sensed strain on said piezoelectric element. A decision circuit including a processor is configured to identify a touch condition or no touch condition at the surface of the substrate according to the first and second output signals.
Pressure sensors and associated structures that may facilitate the use of automated connection processes and tools. An example may provide structures for aligning interconnect wires to pressure sensor bondpads in order to facilitate the use of automated processes and tools.
G01L 9/00 - Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
G01L 19/00 - MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE - Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
Pressure sensors and their methods of manufacturing, where the pressure sensors have a small, thin form factor and may include features designed to improve manufacturability and where the method of manufacturing may improve yield and reduce overall costs.
G01L 9/00 - Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
26.
Impedance matching layer for ultrasonic transducers with metallic protection structure
An ultrasonic transducer comprising a piezoelectric element, an acoustic matching layer arranged on a surface of the piezoelectric element and having a thickness of at least one-quarter of a wavelength of a center resonant frequency of the transducer, and a front metal layer arranged on a surface of the acoustic matching layer opposite that of the piezoelectric element and having a thickness equal to one-half of the wavelength of the center resonant frequency.
H01L 41/04 - SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR - Details thereof - Details of piezo-electric or electrostrictive elements
H01L 41/22 - Processes or apparatus specially adapted for the assembly, manufacture or treatment of piezo-electric or electrostrictive devices or of parts thereof
B06B 1/06 - Processes or apparatus for generating mechanical vibrations of infrasonic, sonic or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
G10K 9/122 - Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated using piezoelectric driving means
G10K 11/00 - Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
27.
IMPEDANCE MATCHING LAYER FOR ULTRASONIC TRANSDUCERS WITH METALLIC PROTECTION STRUCTURE
An ultrasonic transducer comprising a piezoelectric element, an acoustic matching layer arranged on a surface of the piezoelectric element and having a thickness of at least one-quarter of a wavelength of a center resonant frequency of the transducer, and a front metal layer arranged on a surface of the acoustic matching layer opposite that of the piezoelectric element and having a thickness equal to one-half of the wavelength of the center resonant frequency.
An optical spectral sensing device for determining at least one property of a fluid. The device has an elongated porous body, a first end and a second end, a solid-state optical emitter at the first end of the body oriented to emit radiation toward the second end of the body, and a solid-state optical detector at the second end of the body oriented to detect radiation emitted by the optical emitter and to output a signal responsive to absorption of radiation. The device is configured to determine depth of a fluid based on the signal output by the optical detector.
G01N 21/35 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
G01N 21/3504 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
G01N 21/3577 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water
G01N 21/31 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
G01N 21/94 - Investigating contamination, e.g. dust
G01N 21/85 - Investigating moving fluids or granular solids
G01N 21/27 - Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection
29.
Low-temperature safe sensor package and fluid properties sensor
A low-temperature safe sensor package. The package includes a housing having an internal cavity, an inlet port in communication with the internal cavity and a fluid source, and an outlet port in communication with the internal cavity. A sensor carrier is moveably arranged within the internal cavity. A spring element is arranged between the sensor carrier and a portion of the housing for biasing the sensor carrier into an operating position within the internal cavity.
G01N 21/35 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
G01N 21/3504 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
G01N 21/3577 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water
G01N 21/31 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
G01N 21/94 - Investigating contamination, e.g. dust
G01N 21/85 - Investigating moving fluids or granular solids
G01N 21/27 - Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection
A pressure sensor assembly for measuring the pressure of a first fluid. The assembly having a first housing including a pressure sensing device arranged therein. A diaphragm is arranged on a surface of the first housing and is configured to transmit a force exerted on a first side thereof to the pressure sensing device. A second housing is provided and attached to the first housing. The second housing may be arranged generally circumferentially around the diaphragm. A compressible element is provided and arranged within a compressible element space defined within the second housing. The compressible element is configured to transmit a force exerted thereon by the fluid to the first side of the diaphragm.
G01D 3/028 - Measuring arrangements with provision for the special purposes referred to in the subgroups of this group mitigating undesired influences, e.g. temperature, pressure
G01F 1/86 - Indirect mass flowmeters, e.g. measuring volume flow and density, temperature, or pressure
G01K 1/22 - Compensating for effects of temperature changes other than those to be measured, e.g. changes in ambient temperature by means of fluid contained in a hollow body having parts which are deformable or displaceable under the pressure developed by the fluid
A pressure sensor assembly for measuring the pressure of a first fluid. The assembly having a first housing including a pressure sensing device arranged therein. A diaphragm is arranged on a surface of the first housing and is configured to transmit a force exerted on a first side thereof to the pressure sensing device. A second housing is provided and attached to the first housing. The second housing may be arranged generally circumferentially around the diaphragm. A compressible element is provided and arranged within a compressible element space defined within the second housing. The compressible element is configured to transmit a force exerted thereon by the fluid to the first side of the diaphragm.
A method of forming an ultrasonic transducer comprises coupling a front polymer layer of uniform thickness to a piezoelectric element. A front metal layer is coupled to the polymer layer on a side of the front polymer layer opposite the piezoelectric element for transmitting acoustic energy between the front polymer layer and a propagation medium. The front polymer layer and the front metal layer define a front acoustic impedance converter, wherein the front polymer layer completely isolates the piezoelectric element from the front metal layer.
H01L 41/22 - Processes or apparatus specially adapted for the assembly, manufacture or treatment of piezo-electric or electrostrictive devices or of parts thereof
H01L 41/08 - Piezo-electric or electrostrictive elements
H01L 41/09 - Piezo-electric or electrostrictive elements with electrical input and mechanical output
B06B 1/06 - Processes or apparatus for generating mechanical vibrations of infrasonic, sonic or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
H01L 41/113 - Piezo-electric or electrostrictive elements with mechanical input and electrical output
G10K 11/02 - Mechanical acoustic impedances; Impedance matching, e.g. by horns; Acoustic resonators
H03H 3/08 - Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
33.
System and method for multiplexed and buffered sensor arrays
A miniature pressure scanning system may comprise: a plurality of miniature pressure sensors including a plurality of sensor outputs, each of the miniature pressure sensors including at least one sensor output for providing an analog output signal and each at least one sensor output having an associated output impedance; a plurality of buffers, each buffer of said plurality of buffers being electrically coupled to one sensor output of the plurality of sensor outputs, and each said buffer being operative to reduce a settling time constant associated with multiplexer voltage spikes and reduce the associated output impedance of the one sensor output coupled to it; and at least one multiplexer electrically coupled to the plurality of sensor outputs, said at least one multiplexer being operative to be switched between each of the plurality of sensor outputs.
G01L 9/00 - Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
G01M 9/06 - Measuring arrangements specially adapted for aerodynamic testing
G01L 15/00 - Devices or apparatus for measuring two or more fluid pressure values simultaneously
G01L 9/06 - Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers of piezo-resistive devices
G08C 15/00 - Arrangements characterised by the use of multiplexing for the transmission of a plurality of signals over a common path
H04Q 9/00 - Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
34.
Vertical membranes for pressure sensing applications
Pressure sensors having vertical diaphragms or membranes. A vertical diaphragm may be located in a first silicon wafer between a first and second cavity, where the first and second cavities are covered by a second silicon wafer. One or more active or passive devices or components may be located on a top of the vertical diaphragm.
G01L 9/02 - Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers
G01L 9/00 - Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
G01L 19/06 - Means for preventing overload or deleterious influence of the measured medium on the measuring device or vice versa
35.
ULTRASONIC AND STRAIN DUAL MODE SENSOR FOR CONTACT SWITCH
A system and method for ultrasonic touch switch combined with piezoelectric touch mode is described. The sensor structure may be embodied as a substrate with a piezoelectric element at the back surface of the substrate, with the front surface being a touch sensitive surface. Both operational modes are possible by use of the same sensor element with filtering of the signals so that different advantages of two modes are combined, while disadvantages of either mode are mitigated. The tolerance of substrate thickness of ultrasonic touch mode is improved by use of a wide range of frequency deviation of drive signal by filtering out the fundamental modulation frequency from the output signal and wherein only sharp pulses corresponding to abrupt impedance changes of the piezoelectric element are extracted.
H01H 36/00 - Switches actuated by change of magnetic field or of electric field, e.g. by change of relative position of magnet and switch, by shielding
36.
Ultrasonic and strain dual mode sensor for contact switch
A system and method for ultrasonic touch switch combined with piezoelectric touch mode is described. The sensor structure may be embodied as a substrate with a piezoelectric element at the back surface of the substrate, with the front surface being a touch sensitive surface. Both operational modes are possible by use of the same sensor element with filtering of the signals so that different advantages of two modes are combined, while disadvantages of either mode are mitigated. The tolerance of substrate thickness of ultrasonic touch mode is improved by use of a wide range of frequency deviation of drive signal by filtering out the fundamental modulation frequency from the output signal and wherein only sharp pulses corresponding to abrupt impedance changes of the piezoelectric element are extracted. The amplitude of the sharp pulses decreases with touching the front surface of substrate. At the same time pressure force applied to the front surface causes the substrate to undergo bending displacement and causes piezoelectric element expansion strain to generate voltage. These two modes are combined and used to control switch of appliance or equipment.
A differential pressure sensor includes a pressure sensing die comprising a semiconductor die, having a thinned portion forming a diaphragm. The diaphragm includes piezo-resistive elements that exhibit varying resistance based on force exerted on the diaphragm. A first support structure is bonded to a first surface of the semiconductor die, having an aperture defined through the support structure such that a first surface of the diaphragm is exposed through the aperture. A second support structure is bonded to the opposite side of the semiconductor die having an aperture aligned with the opposing side of the diaphragm. Electrical components in electrical communication with the piezo-resistive elements are arranged outside the region defined by the bond between the first and second support structures and the semiconductor die. An oil-filled volume may be defined between the semiconductor die and a harsh medium which transmits a fluid pressure to the die without the harsh medium contacting the die.
G01L 13/02 - Devices or apparatus for measuring differences of two or more fluid pressure values using elastically-deformable members or pistons as sensing elements
G01L 9/00 - Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
A differential pressure sensor includes a pressure sensing die comprising a semiconductor die, having a thinned portion forming a diaphragm. The diaphragm includes piezo-resistive elements that exhibit varying resistance based on force exerted on the diaphragm. A first support structure is bonded to a first surface of the semiconductor die, having an aperture defined through the support structure such that a first surface of the diaphragm is exposed through the aperture. A second support structure is bonded to the opposite side of the semiconductor die having an aperture aligned with the opposing side of the diaphragm. Electrical components in electrical communication with the piezo-resistive elements are arranged outside the region defined by the bond between the first and second support structures and the semiconductor die. An oil-filled volume may be defined between the semiconductor die and a harsh medium which transmits a fluid pressure to the die without the harsh medium contacting the die.
G01L 9/00 - Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
A differential pressure sensor includes a pressure sensing die including a semiconductor die, having a thinned portion forming a diaphragm. The diaphragm includes piezo-resistive elements that exhibit varying resistance based on force exerted on the diaphragm. A first support structure is bonded to a first surface of the semiconductor die, having an aperture defined through the support structure such that a first surface of the diaphragm is exposed through the aperture. A second support structure is similarly bonded to the opposite side of the semiconductor die. Electrical components in electrical communication with the piezo-resistive elements are arranged outside the region defined by the bond between the first and second support structures and the semiconductor die. An oil-filled volume may be defined between the semiconductor die and a harsh medium which transmits a fluid pressure to the die without the harsh medium contacting the die.
G01L 9/00 - Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
A differential pressure sensor includes a pressure sensing die comprising a semiconductor die, having a thinned portion forming a diaphragm. The diaphragm includes piezo-resistive elements that exhibit varying resistance based on force exerted on the diaphragm. A first support structure is bonded to a first surface of the semiconductor die, having an aperture defined through the support structure such that a first surface of the diaphragm is exposed through the aperture. A second support structure is bonded to the opposite side of the semiconductor die having an aperture aligned with the opposing side of the diaphragm. Electrical components in electrical communication with the piezo-resistive elements are arranged outside the region defined by the bond between the first and second support structures and the semiconductor die. An oil-filled volume may be defined between the semiconductor die and a harsh medium which transmits a fluid pressure to the die without the harsh medium contacting the die.
G01F 1/38 - Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction the pressure or differential pressure being measured by means of a movable element, e.g. diaphragm, piston, Bourdon tube or flexible capsule
G01N 7/00 - Analysing materials by measuring the pressure or volume of a gas or vapour
G01L 9/00 - Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
G01F 1/34 - Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
G01L 13/02 - Devices or apparatus for measuring differences of two or more fluid pressure values using elastically-deformable members or pistons as sensing elements
A differential pressure sensor includes a pressure sensing die comprising a semiconductor die, having a thinned portion forming a diaphragm. The diaphragm includes piezo-resistive elements that exhibit varying resistance based on force exerted on the diaphragm. A first support structure is bonded to a first surface of the semiconductor die, having an aperture defined through the support structure such that a first surface of the diaphragm is exposed through the aperture. A second support structure is bonded to the opposite side of the semiconductor die having an aperture aligned with the opposing side of the diaphragm. Electrical components in electrical communication with the piezo-resistive elements are arranged outside the region defined by the bond between the first and second support structures and the semiconductor die. An oil-filled volume may be defined between the semiconductor die and a harsh medium which transmits a fluid pressure to the die without the harsh medium contacting the die.
G01L 19/00 - MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE - Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
G01L 13/02 - Devices or apparatus for measuring differences of two or more fluid pressure values using elastically-deformable members or pistons as sensing elements
G01L 9/00 - Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
G01L 19/06 - Means for preventing overload or deleterious influence of the measured medium on the measuring device or vice versa
A differential pressure sensor includes a pressure sensing die comprising a semiconductor die, having a thinned portion forming a diaphragm. The diaphragm includes piezo-resistive elements that exhibit varying resistance based on force exerted on the diaphragm. A first support structure is bonded to a first surface of the semiconductor die, having an aperture defined through the support structure such that a first surface of the diaphragm is exposed through the aperture. A second support structure is similarly bonded to the opposite side of the semiconductor die. Electrical components in electrical communication with the piezo-resistive elements are arranged outside the region defined by the bond between the first and second support structures and the semiconductor die. An oil-filled volume may be defined between the semiconductor die and a harsh medium which transmits a fluid pressure to the die without the harsh medium contacting the die.
G01L 9/00 - Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
A deformation sensor package includes a housing having a base and a peripheral wall extending from the base. The base and peripheral wall define two cavities each configured to receive a potentiometer, such as a string potentiometer. The peripheral wall defines two apertures formed between a respective cavity and an exterior of the housing. Each aperture is configured to allow for the passage of a moveable sensing end of an associated potentiometer therethrough.
G01B 5/30 - Measuring arrangements characterised by the use of mechanical techniques for measuring the deformation in a solid, e.g. mechanical strain gauge
A deformation sensor package includes a housing having a base and a peripheral wall extending from the base. The base and peripheral wall define two cavities each configured to receive a potentiometer, such as a string potentiometer. The peripheral wall defines two apertures formed between a respective cavity and an exterior of the housing. Each aperture is configured to allow for the passage of a moveable sensing end of an associated potentiometer therethrough.
G01B 5/30 - Measuring arrangements characterised by the use of mechanical techniques for measuring the deformation in a solid, e.g. mechanical strain gauge
G01L 5/00 - Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
45.
SYSTEM AND METHOD FOR MULTIPLEXED AND BUFFERED MINIATURIZED SENSOR ARRAYS
A miniature pressure scanning system includes a plurality of miniature pressure sensors where each pressure sensors includes at least one sensor output for providing an analog output signal indicative of a detected pressure on a body, and each pressure sensor output has an associated output impedance; a plurality of buffers, each buffer electrically connected to the output port of a corresponding one of the pressure sensors, and configured to reduce the associated output impedance of the corresponding sensor output coupled thereto, and further configured to provide at an output of the buffer the analog output pressure signal from the pressure sensor; and a multiplexer coupled downstream of the plurality of buffers and configured to multiplex the buffered analog output pressure signals to output a multiplexed analog signal representing the detected pressures.
A miniature pressure scanning system includes a plurality of miniature pressure sensors where each pressure sensors includes at least one sensor output for providing an analog output signal indicative of a detected pressure on a body, and each pressure sensor output has an associated output impedance; a plurality of buffers, each buffer electrically connected to the output port of a corresponding one of the pressure sensors, and configured to reduce the associated output impedance of the corresponding sensor output coupled thereto, and further configured to provide at an output of the buffer the analog output pressure signal from the pressure sensor; and a multiplexer coupled downstream of the plurality of buffers and configured to multiplex the buffered analog output pressure signals to output a multiplexed analog signal representing the detected pressures.
G01L 9/00 - Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
G01L 15/00 - Devices or apparatus for measuring two or more fluid pressure values simultaneously
47.
Optical sensing device for fluid sensing and methods therefor
An optical spectral sensing device for determining at least one property of a fluid. The device has an elongated porous body, a first end and a second end, a solid-state optical emitter at the first end of the body oriented to emit radiation toward the second end of the body, and a solid-state optical detector at the second end of the body oriented to detect radiation emitted by the optical emitter. A package for detecting properties of a fluid includes a body defining a cavity, with a movable and biased carrier for an optical detector or emitter mounted in the cavity for increased reliability. A system for determining relative concentrations of fluids in a sample includes emitter/detector pairs operating at reference wavelength and wavelengths corresponding to absorption peaks of at least two fluids, and a processor for determining concentration based on measured data and calibration data.
G01N 21/35 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
G01N 21/3504 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
G01N 21/3577 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water
G01N 21/31 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
G01N 21/85 - Investigating moving fluids or granular solids
G01N 21/27 - Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection
48.
Pressure sensing device having contacts opposite a membrane
Pressure sensors that may be used in harsh or corrosive environments. One example may provide a pressure sensor having membrane with a top surface that may be free of components or electrical connections. Instead, components and electrical connections may be located under the membrane. By providing a top surface free of components and electrical connections, the top surface of the pressure sensor may be placed in harsh or corrosive environments, while components and electrical connections under the membrane may remain protected.
An impedance conversion layer useful for medical imaging ultrasonic transducers comprises a low impedance polymer layer and a high impedance metal layer. These layers are combined with corresponding thicknesses adapted to provide a function of converting from a specific high impedance to specific low impedance, wherein the polymer layer is at the high impedance side and the metal layer is at the low impedance side. The effective acoustic impedance of the polymer and metal layer combination may be adapted to configure an impedance converter in the same way as a quarter wavelength impedance converter, converting from low impedance to high impedance (metal to polymer) or from a high impedance to low impedance (polymer to metal). This structure may be used for front matching with the propagation medium and back matching with an absorber for ultrasonic transducers.
B06B 1/06 - Processes or apparatus for generating mechanical vibrations of infrasonic, sonic or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
G10K 11/02 - Mechanical acoustic impedances; Impedance matching, e.g. by horns; Acoustic resonators
A stator winding temperature sensor including at least one sensing wire for connecting to a stator. The sensor also includes a body, including a core material comprising a polyimide substrate having an acrylic adhesive surrounding at least a portion of the sensing wire, and a laminate material over the core material. The body has a thickness adapted to protect the sensing wire. The sensor includes a lead wire for connecting to an external monitoring device. The sensing wire is electrically connected to the lead wire at a lead step portion of the sensor. The sensor further includes a tab extending from the lead wire and encompassing the lead step, the tab including a flexible zone where the tab is surrounded by a polyimide and an adhesive but is not surrounded by fiberglass.
G01K 7/18 - Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer
A stator winding temperature sensor including at least one sensing wire for connecting to a stator. The sensor also includes a body, including a core material comprising a polyimide substrate having an acrylic adhesive surrounding at least a portion of the sensing wire, and a laminate material over the core material. The body has a thickness adapted to protect the sensing wire. The sensor includes a lead wire for connecting to an external monitoring device. The sensing wire is electrically connected to the lead wire at a lead step portion of the sensor. The sensor further includes a tab extending from the lead wire and encompassing the lead step, the tab including a flexible zone where the tab is surrounded by a polyimide and an adhesive but is not surrounded by fiberglass.
A multilayer backing absorber for use with an ultrasonic transducer comprises a plurality of absorber elements, each absorber element having at least one metal layer and at least one adhesive layer, wherein the backing absorber is adapted to be coupled to a vibrating layer of the ultrasonic transducer.
H01L 41/02 - SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR - Details thereof - Details
B06B 1/06 - Processes or apparatus for generating mechanical vibrations of infrasonic, sonic or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
G10K 11/00 - Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
53.
Compensation of stress effects on pressure sensor components
Pressure sensors having components with reduced variations due to stresses caused by various layers and components that are included in the manufacturing process. In one example, a first stress in a first direction causes a variation in a component. A second stress in a second direction is applied, thereby reducing the variation in the component. The first and second stresses may be caused by a polysilicon layer, while the component may be a resistor in a Wheatstone bridge.
G01L 19/04 - Means for compensating for effects of changes of temperature
G01L 9/02 - Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers
A transducer useful for medical imaging ultrasonic transducers comprises a front impedance matching layer, a piezoelectric array, and a rear layer. The front impedance matching layer may include a return connection region electrically coupled to a distal end of the piezoelectric array and a front metal layer with a return signal portion for routing the return signal from the distal end of the transducer to a flex circuit of the rear layer at a proximal end of the transducer. In an embodiment, the rear layer may include a return connection region that is electrically coupled to the piezoelectric array at a distal end of the transducer and also electrically coupled to the signal return lines of a flex circuit at the distal end of the transducer.
Disclosed herein, among other things, is a stator winding temperature sensor. According to an embodiment, the sensor includes at least one sensing wire coil adapted to be connected to a stator. The sensor also includes a body, including a core material surrounding at least a portion of the sensing wire coil, and a laminate material over the core material. The body has a thickness adapted to protect the sensing wire coil. The sensor includes a lead wire adapted to connect to an external monitoring device. The sensing wire coil is electrically connected to the lead wire at a lead step portion of the sensor. In addition, the sensor includes a tab extending from the lead wire and encompassing the lead step. The tab protects the lead step and the sensing wire coil in a region where the sensor extends over an end of the stator.
An impedance conversion layer useful for medical imaging ultrasonic transducers comprises a low impedance polymer layer and a high impedance metal layer. These layers are combined with corresponding thicknesses adapted to provide a function of converting from a specific high impedance to specific low impedance, wherein the polymer layer is at the high impedance side and the metal layer is at the low impedance side. The effective acoustic impedance of the polymer and metal layer combination may be adapted to configure an impedance converter in the same way as a quarter wavelength impedance converter, converting from low impedance to high impedance (metal to polymer) or from a high impedance to low impedance (polymer to metal). This structure may be used for front matching with the propagation medium and back matching with an absorber for ultrasonic transducers.
B06B 1/06 - Processes or apparatus for generating mechanical vibrations of infrasonic, sonic or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
57.
OPTICAL SENSING DEVICE FOR FLUID SENSING AND METHODS THEREFOR
An optical spectral sensing device for determining at least one property of a fluid. The device has an elongated porous body, a first end and a second end, a solid-state optical emitter at the first end of the body oriented to emit radiation toward the second end of the body, and a solid-state optical detector at the second end of the body oriented to detect radiation emitted by the optical emitter. A package for detecting properties of a fluid includes a body defining a cavity, with a movable and biased carrier for an optical detector or emitter mounted in the cavity for increased reliability. A system for determining relative concentrations of fluids in a sample includes emitter/detector pairs operating at reference wavelength and wavelengths corresponding to absorption peaks of at least two fluids, and a processor for determining concentration based on measured data and calibration data.
An ultrasonic sensor for measuring the level of liquid in a vessel has an elongated tubular probe, a tube within the probe, and a transducer that converts electrical energy to ultrasonic energy mounted at or near one end of the tube to transmit ultrasonic energy along the probe longitudinal axis. A conical reflector that reflects ultrasonic energy is opposite the transducer ultrasonic energy emitting part to reflect ultrasonic energy received from the transducer upwardly in the probe to an air-liquid interface from which it is downwardly reflected to the conical reflector element that directs the energy reflected from the interface back to the transducer for conversion to an electrical signal that is used by an electronic module to measure the liquid level in the probe, which is the liquid level in the vessel, by measuring the round trip travel time of the ultrasonic signal energy.
Pressure sensors having components with reduced variations due to stresses caused by various layers and components that are included in the manufacturing process. In one example, a first stress in a first direction causes a variation in a component. A second stress in a second direction is applied, thereby reducing the variation in the component. The first and second stresses may be caused by a polysilicon layer, while the component may be a resistor in a Wheatstone bridge.
G01L 19/04 - Means for compensating for effects of changes of temperature
G01L 9/02 - Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers
60.
DC responsive transducer with on-board user actuated auto-zero
An accelerometer is provided having a power circuit, a detection circuit, and a compensation circuit. The compensation circuit is operative to measure an offset voltage occurring between an output reference voltage from the power circuit and an output voltage from the detection circuit state, store the offset voltage during a zero acceleration, and output the stored offset voltage to alter the output voltage of the detection circuit.
An accelerometer is provided having a power circuit, a detection circuit, and a compensation circuit. The compensation circuit is operative to measure an offset voltage occurring between an output reference voltage from the power circuit and an output voltage from the detection circuit state, store the offset voltage during a zero acceleration, and output the stored offset voltage to alter the output voltage of the detection circuit.
Circuits, methods, and systems that calibrate or account for packaging and related stress components in a pressure sensor. Further examples provide an improved sensor element or device. One example provides one or more sensing elements on the diaphragm and near the diaphragm-bulk boundary. Sensors near the diaphragm-bulk are used to estimate package-induced stress. This estimation can then be used in calibrating package stress from pressure measurements.
G01L 9/00 - Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
G01L 9/16 - Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in the magnetic properties of material resulting from the application of stress
63.
METHOD AND SYSTEM FOR USING LIGHT PULSED SEQUENCES TO CALIBRATE AN ENCODER
An encoder to be mounted to a piston meter and configured to compute a volume of distributed fluid includes a light sensor configured to detect a light sequence and output signals indicative of the light sequence to a processing device, the processing device configured to determine if the light sequence is one of one or more authorized light sequences, wherein the processing device enters a calibration mode if the light sequence is one of the one or more authorized light sequences.
An encoder to be mounted to a shaft extending from a piston meter configured to compute a volume of distributed fluid includes a magnet affixed to the shaft via a floating magnet holder, a magnetic sensor configured to sense the flux density and direction of a magnetic field created by the magnet and to output a signal indicating the flux density and direction of the magnetic field to a printed circuit board, and the printed circuit board configured to output a signal indicating the volume of distributed fluid if the encoder has not been tampered with and configured to output an error signal if the encoder has been tampered with.
An encoder to be mounted to a shaft extending from a piston meter configured to compute a volume of distributed fluid includes a magnet affixed to the shaft via a floating magnet holder, a magnetic sensor configured to sense the flux density and direction of a magnetic field created by the magnet and to output a signal indicating the flux density and direction of the magnetic field to a printed circuit board, and the printed circuit board configured to output a signal indicating the volume of distributed fluid if the encoder has not been tampered with and configured to output an error signal if the encoder has been tampered with.
G01B 7/30 - Measuring arrangements characterised by the use of electric or magnetic techniques for testing the alignment of axes
G01B 7/14 - Measuring arrangements characterised by the use of electric or magnetic techniques for measuring distance or clearance between spaced objects or spaced apertures
Pressure sensors having a topside boss and a cavity formed using deep reactive-ion etching (DRIE) or plasma etching. Since the boss is formed on the topside, the boss is aligned to other features on the topside of the pressure sensor, such as a Wheatstone bridge or other circuit elements. Also, since the boss is formed as part of the diaphragm, the boss has a reduced mass and is less susceptible to the effects of gravity and acceleration. These pressure sensors may also have a cavity formed using a DRIE or plasma etch. Use of these etches result in a cavity having edges that are substantially orthogonal to the diaphragm, such that pressure sensor die area is reduced. The use of these etches also permits the use of p-doped wafers, which are compatible with conventional CMOS technologies.
G01L 9/06 - Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers of piezo-resistive devices
G01L 7/00 - Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements
68.
Non invasive flow rate measuring system and method
A system and method for measuring the flow rate of a liquid in a tube non-invasively has a heating element that generates energy that is applied to the liquid to produce a heat marker that is detected by a temperature sensor located at a known distance from the heating element and the flow rate is calculated from measuring the travel time of the heat marker from the heating element to the sensor. A second temperature sensor measures the ambient temperature of the liquid before the heat marker is produced and detection of the heat marker is made on the basis of the difference between the ambient temperatures and the temperature of the heat marker.
An impedance conversion layer useful for medical imaging ultrasonic transducers comprises a low impedance polymer layer and a high impedance metal layer. These layers are combined with corresponding thicknesses adapted to provide a function of converting from a specific high impedance to specific low impedance, wherein the polymer layer is at the high impedance side and the metal layer is at the low impedance side. The effective acoustic impedance of the polymer and metal layer combination may be adapted to configure an impedance converter in the same way as a quarter wavelength impedance converter, converting from low impedance to high impedance (metal to polymer) or from a high impedance to low impedance (polymer to metal). This structure may be used for front matching with the propagation medium and back matching with an absorber for ultrasonic transducers.
H01L 41/04 - SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR - Details thereof - Details of piezo-electric or electrostrictive elements
70.
Multilayer acoustic impedance converter for ultrasonic transducers
An impedance conversion layer useful for medical imaging ultrasonic transducers comprises a low impedance polymer layer and a high impedance metal layer. These layers are combined with corresponding thicknesses adapted to provide a function of converting from a specific high impedance to specific low impedance, wherein the polymer layer is at the high impedance side and the metal layer is at the low impedance side. The effective acoustic impedance of the polymer and metal layer combination may be adapted to configure an impedance converter in the same way as a quarter wavelength impedance converter, converting from low impedance to high impedance (metal to polymer) or from a high impedance to low impedance (polymer to metal). This structure may be used for front matching with the propagation medium and back matching with an absorber for ultrasonic transducers.
H01L 41/04 - SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR - Details thereof - Details of piezo-electric or electrostrictive elements
71.
Bottom up contact type ultrasonic continuous level sensor
An ultrasonic sensor for measuring the level of liquid in a vessel has an elongated tubular probe, a tube within the probe, and a transducer that converts electrical energy to ultrasonic energy mounted at or near one end of the tube so as to transmit ultrasonic energy horizontally across the probe. An element having a surface that reflects ultrasonic energy is at an angle, preferably of about 45°, to the probe longitudinal axis opposite to an ultrasonic energy emitting part of the transducer to reflect ultrasonic energy received from the transducer upwardly in the probe to an air-liquid interface from which it is downwardly reflected to the angled reflector element that directs the energy reflected from the interface back to the transducer for conversion to an electrical signal that is used by an electronic module to measure the liquid level in the probe which is the liquid level in the vessel.
G01F 23/00 - Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
A non-invasive dry coupled disposable/reusable ultrasonic sensor has a housing and a piezoelectric element at one end of the housing to which connected signal leads are connected that extend out from the housing. A piece of double-sided adhesive tape has one adhesive side secured directly to the face at the one end of the housing with the other adhesive side to be secured directly to the outer surface of a pipe or vessel. The tape can cover the entire face of the one end of the housing or only that part that the piezoelectric element faces.
G01N 29/00 - Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
H01L 41/00 - SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR - Details thereof
73.
A LOW PRESSURE TRANSDUCER USING BEAM AND DIAPHRAGM
A low-pressure transducer including a disc-shaped metal diaphragm to which a fluid pressure is applied, wherein the diaphragm contains a raised beam formed by thinning the entire exterior surface of the diaphragm except for the beam; and at least one silicon strain gage glass bonded to the beam, wherein the low-pressure transducer can accurately gage pressures at least as low as 15 psi. The present invention also comprises a method for manufacturing a pressure transducer including the steps of forming a cylindrical diaphragm having a top surface and a lower surface; establishing a diameter and a thickness of the diaphragm relative to an operational plane by a creating a hole axially through the transducer body that terminates at the lower surface; and creating a raised surface in the shape of a cross beam integral to the operational surface; and bonding one or more strain gages thereupon.
G01L 9/04 - Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers of resistance strain gauges
74.
Multilayer backing absorber for ultrasonic transducer
A multilayer backing absorber for use with an ultrasonic transducer comprises an elemental multilayer having at least one metal layer and at least one adhesive layer, wherein the backing absorber is adapted to be coupled to a vibrating layer of the ultrasonic transducer.
A multilayer backing absorber for ultrasonic transducers operative in thickness mode has acoustic impedance and absorption for a given sensitivity and bandwidth. The multilayer backing absorber provides for transducer performance with a smooth frequency response curve. A transducer has a backing layer comprising layers of metal, polymer, and/or adhesive arranged so that a given impedance and absorption are obtained. Side boundaries between gross multiple layer regions with metal and without metal make some angles to the surfaces so that reflection from the back surface of the absorber does not reflect back to the piezoelectric layer. A multilayer absorber comprises a metal layer on each polymer layer and is configured as a periodic grating wherein the direction and period is different for each layer, and wherein the acoustic wave in the absorber is scattered or diffracted.
Methods and apparatus for an absolute or gauge pressure sensor having a backside cavity with a substantially vertical interior sidewall. The backside cavity is formed using a DRIE etch or other MEMS micro-machining technique. The backside cavity has an opening that is cross shaped, where the dimensions of the cross may be varied to adjust pressure sensor sensitivity. The cross may have one or more rounded corners to reduce peak stress, for example, the interior corners may be rounded. A sensing conductor may be routed over one or more corners including the interior corners to detect breakage.
G01L 7/08 - Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges of the flexible-diaphragm type
G01L 9/00 - Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
77.
Method of making pressure transducer and apparatus
A method for making a pressure transducer comprising: forming a recess in a diaphragm, the diaphragm having a thinned region that deflects responsively to pressure being applied thereto; depositing a glass frit in the recess; embedding a plurality of strain gages in the glass frit; and, wire bonding the strain gages into a Wheatstone bridge configuration.
G01L 9/04 - Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers of resistance strain gauges
78.
Ultrasonic system for detecting and quantifying of air bubbles/particles in a flowing liquid
A system using ultrasonic energy for detecting and quantifying air bubbles and/or particles in a liquid flowing in a tube by a non-invasive and non-destructive technique has an ultrasonic sensor having piezoelectric transmitter and receiver elements placed opposing on the outside of the tube wall and energy in the ultrasonic frequency range is transmitted from the transmitter element to the receiver element. The received ultrasonic energy is amplified and detected and preferably split into a steady state (DC) component and a varying or transient (AC) component respectively indicative of the absence and the presence of an air bubble or a particle in the liquid. The two components of the signal are applied to an A/D converter whose output is supplied to a microprocessor which uses the digital data that corresponds to the presence of the varying transient component to indicate the presence of an air bubble and/or a particle and to measure its characteristics. The presence of the steady-state component indicates that the system is operating properly to providing a continuous self check against any system malfunction.
An axial flow meter includes a housing including a generally elongated body with a continuous internal bore. Two spindles are mounted parallel to one another in the housing. Each spindle has a blade on the exterior surface of the spindle. Blades on each of the two spindles engage with each other. Bearings at each end of both spindles engage the spindles. At least one of the bearings engaging each one of the spindles is fixed in a position relative to the elongated body thereby preventing axial movement of the two spindles while allowing rotational movement of the two spindles.
G01F 1/28 - Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow by drag-force, e.g. vane type or impact flowmeter
Fluid monitoring methods, systems and apparatus are disclosed, including a portable subassembly that is in electrical communication with a sensor in contact with the fluid being monitred. Preferred embodiments for the sensor include one or more flexural resonator sensing elements. In preferred embodiments the sensor subassembly is ported to multiple fluidic systems to monitor the fluid properties in an effecient manner.
A system for monitoring a fluid in an environmental control system includes a mechanical resonator positioned for contacting a thermal change fluid. In some embodiments, the mechanical resonator is positioned in a passage for containing the thermal change fluid. Suitable thermal change fluids include an R-134A refrigerant, a mineral oil, an ester lubricant or a mixture thereof; a superheated refrigerant; or an elevated pressure and elevated temperature vapor, an elevated pressure liquid, a reduced pressure liquid, a reduced pressure vapor and combinations thereof. The mechanical resonator can be a flexural resonator or a torsion resonator. In some embodiments, the mechanical resonator is a tuning fork resonator. Methods of the invention include monitoring a response of the mechanical resonator to the thermal change fluid. In some embodiments, at least a portion of the mechanical resonator is translated through the thermal change fluid and the response of the resonator to the fluid is monitored.
A method for digitally controlling the resistive output of a temperature probe is disclosed. The system is comprised of a temperature sensor, a processor and a means under the control of the processor for modifying the resistive output such as a digital potentiometer. In one embodiment, the processor reads the temperature sensor and adjusts the potentiometer based on a correlative or predictive technique so as to provide a modified output that matches that of a standard resistive temperature probe and is compatible for display on a multiparameter monitor.