The present invention relates to organic light-emitting devices comprising (a) an anode, (i) a cathode, and (e) an emitting layer between the anode and cathode, comprising 40.01 to 99.95% by weight of a luminescent organometallic complex X having a difference of the singlet energy (ES1(X)) and the triplet energy (ET1(X)) of smaller than 0.2 eV [Δ(ES1(X))−(ET1(X))<0.2 eV], 0.05 to 5.00% by weight of a fluorescent emitter Y and 0 to 59.94% by weight of a host compound(s), wherein the amount of the organometallic complex X, the fluorescent emitter Y and the host compound(s) adds up to a total of 100% by weight and the singlet energy of the luminescent organometallic complex X (ES1(X)) is greater than the singlet energy of the fluorescent emitter Y (ES1(Y)) [(ES1(X))>ES1(Y)]. By doping, for example, an emitting layer containing a luminescent organometallic complex having a small S1−T1 splitting, with a fluorescent emitter the emission decay time can significantly be shortened without sacrificing external quantum efficiency (EQE) because of very efficient energy transfer.
Disclosed are electroluminescent devices that comprise organic layers that contain certain organic compounds containing one ore more pyrimidine moieties. The organic compounds containing one ore more pyrimidine moieties are suitable components of blue-emitting, durable, organo-electroluminescent layers. The electroluminescent devices may be employed for full color display panels in for example mobile phones, televisions and personal computer screens.
H10K 85/60 - Organic compounds having low molecular weight
C07D 239/26 - Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
C07D 403/10 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group containing two hetero rings linked by a carbon chain containing aromatic rings
The present invention relates to metal complexes which are substituted by aromatic and icylic aliphatic substituents and are suitable for use as emitters in organic electroluminescent devices. The electronic devices of the invention, especially organic electroluminescent devices, are notable for advantages that are not accompanied by a deterioration in the further electronic properties. The invention provides a compound of the following formula (1):
The present invention relates to metal complexes which are substituted by aromatic and icylic aliphatic substituents and are suitable for use as emitters in organic electroluminescent devices. The electronic devices of the invention, especially organic electroluminescent devices, are notable for advantages that are not accompanied by a deterioration in the further electronic properties. The invention provides a compound of the following formula (1):
The present invention relates to metal complexes which are substituted by aromatic and icylic aliphatic substituents and are suitable for use as emitters in organic electroluminescent devices. The electronic devices of the invention, especially organic electroluminescent devices, are notable for advantages that are not accompanied by a deterioration in the further electronic properties. The invention provides a compound of the following formula (1):
wherein B is a group of the following formula (2):
The present invention relates to metal complexes which are substituted by aromatic and icylic aliphatic substituents and are suitable for use as emitters in organic electroluminescent devices. The electronic devices of the invention, especially organic electroluminescent devices, are notable for advantages that are not accompanied by a deterioration in the further electronic properties. The invention provides a compound of the following formula (1):
wherein B is a group of the following formula (2):
The present invention relates to metal complexes and to electronic devices, in particular organic electroluminescent devices, comprising these metal complexes.
H05B 33/10 - Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
H05B 33/20 - Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the material in which the electroluminescent material is embedded
H10K 50/11 - OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
H10K 71/12 - Deposition of organic active material using liquid deposition, e.g. spin coating
H10K 71/16 - Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
An organic electroluminescent device includes a pair of electrodes; and an organic layer between the pair of electrodes, which includes a light-emitting layer, wherein the organic layer contains a compound represented by the following formula (I); and the light-emitting layer contains a iridium complex phosphorescent material:
An organic electroluminescent device includes a pair of electrodes; and an organic layer between the pair of electrodes, which includes a light-emitting layer, wherein the organic layer contains a compound represented by the following formula (I); and the light-emitting layer contains a iridium complex phosphorescent material:
An organic electroluminescent device includes a pair of electrodes; and an organic layer between the pair of electrodes, which includes a light-emitting layer, wherein the organic layer contains a compound represented by the following formula (I); and the light-emitting layer contains a iridium complex phosphorescent material:
wherein R1, R2, R3, R4, R5, R6, R7 and R8 each represents a hydrogen atom or a substituent, and contiguous substituents of R1 to R8 may be bonded to each other to form a condensed ring; R9 represents an alkyl group, an alkenyl group, an aryl group, a hetero-aryl group, or a silyl group, and each of which group may be substituted with a substituent; and at least one of R1 to R9 represents a deuterium atom or a substituent containing a deuterium atom.
H05B 33/14 - Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material
H10K 50/11 - OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
The present invention relates to organic light-emitting devices comprising (a) an anode, (i) a cathode, and (e) an emitting layer between the anode and cathode, comprising 2 to 40% by weight of a triplet emitter X having a difference of the singlet energy (ES1(X)) and the triplet energy (ET1(X)) of less than or equal to 0.4 eV [Δ(ES1(X)) −(ET1(X))≤0.4 eV], 0.05 to 5.0% by weight of a fluorescent emitter Y and 55 to 97.95% by weight of a host compound(s), wherein the amount of the triplet emitter X, the fluorescent emitter Y and the host compound(s) adds up to a total of 100% by weight and the singlet energy of the triplet emitter X(ES1(X)) is greater than the singlet energy of the fluorescent emitter Y(ES1(Y)) [(ES1(X))>ES1(Y)]. By doping, for example, an emitting layer containing a luminescent organometallic complex having a small S1-T1 splitting, with a fluorescent emitter the emission decay time can significantly be shortened without sacrificing external quantum efficiency (EQE) because of very efficient energy transfer.
The present invention relates to the use of transition metal-carbene complexes in organic light-emitting diodes (OLEDs), to a light-emitting layer, to a blocking layer for electrons or excitons, or to a blocking layer for holes, each comprising these transition metal-carbene complexes, to OLEDs comprising these transition metal-carbene complexes, to devices which comprise an inventive OLED, and to transition metal-carbene complexes.
H05B 33/14 - Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material
To provide an organic electroluminescence device having high luminous efficiency (for example, external quantum efficiency) and high durability and causing little chromaticity shift after device deterioration.
To provide an organic electroluminescence device having high luminous efficiency (for example, external quantum efficiency) and high durability and causing little chromaticity shift after device deterioration.
An organic electroluminescence device material comprising a substrate having thereon a pair of electrode and at least one organic layer between the electrodes, the organic layer containing a light emitting layer, wherein any one layer of the organic layer contains, for example, as shown below, a metal complex having a group represented by formula (I).
To provide an organic electroluminescence device having high luminous efficiency (for example, external quantum efficiency) and high durability and causing little chromaticity shift after device deterioration.
An organic electroluminescence device material comprising a substrate having thereon a pair of electrode and at least one organic layer between the electrodes, the organic layer containing a light emitting layer, wherein any one layer of the organic layer contains, for example, as shown below, a metal complex having a group represented by formula (I).
C07D 213/16 - Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing only one pyridine ring
C07D 213/26 - Radicals substituted by halogen atoms or nitro radicals
C07D 215/04 - Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms
C07D 217/06 - Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with only hydrogen atoms or radicals containing only carbon and hydrogen atoms, directly attached to carbon atoms of the nitrogen-containing ringAlkylene-bis-isoquinolines with the ring nitrogen atom acylated by carboxylic or carbonic acids, or with sulfur or nitrogen analogues thereof, e.g. carbamates
C07D 233/60 - Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with hydrocarbon radicals, substituted by oxygen or sulfur atoms, attached to ring nitrogen atoms
C07D 263/62 - Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings condensed with carbocyclic rings or ring systems having two or more ring systems containing condensed 1,3-oxazole rings
C07D 401/04 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring- member bond
C07D 401/06 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
C07D 401/14 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
C07D 405/14 - Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
C07D 409/04 - Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring- member bond
A charge transporting material which allows for a low driving voltage and is superior in luminous efficiency and durability is provided. The charge transporting material comprising a compound represented by any one of the general formula (1-1) to (1-3) wherein R111 to R114, R121 to R125 and R131 to R135, L111 to L113, and L121 to L123 are as defined in the specification. Ar111 to Ar113 represent a substituent represented by any one of the general formulae (3-1) to (3-3); * represents a binding position to L121 to L123; and R311, R312, R321 to R325 and R331 to R335 are as defined in the specification:
A charge transporting material which allows for a low driving voltage and is superior in luminous efficiency and durability is provided. The charge transporting material comprising a compound represented by any one of the general formula (1-1) to (1-3) wherein R111 to R114, R121 to R125 and R131 to R135, L111 to L113, and L121 to L123 are as defined in the specification. Ar111 to Ar113 represent a substituent represented by any one of the general formulae (3-1) to (3-3); * represents a binding position to L121 to L123; and R311, R312, R321 to R325 and R331 to R335 are as defined in the specification:
H10K 85/60 - Organic compounds having low molecular weight
H05B 33/14 - Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material
The invention relates to metal complexes and to electronic devices, in particular organic electroluminescence devices, containing said metal complexes.
The present invention relates to organic light emitting elements, comprising thermally activated delayed fluorescence (TADF) emitters and/or hosts of formula
The present invention relates to organic light emitting elements, comprising thermally activated delayed fluorescence (TADF) emitters and/or hosts of formula
The present invention relates to organic light emitting elements, comprising thermally activated delayed fluorescence (TADF) emitters and/or hosts of formula
which have a sufficiently small energy gap between S1 and T1 (ΔEST) to enable up-conversion of the triplet exciton from T1 to S1. The organic light emitting elements show high electroluminescent efficiency.
The present invention relates to metal complexes and to electronic devices, in particular organic electroluminescent devices, containing these metal complexes.
The present invention relates to dinuclear metal complexes and to electronic devices, especially organic electroluminescent devices, comprising these metal complexes.
An iridium complex which has a phenylpyridine bidentate ligand containing a group represented by the following general formula (A):
An iridium complex which has a phenylpyridine bidentate ligand containing a group represented by the following general formula (A):
An iridium complex which has a phenylpyridine bidentate ligand containing a group represented by the following general formula (A):
(In the general formula (A), X represents a cyano group or a halogenated alkyl group. L represents a single bond or a divalent linking group. R represents a substituent. n represents an integer of 0 to 4. * represents a binding site to a phenylpyridine bidentate ligand.)
Use of transition metal complexes of the formula (I) in organic light-emitting diodes
Use of transition metal complexes of the formula (I) in organic light-emitting diodes
where:
M1 is a metal atom;
carbene is a carbene ligand;
L is a monoanionic or dianionic ligand;
K is an uncharged monodentate or bidentate ligand selected from the group consisting of phosphines; CO; pyridines; nitriles and conjugated dienes which form a π complex with M1;
n is the number of carbene ligands and is at least 1;
m is the number of ligands L, where m can be 0 or ≥1;
is the number of ligands K, where o can be 0 or ≥1;
where the sum n+m+o is dependent on the oxidation state and coordination number of the metal atom and on the denticity of the ligands carbene, L and K and also on the charge on the ligands carbene and L, with the proviso that n is at least 1, and also
an OLED comprising these transition metal complexes, a light-emitting layer comprising these transition metal complexes, OLEDs comprising this light-emitting layer, devices comprising an OLED according to the present invention, and specific transition metal complexes comprising at least two carbene ligands.
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
The present invention relates to compounds of formula
The present invention relates to compounds of formula
The present invention relates to compounds of formula
a process for their production and their use in electronic devices, especially electroluminescent devices. When used as host material for phasphorescent emitters in electroluminescent devices, the compounds of formula I may provide improved efficiency, stability, manufacturability, or spectral characteristics of electroluminescent devices.
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
C07D 519/00 - Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups or
H05B 33/20 - Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the material in which the electroluminescent material is embedded
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
C07F 15/00 - Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
The present invention relates to metal-carbene complexes comprising a central atom selected from iridium and platinum, and diazabenzimidazolocarbene ligands, to organic light diodes which comprise such complexes, to light-emitting layers comprising at least one such metal-carbene complex, to a device selected from the group comprising illuminating elements, stationary visual display units and mobile visual display units comprising such an OLED and to the use of such a metal-carbene complex in OLEDs, for example as emitter, matrix material, charge transport material and/or charge or exciton blocker.
C07D 405/14 - Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
H10K 50/125 - OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
An organic electroluminescent device includes a pair of electrodes; and an organic layer between the pair of electrodes, which includes a light-emitting layer, wherein the organic layer contains a compound represented by the following formula (I); and the light-emitting layer contains a iridium complex phosphorescent material:
9 represents a deuterium atom or a substituent containing a deuterium atom.
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
C09K 11/02 - Use of particular materials as binders, particle coatings or suspension media therefor
H05B 33/14 - Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material
An organic electroluminescent device, which has a pair of electrodes and at least one organic layer including a luminescent layer between the pair of electrodes, wherein at least one layer between the pair of electrodes comprises at least one metal complex having a tridentate- or higher polydentate-chain structure ligand.
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
C07F 15/00 - Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
C07C 251/24 - Compounds containing nitrogen atoms doubly- bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to carbon atoms of six-membered aromatic rings
C07D 213/22 - Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing two or more pyridine rings directly linked together, e.g. bipyridyl
H01L 51/52 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED) - Details of devices
H05B 33/14 - Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material
26.
Organic Electroluminescent Element, Material for Organic Electroluminescent Element, Light Emitting Device, Display Device and Lighting Device Each Using Said Element, and Compound Used for Said Element
An organic electroluminescent element including a substrate, a pair of electrodes including an anode and a cathode, disposed on the substrate, and at least one organic layer including a light emitting layer, disposed between the electrodes, in which at least one layer of the organic layer(s) contains a compound represented by the following formula, has low driving voltage and excellent durability.
An organic electroluminescent element including a substrate, a pair of electrodes including an anode and a cathode, disposed on the substrate, and at least one organic layer including a light emitting layer, disposed between the electrodes, in which at least one layer of the organic layer(s) contains a compound represented by the following formula, has low driving voltage and excellent durability.
An organic electroluminescent element including a substrate, a pair of electrodes including an anode and a cathode, disposed on the substrate, and at least one organic layer including a light emitting layer, disposed between the electrodes, in which at least one layer of the organic layer(s) contains a compound represented by the following formula, has low driving voltage and excellent durability.
(X1 to X11 represent CR0 or N, and R0 represents a hydrogen atom or a substituent. Adjacent two of X1 to X11 each independently represent at least CR0, R0s of the adjacent two CR0s are bonded to each other to form a ring, and only one R0 of the adjacent two CR0s represents an aryl group or a heteroaryl group.)
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
C07D 519/00 - Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups or
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
The present invention relates to a method for producing cyclo-metallated metal compounds which, in their capacity as functional materials, are used as colouring components in a range of diverse applications attributable in the widest sense to the electronics industry.
The present invention relates to metal complexes and electronic devices, in particular organic electroluminescent devices, containing said metal complexes.
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
C07F 15/00 - Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
The present invention relates to heteroleptic complexes comprising a phenylimidazole or phenyltriazole unit bonded via a carbene bond to a central metal atom, and phenylimidazole ligands attached via a nitrogen-metal bond to the central atom, to OLEDs which comprise such heteroleptic complexes, to light-emitting layers comprising at least one such heteroleptic complex, to a device selected from the group consisting of illuminating elements, stationary visual display units and mobile visual display units comprising such an OLED, to the use of such a heteroleptic complex in OLEDs, for example as emitter, matrix material, charge transport material and/or charge blocker.
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
1 splitting, with a fluorescent emitter the emission decay time can significantly be shortened without sacrificing external quantum efficiency (EQE) because of very efficient energy transfer.
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
C07F 15/00 - Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
33.
Organoelectroluminescent Element, and Light Emission Device, Display Device, and Illumination Device in which Said Organoelectroluminescent Element is Used
An organoelectroluminescent element which can satisfy both a high external quantum efficiency and high power efficiency at the same time, which has on a substrate an anode, a first intermediate organic layer composed of at least one organic layer, a light-emitting layer, a second intermediate organic layer composed of at least one organic layer, and a cathode in this order, and in which light is extracted from the aforementioned anode side, wherein the aforementioned light-emitting layer contains a light-emitting material that is oriented in the horizontal direction with the substrate, the order parameter of the aforementioned light-emitting material in the aforementioned light-emitting layer is at least 0.7, and the relationship between the thickness T1 (nm) of the aforementioned first intermediate organic layer and the thickness T2 (nm) of the aforementioned second intermediate organic layer is such that 1.1
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
H05B 33/14 - Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
C07F 15/00 - Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
C07D 209/88 - CarbazolesHydrogenated carbazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
C07F 15/00 - Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
C07C 257/18 - Compounds containing carboxyl groups, the doubly-bound oxygen atom of a carboxyl group being replaced by a doubly-bound nitrogen atom, this nitrogen atom not being further bound to an oxygen atom, e.g. imino-ethers, amidines with replacement of the other oxygen atom of the carboxyl group by nitrogen atoms, e.g. amidines having carbon atoms of amidino groups bound to carbon atoms of six-membered aromatic rings
C07D 217/26 - Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
C07D 213/78 - Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
The present invention relates to metal-carbene complexes comprising a central atom selected from iridium and platinum, and diazabenzimidazolocarbene ligands, to organic light diodes which comprise such complexes, to light-emitting layers comprising at least one such metal-carbene complex, to a device selected from the group comprising illuminating elements, stationary visual display units and mobile visual display units comprising such an OLED and to the use of such a metal-carbene complex in OLEDs, for example as emitter, matrix material, charge transport material and/or charge or exciton blocker.
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
C07D 405/14 - Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
C07F 7/08 - Compounds having one or more C—Si linkages
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
The present invention relates to binuclear, trinuclear and tetranuclear metal complexes and to electronic devices, especially organic electroluminescent devices, comprising these metal complexes.
A compound of the general formula
a process for the production of the compound and its use in electronic devices, especially electroluminescent devices. Improved efficiency, stability, manufacturability, or spectral characteristics of electroluminescent devices are provided when the compound of formula I is used as host material for phosphorescent emitters in electroluminescent devices.
C07D 519/00 - Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups or
H10K 85/60 - Organic compounds having low molecular weight
H10K 99/00 - Subject matter not provided for in other groups of this subclass
G03G 5/06 - Photoconductive layersCharge-generation layers or charge-transporting layersAdditives thereforBinders therefor characterised by the photoconductive material being organic
C09K 11/02 - Use of particular materials as binders, particle coatings or suspension media therefor
H10K 50/11 - OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
An iridium complex which has a phenylpyridine bidentate ligand containing a group represented by the following general formula (A):
wherein X represents a cyano group or a halogenated alkyl group; L represents a single bond or a divalent linking group; R represents a substituent; n represents an integer of 0 to 4; * represents a binding site to a phenylpyridine bidentate ligand.
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
H05B 33/14 - Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material
C07F 15/00 - Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
41.
Heteroleptic carbene complexes and the use thereof in organic electronics
The present invention relates to heteroleptic complexes comprising a phenylimidazole or phenyltriazole unit bonded via a carbene bond to a central metal atom, and phenylimidazole ligands attached via a nitrogen-metal bond to the central atom, to OLEDs which comprise such heteroleptic complexes, to light-emitting layers comprising at least one such heteroleptic complex, to a device selected from the group consisting of illuminating elements, stationary visual display units and mobile visual display units comprising such an OLED, to the use of such a heteroleptic complex in OLEDs, for example as emitter, matrix material, charge transport material and/or charge blocker.
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
C07F 15/00 - Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
42.
Fluorescent organic light emitting elements having high efficiency
The present invention relates to organic light emitting elements, comprising thermally activated delayed fluorescence (TADF) emitters and/or hosts of formula
1. The organic light emitting elements show high electroluminescent efficiency.
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
H10K 85/60 - Organic compounds having low molecular weight
An organic electronic device, preferably an organic light-emitting diode (OLED), comprising at least one metal-carbene complex comprising one, two or three specific bidentate diazabenzimidazole carbene ligands; a light-emitting layer comprising said metal-carbene complex as emitter material, preferably in combination with at least one host material; the use of said metal-carbene complex in an OLED; an apparatus selected from the group consisting of stationary visual display units, mobile visual display units, illumination units, units in items of clothing, units in handbags, units in accessories, units in furniture and units in wallpaper comprising said organic electronic device, preferably said OLED, or said light-emitting layer; the metal-carbene complex comprising one, two or three specific bidentate diazabenzimidazole carbene ligands mentioned above and a process for the preparation of said metal-carbene complex.
C07F 15/00 - Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
C09B 57/10 - Metal complexes of organic compounds not being dyes in uncomplexed form
C09B 57/00 - Other synthetic dyes of known constitution
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
An organic electroluminescence device material comprising a metal complex having a neopentyl group, for example, as shown below; and an organic electroluminescence device comprising a substrate having thereon a pair of electrodes and at least one organic layer between the electrodes, the organic layer containing a light emitting layer, wherein any one of the organic layer contains the organic electroluminescence device material.
An organic electroluminescence device material comprising a metal complex having a neopentyl group, for example, as shown below; and an organic electroluminescence device comprising a substrate having thereon a pair of electrodes and at least one organic layer between the electrodes, the organic layer containing a light emitting layer, wherein any one of the organic layer contains the organic electroluminescence device material.
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
C07F 15/00 - Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
H05B 33/14 - Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material
45.
Iridium complex and organic electroluminescence device using the same
The present invention discloses an iridium complex represented by the following formula (1) and an organic electroluminescence device using the iridium complex as a phosphorescent dopant material. The phosphorescent dopant material may be for lowering a driving voltage or power consumption or increasing a current efficiency of half-life of the organic electroluminescence device.
The same definition as described in the present invention.
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
C07F 15/00 - Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
C07F 15/00 - Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
47.
Electroluminescent element, and light emitting device, display device and lighting device each using organic electroluminescent element
C07D 251/14 - Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom
H10K 85/40 - Organosilicon compounds, e.g. TIPS pentacene
H10K 85/60 - Organic compounds having low molecular weight
H10K 50/11 - OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
The present invention relates to the use of transition metal-carbene complexes in organic light-emitting diodes (OLEDs), to a light-emitting layer, to a blocking layer for electrons or excitons, or to a blocking layer for holes, each comprising these transition metal-carbene complexes, to OLEDs comprising these transition metal-carbene complexes, to devices which comprise an inventive OLED, and to transition metal-carbene complexes.
H05B 33/14 - Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material
H10K 50/11 - OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
C07F 15/00 - Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
50.
ORGANIC ELECTRIC LIGHT EMITTING ELEMENT, MATERIAL FOR SAID ELEMENT, AND LIGHT EMITTING DEVICE, DISPLAY DEVICE, AND ILLUMINATION DEVICE EMPLOYING SAID ELEMENT
An organic electroluminescent element including a substrate, a pair of electrodes including an anode and a cathode, disposed on the substrate, and at least one organic layer including a light emitting layer, disposed between the electrodes, in which the organic layer includes a compound represented by the following general formula, has high luminous efficiency, excellent blue color purity, and a small change in the chromaticity due to deterioration by driving (Cy represents a fused aromatic ring structure having the number of constituent rings of 3 or more, and has Dn1 and Ac1 as different constituent rings, and each of the constituent rings are all hydrocarbon rings. Dn1 represents NR11, an O atom, or an S atom. Ac1 represents an electron absorbing substituent, an aryl group having an electron absorbing substituent, or an electron deficient heteroaryl group. The ring Z1 represents an arylene group or a heteroarylene group. L1, L2 and L3 represent specific linking groups. u1 represents 0 or 1, and in the case where u1 is 1, the ring thus formed is not an aromatic ring. n1 and q1 represent 0 or 1, and in the case where any one of n1 and q1 is 0 and n1 or q1 is 1, the rings thus formed are not all aromatic rings. When Ac1 is a pyridine ring, at least one of n1 and q1 is 1.)
An organic electroluminescent element including a substrate, a pair of electrodes including an anode and a cathode, disposed on the substrate, and at least one organic layer including a light emitting layer, disposed between the electrodes, in which the organic layer includes a compound represented by the following general formula, has high luminous efficiency, excellent blue color purity, and a small change in the chromaticity due to deterioration by driving (Cy represents a fused aromatic ring structure having the number of constituent rings of 3 or more, and has Dn1 and Ac1 as different constituent rings, and each of the constituent rings are all hydrocarbon rings. Dn1 represents NR11, an O atom, or an S atom. Ac1 represents an electron absorbing substituent, an aryl group having an electron absorbing substituent, or an electron deficient heteroaryl group. The ring Z1 represents an arylene group or a heteroarylene group. L1, L2 and L3 represent specific linking groups. u1 represents 0 or 1, and in the case where u1 is 1, the ring thus formed is not an aromatic ring. n1 and q1 represent 0 or 1, and in the case where any one of n1 and q1 is 0 and n1 or q1 is 1, the rings thus formed are not all aromatic rings. When Ac1 is a pyridine ring, at least one of n1 and q1 is 1.)
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
H05B 33/10 - Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
C07D 209/88 - CarbazolesHydrogenated carbazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
C07D 209/86 - CarbazolesHydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
C07D 405/04 - Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring- member bond
C07D 491/052 - Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being six-membered
C07D 403/04 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group containing two hetero rings directly linked by a ring-member-to-ring- member bond
51.
Process for preparing ortho-metallated metal compounds
The present invention describes a process for producing tris-orthometalated metal compounds which can be used as coloring components as functional materials in a number of diverse applications that can be broadly attributed to the electronics industry.
The present invention relates to binuclear metal complexes and electronic devices, in particular organic electroluminescent devices containing said metal complexes.
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
C07F 15/00 - Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
1 splitting, with a fluorescent emitter the emission decay time can significantly be shortened without sacrificing external quantum efficiency (EQE) because of very efficient energy transfer.
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
The present invention relates to binuclear metal complexes and electronic devices, in particular organic electroluminescent devices containing said metal complexes of the formula (1):
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
C07F 15/00 - Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
C09K 11/02 - Use of particular materials as binders, particle coatings or suspension media therefor
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
The present invention relates to an electroluminescence device having high luminous efficiency (for example, external quantum efficiency) and high durability and causing little chromaticity shift after device deterioration. The present invention also relates to an organic electroluminescence device material comprising a substrate having thereon a pair of electrode and at least one organic layer between the electrodes, the organic layer containing a light emitting layer, wherein the light emitting layer contains a metal complex having a group represented by formula (I).
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
C07D 213/16 - Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing only one pyridine ring
C07D 213/26 - Radicals substituted by halogen atoms or nitro radicals
C07D 215/04 - Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms
C07D 217/06 - Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with only hydrogen atoms or radicals containing only carbon and hydrogen atoms, directly attached to carbon atoms of the nitrogen-containing ringAlkylene-bis-isoquinolines with the ring nitrogen atom acylated by carboxylic or carbonic acids, or with sulfur or nitrogen analogues thereof, e.g. carbamates
C07D 233/60 - Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with hydrocarbon radicals, substituted by oxygen or sulfur atoms, attached to ring nitrogen atoms
C07D 263/62 - Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings condensed with carbocyclic rings or ring systems having two or more ring systems containing condensed 1,3-oxazole rings
C07D 401/04 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring- member bond
C07D 401/06 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
C07D 401/14 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
C07D 405/14 - Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
C07D 409/04 - Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring- member bond
An organic electroluminescent element including a substrate, a pair of electrodes including an anode and a cathode, disposed on the substrate, and at least one organic layer including a light emitting layer, disposed between the electrodes, in which at least one kind of compound represented by the following general formula is contained in any layer of the at least one organic layer, is an organic electroluminescent element, in which the generation of dark spots during driving is inhibited:
H05B 33/10 - Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
C07D 307/93 - Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems condensed with a ring other than six-membered
C07D 493/22 - Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains four or more hetero rings
C07D 495/22 - Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains four or more hetero rings
C07D 307/77 - Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
C07F 7/08 - Compounds having one or more C—Si linkages
H10K 50/11 - OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
57.
Organic electroluminescent element and novel iridium complex
An iridium complex which has a phenylpyridine bidentate ligand containing a group represented by the following general formula (A):
wherein X represents a cyano group or a halogenated alkyl group; L represents a single bond or a divalent linking group; R represents a substituent; n represents an integer of 0 to 4; * represents a binding site to a phenylpyridine bidentate ligand.
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
H05B 33/14 - Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material
C07F 15/00 - Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
H05B 33/14 - Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
59.
Heteroleptic transition metal-carbene complexes and their use in organic light-emitting diodes
The present invention relates to heteroleptic carbene complexes comprising at least two different carbene ligands, to a process for preparing the heteroleptic carbene complexes, to the use of the heteroleptic carbene complexes in organic light-emitting diodes, to organic light-emitting diodes comprising at least one inventive heteroleptic carbene complex, to a light-emitting layer comprising at least one inventive heteroleptic carbene complex, to organic light-emitting diodes comprising at least one inventive light-emitting layer, and to devices which comprise at least one inventive organic light-emitting diode.
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
C07F 15/00 - Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
H05B 33/14 - Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material
The present invention relates to metal complexes and to electronic devices, in particular organic electroluminescent devices, containing these metal complexes.
The present invention discloses an iridium complex of formula (1) below and an organic electroluminescence device employing the iridium complex as the phosphorescent dopant material. The organic EL device can display good performance, such as reduced driving voltage, increased current efficiency, and longer half-life time.
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
C07F 15/00 - Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
62.
Binuclear metal complexes for use as emitters in organic electroluminescent devices
The present invention relates to binuclear metal complexes and electronic devices, in particular organic electroluminescent devices containing said metal complexes.
C07F 15/00 - Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
63.
4H-imidazo[1,2-a]imidazoles for electronic applications
The present invention relates to compounds of formula
a process for their production and their use in electronic devices, especially electroluminescent devices. When used as host material for phasphorescent emitters in electroluminescent devices, the compounds of formula I may provide improved efficiency, stability, manufacturability, or spectral characteristics of electroluminescent devices.
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
H05B 33/20 - Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the material in which the electroluminescent material is embedded
C07D 519/00 - Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups or
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
64.
Organic electroluminescent element, light-emitting material therefor, light emitting device, display device, and illumination device
The present invention relates to binuclear metal complexes and electronic devices, in particular organic electroluminescent devices containing said metal complexes.
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
C07F 15/00 - Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
Organic electronics applications, especially an organic light-emitting diode (OLED), an organic solar cell (organic photovoltaics) or a switching element such as an organic transistor, for example an organic FET (Field Effect Transistor) and an organic TFT (Thin Film Transistor), comprising at least one substituted phenoxasiline derivative, a organic semiconductor layer, a host material, electron/hole/exciton blocking material or electron/hole injection material comprising at least one substituted phenoxasiline derivative, the use of a substituted phenoxasiline derivative in organic electronics applications, an organic light-emitting diode, wherein at least one substituted phenoxasiline derivative is present in the electron/hole/exciton blocking layer, the electron/hole injection layer and/or the light-emitting layer, a light-emitting layer, an electron/hole/exciton blocking layer and an electron/hole injection layer comprising at least one substituted phenoxasiline derivative and a device selected from the group consisting of stationary visual display units, mobile visual display units; illumination units; keyboards; garments; furniture and wallpaper comprising at least one organic light-emitting diode, at least one light-emitting layer, at least one electron/hole/exciton blocking layer and/or at least one electron/hole injection layer according to the present invention.
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
C07F 7/08 - Compounds having one or more C—Si linkages
C07F 9/6596 - Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having atoms other than oxygen, sulfur, selenium, tellurium, nitrogen or phosphorus as ring hetero atoms
H01L 51/52 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED) - Details of devices
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
67.
Method for the separation of enantiomeric mixtures from metal complexes
The present invention relates to processes for separating mixtures containing enantiomers of metal complexes with aromatic and/or heteroaromatic ligands, to metal complexes and to electronic devices, especially organic electroluminescent devices, comprising these metal complexes.
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
C07F 15/00 - Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
C07B 57/00 - Separation of optically-active organic compounds
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
C09B 57/00 - Other synthetic dyes of known constitution
C09B 57/10 - Metal complexes of organic compounds not being dyes in uncomplexed form
68.
Binuclear and trinuclear metal complexes composed of two inter-linked tripodal hexadentate ligands for use in electroluminescent devices
The present invention relates to bi- and trinuclear metal complexes and to electronic devices, in particular organic electroluminescent devices, containing these complexes.
C07F 15/00 - Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
69.
Benzimidazo[1,2-a]benzimidazole derivatives for electronic applications
A compound of the general formula (I),
a process for the production of the compound and its use in electronic devices, especially electroluminescent devices. Improved efficiency, stability, manufacturability, or spectral characteristics of electroluminescent devices are provided when the compound of formula I is used as host material for phosphorescent emitters in electroluminescent devices.
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
C07D 519/00 - Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups or
G03G 5/06 - Photoconductive layersCharge-generation layers or charge-transporting layersAdditives thereforBinders therefor characterised by the photoconductive material being organic
C09K 11/02 - Use of particular materials as binders, particle coatings or suspension media therefor
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
70.
Metal complexes for use as emitters in organic electroluminescence devices
The present invention relates to metal complexes and electronic devices, in particular organic electroluminescent devices containing said metal complexes.
The present invention relates to bi- and oligonuclear metal complexes and to electronic devices, especially organic electroluminescent devices, comprising these metal complexes.
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
C07F 15/00 - Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
H05B 33/14 - Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
72.
Iridium complex and organic electroluminescence device using the same
An iridium complex of formula (1) and an organic electroluminescence device employing the iridium complex as the phosphorescent dopant material are described. The organic EL device can display good performance, such as lower driving voltage, reduced power consumption, increased efficiency, and longer half-life time.
C07F 15/00 - Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
An organic electroluminescent device includes a pair of electrodes; and an organic layer between the pair of electrodes, which includes a light-emitting layer, wherein the organic layer contains a compound represented by the following formula (I); and the light-emitting layer contains a iridium complex phosphorescent material:
9 represents a deuterium atom or a substituent containing a deuterium atom.
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
H05B 33/14 - Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material
Cyclometallated Ir complex comprising three N,N diaryl substituted carbene ligands, bearing substituents in the 2 position of the non-cyclometallated aryl ring; an organic electronic device, preferably an organic light-emitting diode (OLED), comprising at least one cyclometallated Ir complex as described above, a light-emitting layer comprising said cyclometallated Ir complex preferably as emitter material, preferably in combination with at least one host material, use of said cyclometallated Ir complex in an OLED and an apparatus selected from the group consisting of stationary visual display units, mobile visual display units, illumination units, units in items of clothing, units in handbags, units in accessories, units in furniture and units in wallpaper comprising said organic electronic device, preferably said OLED, or said light-emitting layer. The present invention further relates to a process for the preparation of said cyclometallated Ir complex.
G07F 15/00 - Coin-freed apparatus with meter-controlled dispensing of liquid, gas, or electricity
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
C07F 15/00 - Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
C09B 57/00 - Other synthetic dyes of known constitution
C09B 57/10 - Metal complexes of organic compounds not being dyes in uncomplexed form
C09B 69/00 - Dyes not provided for by a single group of this subclass
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
75.
Metal complexes comprising diazabenzmidazolocarbene ligands and the use thereof in OLEDS
The present invention relates to metal-carbene complexes comprising a central atom selected from iridium and platinum, and diazabenzimidazolocarbene ligands, to organic light diodes which comprise such complexes, to light-emitting layers comprising at least one such metal-carbene complex, to a device selected from the group comprising illuminating elements, stationary visual display units and mobile visual display units comprising such an OLED and to the use of such a metal-carbene complex in OLEDs, for example as emitter, matrix material, charge transport material and/or charge or exciton blocker.
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
C07D 405/14 - Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
C07F 7/08 - Compounds having one or more C—Si linkages
C07F 15/00 - Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
C09K 11/02 - Use of particular materials as binders, particle coatings or suspension media therefor
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
The present invention relates electroluminescent devices, comprising a compound of the formula
especially as host for phosphorescent compounds. The hosts may function with phosphorescent materials to provide improved efficiency, stability, manufacturability, or spectral characteristics of electroluminescent devices.
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
C07D 235/18 - BenzimidazolesHydrogenated benzimidazoles with aryl radicals directly attached in position 2
C07D 241/42 - Benzopyrazines with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the hetero ring
C07D 403/14 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group containing three or more hetero rings
C07D 413/14 - Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
C07F 9/6506 - Five-membered rings having the nitrogen atoms in positions 1 and 3
The present invention relates to metal complexes and to electronic devices, especially organic electroluminescent devices, comprising these metal complexes.
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
C07D 401/14 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
C07F 15/00 - Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
C07D 213/68 - One oxygen atom attached in position 4
C07D 213/75 - Amino or imino radicals, acylated by carboxylic or carbonic acids, or by sulfur or nitrogen analogues thereof, e.g. carbamates
C07D 215/12 - Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
Provided a paracyclophane-based iridium complexes and the phosphorescent organic EL device employing the paracyclophane-based iridium complexes as light emitting dopant of emitting layer can display good performance like as lower driving voltage, power consumption, increasing efficiency and life time. Additional, the present invention provide the suitable emitting host (H1 to H8) to collocate with the energy level of paracyclophane-based iridium complexes for the present invention.
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
C07F 15/00 - Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
80.
HIGHLY EFFICIENT OLED DEVICES WITH VERY SHORT DECAY TIMES
The present invention relates to organic light-emitting devices comprising (a) an anode, (i) a cathode, and (e) an emitting layer between the anode and cathode, comprising 40.01 to 99.95% by weight of a luminescent organometallic complex X having a difference of the singlet energy (ES1(X)) and the triplet energy (ET1(X)) of smaller than 0.2 eV [Δ(ES1(X))−(ET1(X))<0.2 eV], 0.05 to 5.00% by weight of a fluorescent emitter Y and 0 to 59.94% by weight of a host compound(s), wherein the amount of the organometallic complex X, the fluorescent emitter Y and the host compound(s) adds up to a total of 100% by weight and the singlet energy of the luminescent organometallic complex X (ES1(X)) is greater than the singlet energy of the fluorescent emitter Y (ES1(Y)) [(ES1(X))>ES1(Y)]. By doping, for example, an emitting layer containing a luminescent organometallic complex having a small S1−T1 splitting, with a fluorescent emitter the emission decay time can significantly be shortened without sacrificing external quantum efficiency (EQE) because of very efficient energy transfer.
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
The present invention relates to process for the preparation of a compound of formula (I), comprising heating a compound of formula (II) in the presence of a catalyst and a base in a solvent at elevated temperature. The compounds of formula (I) can be produced by the process easily, with excellent yield and purity and at low cost.
Organic electroluminescent device; a charge transporting material for the organic electroluminescent device; and a luminescent device, a display device and a lighting system using the organic electroluminescent device
An organic electroluminescent element comprising a substrate; a pair of electrodes including an anode and a cathode, disposed on the substrate; and at least one organic layer including a light emitting layer, disposed between the electrodes, wherein the light emitting layer includes a compound represented by the following general formula:
4 are as defined in the specification.
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
H05B 33/14 - Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
83.
Metal complexes, comprising carbene ligands having an o-substituted non-cyclometalated aryl group and their use in organic light emitting diodes
Cyclometallated Ir complex comprising three N,N diaryl substituted carbene ligands, bearing substituents in the 2 position of the non-cyclometallated aryl ring; an organic electronic device, preferably an organic light-emitting diode (OLED), comprising at least one cyclometallated Ir complex as described above, a light-emitting layer comprising said cyclometallated Ir complex preferably as emitter material, preferably in combination with at least one host material, use of said cyclometallated Ir complex in an OLED and an apparatus selected from the group consisting of stationary visual display units, mobile visual display units, illumination units, units in items of clothing, units in handbags, units in accessories, units in furniture and units in wallpaper comprising said organic electronic device, preferably said OLED, or said light-emitting layer. The present invention further relates to a process for the preparation of said cyclometallated Ir complex.
C07F 15/00 - Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
84.
Fluorescent organic light emitting elements having high efficiency
C07D 401/14 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
C07D 413/14 - Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
C07D 401/04 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring- member bond
C07D 401/10 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
C07D 403/04 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group containing two hetero rings directly linked by a ring-member-to-ring- member bond
C07D 403/10 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group containing two hetero rings linked by a carbon chain containing aromatic rings
C07D 403/14 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group containing three or more hetero rings
C07D 413/04 - Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring- member bond
C07D 413/10 - Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
C07D 417/04 - Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group containing two hetero rings directly linked by a ring-member-to-ring- member bond
C07D 417/10 - Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group containing two hetero rings linked by a carbon chain containing aromatic rings
C07D 417/14 - Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group containing three or more hetero rings
C07D 249/20 - Benzotriazoles with aryl radicals directly attached in position 2
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
H05B 33/14 - Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material
C09K 11/02 - Use of particular materials as binders, particle coatings or suspension media therefor
C09B 57/00 - Other synthetic dyes of known constitution
85.
Organic electroluminescent element, compound and material for organic electroluminescent element, used in the same, and light emitting device, display device and illumination device, using the element
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
C07D 307/77 - Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
86.
Organic electroluminescent element, compound for use in the element, and light emitting device, display device, and illumination device using the element
The disclosure relates to organic electroluminescent elements, compounds for use in the elements, and devices using the elements, which include a compound represented by the following General Formula (1):
1 are not bound to each other to form a ring.
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
C07C 211/54 - Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
C07D 213/74 - Amino or imino radicals substituted by hydrocarbon or substituted hydrocarbon radicals
C07D 401/10 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
The present invention relates to metal complexes and to electronic devices, especially organic electroluminescent devices, comprising these metal complexes, especially as emitters, and in particular monometallic metal complex containing a hexadentate tripodal ligand in which three bidentate sub-ligands coordinate to a metal and the three bidentate sub-ligands, which may be the same or different, are joined via a bridge.
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
C07F 15/00 - Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
The present invention relates to Pt- or Pd-amidine-carbene complexes, to organic light-emitting diodes (OLEDs) comprising at least one such Pt- or Pd-amidine-carbene complex, to light-emitting layers comprising at least one such Pt- or Pd-amidine-carbene complex, a device, for example stationary or mobile visual display units or illumination means, comprising a corresponding OLED, and to the use of the inventive Pt- or Pd-amidine-carbene complexes in OLEDs, for example as emitters, matrix materials, charge transport materials and/or charge blockers.
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
C07F 15/00 - Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
The present invention provides an organic electronic device including a first electrode, a second electrode, and an organic layer interposed between the first electrode and the second electrode, wherein the organic layer comprises an organic metal complex of formula
and a compound of formula
Organic light emitting devices (OLEDs) having superior life time, power efficiency, quantum efficiency and/or a low operating voltage are obtained, when the organic layer comprising the compounds of formula I and II constitutes the electron transport layer of an OLED.
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
The present invention relates inter alia to novel organic metal complexes comprising, e.g., platinum and specific side groups, their preparation und their use in electronic devices.
C07F 15/00 - Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
H05B 33/14 - Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
91.
Fluorescent organic light emitting elements having high efficiency
An organic light-emitting element which emits delayed fluorescence comprising specifically substituted 1,2,4-triazole derivatives, 1,2,4-oxadiazole derivatives or 1,2,4-thiadiazole derivatives in the light-emitting layer, a light-emitting layer comprising the specifically substituted 1,2,4-triazole derivatives, 1,2,4-oxadiazole derivatives or 1,2,4-thiadiazole derivatives, specific specifically substituted 1,2,4-triazole derivatives, 1,2,4-oxadiazole derivatives and 1,2,4-thiadiazole derivatives and an organic light emitting element comprising the specific 1,2,4-azole derivatives as well as a light emitting layer comprising the specific 1,2,4-azole derivatives; the use of the specifically substituted 1,2,4-triazole derivatives, 1,2,4-oxadiazole derivatives and 1,2,4-thiadiazole derivatives for electrophotographic photoreceptors, photoelectric converters, sensors, dye lasers, solar cell devices and organic light emitting elements, and the use of the specifically substituted 1,2,4-triazole derivatives, 1,2,4-oxadiazole derivatives and 1,2,4-thiadiazole derivatives for generating delayed fluorescence emission.
H05B 33/14 - Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
C07D 401/14 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
C07D 413/14 - Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
C07D 401/10 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
C07D 403/10 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group containing two hetero rings linked by a carbon chain containing aromatic rings
C07D 403/14 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group containing three or more hetero rings
C07D 413/04 - Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring- member bond
C07D 413/10 - Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
C07D 417/14 - Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group containing three or more hetero rings
C07F 7/08 - Compounds having one or more C—Si linkages
C09K 11/02 - Use of particular materials as binders, particle coatings or suspension media therefor
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
92.
Fluorescent organic light emitting elements having high efficiency
C07D 401/04 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring- member bond
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
C09K 11/02 - Use of particular materials as binders, particle coatings or suspension media therefor
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
The present invention relates to metal complexes and to electronic devices, in particular organic electroluminescent devices, comprising these metal complexes.
C07F 15/00 - Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
C09K 11/00 - Luminescent, e.g. electroluminescent, chemiluminescent, materials
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
H05B 33/10 - Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
94.
Benzimidazo[1,2-a]benzimidazole derivatives for electronic applications
A compound of the general formula (I),
a process for the production of the compound and its use in electronic devices, especially electroluminescent devices. Improved efficiency, stability, manufacturability, or spectral characteristics of electroluminescent devices are provided when the compound of formula I is used as host material for phosphorescent emitters in electroluminescent devices.
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
C07D 519/00 - Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups or
G03G 5/06 - Photoconductive layersCharge-generation layers or charge-transporting layersAdditives thereforBinders therefor characterised by the photoconductive material being organic
C09K 11/02 - Use of particular materials as binders, particle coatings or suspension media therefor
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
95.
Electroluminescent imidazo-quinoxaline carbene metal complexes
Metal carbene complexes comprising at least one imidazo-quinoxaline ligand, organic electronic devices, especially OLEDs (Organic Light-Emitting Diodes) which comprise such complexes, a light-emitting layer comprising at least one inventive metal carbene complex, an apparatus selected from the group consisting of illuminating elements, stationary visual display units and mobile visual display units comprising such an OLED, the use of such a metal carbene complex for electrophotographic photoreceptors, photoelectric converters, organic solar cells (organic photovoltaics), switching elements, organic light emitting field effect transistors (OLEFETs), image sensors, dye lasers and electroluminescent devices and a process for preparing such metal carbene complexes.
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
C07F 15/00 - Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
C09K 11/02 - Use of particular materials as binders, particle coatings or suspension media therefor
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
Disclosed are electroluminescent devices that comprise organic layers that contain certain organic compounds containing one or more pyrimidine moieties. The organic compounds containing one or more pyrimidine moieties are suitable components of blue-emitting, durable, organo-electroluminescent layers. The electroluminescent devices may be employed for full color display panels in for example mobile phones, televisions and personal computer screens.
C07D 239/26 - Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
C07D 403/10 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group containing two hetero rings linked by a carbon chain containing aromatic rings
97.
Transition metal complexes with tripodal ligands and the use thereof in OLEDs
1 is a ligand of formula
2 is a ligand of formula
to OLEDs (Organic Light-Emitting Diodes) which comprise such complexes, to a device selected from the group consisting of illuminating elements, stationary visual display units and mobile visual display units comprising such an OLED, to the use of such a metal complex in OLEDs, for example as emitter, matrix material, charge transport material and/or charge or exciton blocker.
C07F 15/00 - Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
C09K 11/02 - Use of particular materials as binders, particle coatings or suspension media therefor
H01L 51/05 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for rectifying, amplifying, oscillating or switching and having at least one potential-jump barrier or surface barrier; Capacitors or resistors with at least one potential-jump barrier or surface barrier
H01L 51/42 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
98.
Metal complexes, comprising carbene ligands having an O-substituted non-cyclometalated aryl group and their use in organic light emitting diodes
Cyclometallated Ir complex comprising three N,N diaryl substituted carbene ligands, bearing substituents in the 2 position of the non-cyclometallated aryl ring; an organic electronic device, preferably an organic light-emitting diode (OLED), comprising at least one cyclometallated Ir complex as described above, a light-emitting layer comprising said cyclometallated Ir complex preferably as emitter material, preferably in combination with at least one host material, use of said cyclometallated Ir complex in an OLED and an apparatus selected from the group consisting of stationary visual display units, mobile visual display units, illumination units, units in items of clothing, units in handbags, units in accessories, units in furniture and units in wallpaper comprising said organic electronic device, preferably said OLED, or said light-emitting layer. The present invention further relates to a process for the preparation of said cyclometallated Ir complex.
C07F 15/00 - Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
C07D 401/14 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
C07D 413/04 - Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring- member bond
C07D 413/14 - Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
C09K 11/02 - Use of particular materials as binders, particle coatings or suspension media therefor
C07D 417/14 - Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group containing three or more hetero rings
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
100.
Organic electroluminescence device and method for producing the same
An organic electroluminescence device including an anode, a cathode, an organic layer disposed between the anode and the cathode, the organic layer containing a hole injection layer, a hole transport layer and an emission layer containing a host material, wherein the hole injection layer, the hole transport layer and the emission layer each contain a phosphorescent light-emitting material, wherein the hole injection layer contains the phosphorescent light-emitting material in an amount of 10% by mass or more but less than 50% by mass, and wherein a concentration of the phosphorescent light-emitting material contained in the hole transport layer is lower than that in the hole injection layer, and a concentration of the phosphorescent light-emitting material contained in the emission layer is lower than that in the hole injection layer and higher than that in the hole transport layer.
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
C09K 11/02 - Use of particular materials as binders, particle coatings or suspension media therefor
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
H01L 51/56 - Processes or apparatus specially adapted for the manufacture or treatment of such devices or of parts thereof