One or more embodiments relate to a superconducting qubit architecture that can be fabricated in one standard patterning step such as a lithographical step for example. Specifically, embodiments relates to a superconductor-constriction-superconductor Josephson junction (ScS JJ) qubit device for use in a quantum information processing environment. In one or more embodiments, the qubit device includes a substrate (a semiconductor substrate, an insulator substrate, and a dielectric substrate for example); a first superconducting pad formed on the substrate; and a second superconducting pad formed on the substrate, where the second superconducting pad coupled to and coplanar with the first superconducting pad.
2/CO in the reactor; and the reduced metal oxide is added separately or simultaneously with a solid fuel while not impregnating the solid fuel with the reduced metal oxide.
Embodiments relate to methods for enhancing chemical conversions. One or more embodiments relate to a method for enhancing a multi-step chemical conversion reaction. The method includes providing a reactant mixture having one or more reacting specie(s); and providing a catalyst or sorbent having one or more support materials and one or more deposited catalytically active materials. The method further includes applying an electromagnetic field with a prescribed power, frequency, and pulsing strategy specific to interactions of reactant species and an electromagnetic field with at least one of the support materials, sorbent, and catalytically active materials in a particular chemical reaction.
B01J 19/12 - Processes employing the direct application of electric or wave energy, or particle radiationApparatus therefor employing electromagnetic waves
B01J 37/34 - Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves
C07C 2/76 - Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen
C07C 7/12 - Purification, separation or stabilisation of hydrocarbonsUse of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers
Provided is an axial flux motor including a rotor having a wound ribbon core, the wound ribbon core including a metal amorphous nanocomposite material. The axial flux motor further includes a stator assembly spaced apart from the rotor along a rotation axis of the rotor. The stator assembly includes a body including a metal amorphous nanocomposite material and a plurality of permanent magnets substantially free of rare-earth materials. The plurality of permanent magnets is arranged on the body of the stator assembly.
H02K 1/2796 - Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets where both axial sides of the rotor face a stator
H02K 1/02 - Details of the magnetic circuit characterised by the magnetic material
H02K 3/12 - Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
H02K 19/10 - Synchronous motors for multi-phase current
H02K 21/44 - Synchronous motors having permanent magnetsSynchronous generators having permanent magnets with rotating flux distributors, and armatures and magnets both stationary with armature windings wound upon the magnets
5.
Multilayered luminescent solar concentrators based on engineered quantum dots
Luminescent solar concentrators (LSCs) based on engineered quantum dots (QDs) are disclosed that include at least one lower band-gap energy LSC layer and at least one higher band-gap energy LSC layer. The higher band-gap energy LSC layer has a higher internal quantum efficiency (IQE) than the lower band-gap energy LSC layer. The lower band-gap energy LSC layer may broadly absorb the remainder of the solar spectrum that is not absorbed by previous layers. An external optical efficiency (EQE) of at least 6%, and in some cases, more than 10%, may be achieved by such LSCs.
H01L 31/055 - Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
H01L 31/0296 - Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
H01L 31/0304 - Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
H01L 31/032 - Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups
H01L 31/0352 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
H01L 31/072 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
A fuel cell supply device having a dehumidifier, a chamber, a first heat exchanger, and a reactor. The dehumidifier is connected to the chamber via a first conduit and a second conduit and is connected to the first heat exchanger via a third conduit. Further, the dehumidifier is configured to receive a first solution from the chamber via the first conduit. The chamber is connected to the first heat exchanger via a fourth conduit and is configured to receive from the dehumidifier a second solution via the second conduit. The first heat exchanger is connected to the reactor via a fifth conduit and is configured to receive and cool vapor from the chamber via the fourth conduit and cool dehumidified air received from the dehumidifier via the third conduit. The reactor is configured to connect to a fuel cell and receive cooled vapor from the first heat exchanger via the fifth conduit. Further, the reactor encloses therein one or more metals to react with the cooled vapor.
H01M 8/04119 - Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyteHumidifying or dehumidifying
H01M 8/04014 - Heat exchange using gaseous fluidsHeat exchange by combustion of reactants
H01M 8/04082 - Arrangements for control of reactant parameters, e.g. pressure or concentration
7.
NiCrCoMoW Age Hardenable Alloy for Creep-Resistant High Temperature Applications, and Methods of Making
The invention provides a Ni-based superalloy with good yield stress and ultimate tensile strength and good creep strength (long creep life at high temperature). Methods of making the alloy are also described.
C22C 19/05 - Alloys based on nickel or cobalt based on nickel with chromium
C22F 1/10 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
8.
Perovskite Oxygen Carriers and Methods for Making and Using Perovskite Oxygen Carriers
B01J 20/04 - Solid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
B01J 20/28 - Solid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof characterised by their form or physical properties
B01J 20/30 - Processes for preparing, regenerating or reactivating
B01D 53/04 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
9.
Perovskite Oxygen Carriers and Methods for Making and Using Perovskite Oxygen Carriers
B01J 20/04 - Solid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
B01D 53/04 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
10.
Sulfur-Doped Tin Oxide Catalysts for Electrochemical Conversion of CO2 into Aqueous Formate/Formic Acid Solutions
S-doped SnO2 nanoparticles are synthesized by a solid-state process where thermal vaporization of sulfur powder under inert atmosphere to partially sulfurize the SnO2 nanoparticles. In the catalyst, the sulfur concentration is between 0.1 to 2 at%. A catalyst ink can be prepared from the catalyst containing: a liquid carrier; conductive particles; optionally an ionomer, and the catalyst. A gas diffusion electrode comprising the S-SnO2 catalyst dispersed onto a carbon paper electrode is also described. Formic acid or formate can be made in a highly efficient process by electrochemically reacting carbon dioxide and water in the presence of the catalyst
C25B 11/077 - Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalysts material consisting of a single catalytic element or catalytic compound the compound being a non-noble metal oxide
One or more embodiments relate to a sensor configuration system comprising at least one device configured to sense a first parameter; at least one device configured to sense a second parameter, and at least one interrogator device. The at least one device configured to sense the second parameter interfaces with the at least one device configured to sense the first parameter, and the at least one interrogator device interfaces both the at least one device configured to sense the first parameter and the at least one device configured to sense the second parameter where the at least one interrogator device spatially interrogates both the at least one device configured to sense the first parameter and the at least one device configured to sense the second parameter.
G01N 21/77 - Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
F17D 5/00 - Protection or supervision of installations
Disclosed is an apparatus and method for crack measurement, including the steps of placing a plurality of sense leads on a surface of an object, passing a current through the object, sensing a change in electric potential in the interior of the object, and forming a crack profile of the interior of the object based on the sensed change in electric potential.
G01N 27/04 - Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
A method to detect the presence and or concentration of an analyte in the environment of a spoof plasmon sensor having the steps of: providing a spoof plasmon sensor into an environment; interrogating said spoof plasmon sensor with an electromagnetic signal; collecting a modified electromagnetic signal from the spoof plasmon sensor; and analyzing the modified electromagnetic signal to detect an analyte in the environment of the sensor. A spoof plasmon sensor for detecting an analyte having a substrate with a superior surface; and a conductive material disposed on said superior surface, said conductive material defining a waveguide having a dual tapering shape, wherein said waveguide defines spoof plasmon cavities which are exposed substrate, where said substrate is configured to change in permittivity when contacted by an analyte.
G01N 22/00 - Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more
G01N 33/00 - Investigating or analysing materials by specific methods not covered by groups
The present disclosure provides methods and apparatuses of producing hydrogen. The methods comprise: (a) contacting a plastic with a catalyst and a gas feed; and (b) applying a microwave at a first temperature. The apparatuses comprise: a reactor for mixing plastic with a catalyst to form a mixture; an inlet for introducing a gas feed; a microwave generator; an optional temperature sensor; and an outlet configured to exhaust the product hydrogen formed in the reactor.
C01B 3/02 - Production of hydrogen or of gaseous mixtures containing hydrogen
B01J 8/18 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with fluidised particles
B01J 8/42 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed subjected to electric current or to radiations
One or more embodiments relates to a system for simultaneously detecting vibration and the presence of a target gas having a tunable fiber ring laser in electronic and optical communication with a vibration sensor and a gas detection sensor. One or more embodiments relate to a method for simultaneously measuring vibration and detecting the presence of a target gas in an environment having the steps of providing a system for simultaneously measuring vibration and detecting a target gas into an environment; sending an optical signal to a vibration sensor and gas detection sensor; and collecting and analyzing modified signals from the vibration sensor and gas detection sensor.
G01N 21/39 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
A novel adsorbent and contactor material based on polymer functionalized with amidoxime and alkylamines moieties. Methods of making the material are also described. The material can be easily processed into any desired sorbent geometry such as solid fibers, electrospun fibers, hollow fibers, monoliths, etc. The adsorbent exhibits a very high affinity toward acidic gases such CO2 and can be used in direct air capture, power plant-based CO2 capture, and industrial CO2 capture applications. The material can also serve as a contactor that accommodates other adsorbents within its structure.
B01J 20/28 - Solid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof characterised by their form or physical properties
B01J 20/30 - Processes for preparing, regenerating or reactivating
C10L 3/10 - Working-up natural gas or synthetic natural gas
H01M 10/52 - Removing gases inside the secondary cell, e.g. by absorption
B01D 53/04 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
17.
Hydrophobic Alkyl-Ester Physical Solvents for CO2 Removal from H2 Produced from Synthesis Gas
One or more embodiments relate to a method for removing CO2 from a gaseous stream containing CO2 having the steps of contacting the gaseous stream containing CO2 with a solvent at a first temperature and a first pressure to dissolve said CO2 in said solvent, where the solvent is made up of at least one ester, and where said at least one ester has two or more alkyl-ester functional groups on a central hydrocarbon chain.
A system and method for storing information in a quantum computer using a quantum storage ring. The method comprises cooling ions in the quantum storage ring to a low temperature; and binding the ions into a lattice structure, forming an ion Coulomb crystal.
H10N 99/00 - Subject matter not provided for in other groups of this subclass
G06N 10/00 - Quantum computing, i.e. information processing based on quantum-mechanical phenomena
G11C 11/54 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor using elements simulating biological cells, e.g. neuron
19.
Porous polybenzimidazole membrane supports for composite membranes
The present invention provides highly permeable and porous polybenzimidazole membranes, methods of making them, and their application as a high-performance membrane support for gas separation composite membranes. The polybenzimidazole membranes are bonded to a fabric substrate.
B01D 53/22 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by diffusion
B01D 67/00 - Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
B01D 69/02 - Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or propertiesManufacturing processes specially adapted therefor characterised by their properties
A system for determining pH of a fluid and a method to determine the pH of a fluid contacting a sensor, the method having the steps of: providing the sensor to an environment such that the sensor is in contact with the fluid, wherein the sensor features a fiber extending between a first end and a second end along a longitudinal axis, wherein the fiber further features a medial portion positioned between the first and second ends, wherein the sensor further features a pH sensitive coating on the medial portion of the fiber, and wherein the pH sensitive material features a metal oxide including but not limited to SiO2, TiO2, ZrO2, Ta2O5, A2O3, and combinations thereof; interrogating the sensor with an optical signal; collecting a modified optical signal after the sensor has been interrogated; and determining the pH of the fluid contacting the pH sensor using the modified optical signal.
G01N 31/22 - Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroupsApparatus specially adapted for such methods using chemical indicators
A method of making an optical fiber-based sensor includes providing an optical fiber, and providing a sensing or protection layer on a surface of the optical fiber by an atomic layer deposition (ALD) process.
G02B 6/132 - Integrated optical circuits characterised by the manufacturing method by deposition of thin films
G02B 6/12 - Light guidesStructural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
22.
CATALYSTS FOR CONVERSION OF CO2 OR STEAM TO CO OR SYNTHESIS GAS USING FUELS
A catalytic method for producing gaseous products from a fuel and a gaseous reagent having the steps of: providing a catalyst and the fuel to a reactor vessel such that the catalyst and the fuel are in fluid communication with each other within the reactor vessel, where the catalyst is a mixture of reduced metal oxides; and contacting the fuel and catalyst with the gaseous reagent within the reactor vessel at a reaction temperature to produce gaseous products, where the gaseous reagent contains at least CO2 or H2O, where the fuel comprises a carbonaceous source, and wherein the gaseous products are CO or syngas.
C01B 3/32 - Production of hydrogen or of gaseous mixtures containing hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
C01B 3/58 - Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solidsRegeneration of used solids including a catalytic reaction
23.
2D AMORPHOUS CARBON FILM ASSEMBLED FROM GRAPHENE QUANTUM DOTS
Amorphous two-dimensional graphene-like carbon films provide benefits to a variety of applications due to advantageous electrical, mechanical, and chemical properties. Methods are provided to efficiently and cheaply create high-quality amorphous two-dimensional carbon films with embedded graphene-like nanocrystallites using coal as a precursor. These methods employ solution-phase deposition of coal-derived graphene-containing quantum dots followed by relatively low-temperature annealing/crosslinking of the quantum dots to form a single two-dimensional layer of carbon that includes a plurality of randomly-oriented discrete graphene domains connected to each other via amorphous carbon regions. Multi-layer films can be easily created by repeating the deposition and annealing processes. Two-dimensional carbon films formed in this manner exhibit improved properties when compared to crystalline graphene sheets and have properties especially suited to use as the storage medium of memristors. Further processing can result in large free-standing two-dimensional graphene-like carbon thin films that can be used as membranes or for other applications.
H01L 45/00 - Solid state devices specially adapted for rectifying, amplifying, oscillating, or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof
24.
Methods of Modifying a Domain Structure of a Magnetic Ribbon, Manufacturing an Apparatus, and Magnetic Ribbon Having a Domain Structure
A method of modifying a domain structure of a magnetic ribbon is provided. The method includes a combination of stress and magnetic field annealing the magnetic ribbon in order to generate a desired permeability along one or more axes of the magnetic ribbon.
C22F 1/10 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
H01F 41/02 - Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformersApparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils or magnets
H02K 15/02 - Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
C22C 19/07 - Alloys based on nickel or cobalt based on cobalt
25.
Hydrophobic and Porous Sorbent Polymer Composites and Methods for CO2 Capture
Sorbent polymer composites and a solution-casting method of making hydrophobic sorbent polymer composites for CO2 adsorption applications are described. The sorbent polymer composites are comprised of a polymer matrix, a dispersed CO2 sorbent, and an optional filler particle for hydrophobicity modification.
B01J 20/28 - Solid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof characterised by their form or physical properties
B01J 20/10 - Solid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
B01J 20/22 - Solid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof comprising organic material
B01D 53/02 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by adsorption, e.g. preparative gas chromatography
B01D 69/02 - Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or propertiesManufacturing processes specially adapted therefor characterised by their properties
Three-dimensional (3D) hollow nanosphere electrocatalysts that convert CO2 into formate with high current density and Faradaic efficiency (FE). The SnO2 nanospheres were constructed from small, interconnected SnO2 nanocrystals. The size of the constituent SnO2 nanocrystals was controlled between 2-10 nm by varying the calcination temperature and observed a clear correlation between nanocrystal size and formate production. In situ Raman and time-dependent X-ray diffraction measurements confirmed that SnO2 nanocrystals were reduced to metallic Sn and resisted microparticle agglomeration during CO2 reduction. The nanosphere catalysts outperformed comparably sized, non-structured SnO2 nanoparticles and commercially-available SnO2 with a heterogeneous size distribution.
−1 S/cm and generally have an average nanoparticle diameter of less that about 500 nanometers, and the matrix material is a material which experiences a change in surface charge density over a pH range from 2.0 to 12.0 of at least 1%. The method comprises contacting the pH sensing material and the aqueous solution, illuminating the pH sensing material, and monitoring an optical signal generated through comparison of incident light and exiting light to determine the optical transmission, absorption, reflection, and/or scattering of the pH sensitive material. The optical signal of the pH sensitive material varies in response to the pH of the aqueous solution.
G01N 21/84 - Systems specially adapted for particular applications
G01N 21/49 - Scattering, i.e. diffuse reflection within a body or fluid
G01N 21/31 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
28.
PROCESS FOR PRODUCTION OF HYDROGEN WITH TRANSPORT FROM CHEMICAL LOOPING USING MIXTURE OF PARTIAL OXIDATION OXYGEN CARRIERS AND COMBUSTION OXYGEN CARRIERS
The invention provides a process for producing hydrogen having the steps of reacting a fuel with a combination of two oxygen carriers to produce gaseous products and reduced oxygen carriers; reacting a portion of the reduced oxygen carriers with steam to generate hydrogen and partially oxidized oxygen carriers; and reacting the partially oxidized oxygen carriers and remaining reduced oxygen carriers with air to generate heat and regenerate the two oxygen carriers in their original oxidation state, wherein the heat and regenerated oxygen carriers are reused.
C01B 3/38 - Production of hydrogen or of gaseous mixtures containing hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
C01B 3/40 - Production of hydrogen or of gaseous mixtures containing hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
B01J 23/78 - Catalysts comprising metals or metal oxides or hydroxides, not provided for in group of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups with alkali- or alkaline earth metals or beryllium
Nickel alloys, methods of making nickel alloys, articles including the nickel alloys, uses of the alloys, and methods of treating nickel alloys are described. The inventive heat resistant structural materials are suitable for applications requiring high yield stress at room temperature and good creep strength at high temperatures, such as in gas turbines, steam turbines, fossil energy boilers, aero engines, power generation systems using fluids such as supercritical carbon dioxide (e.g., advanced ultra-supercritical power plants), concentrated solar power plants, nuclear power plants, molten salt reactors: turbine blades, casings, valves, heat exchangers and recuperators.
The invention relates to a two-way approach to isolate, recover and upgrade 2,3-Butanediol (2,3-BDO) from fermentation broth. A complete separation and recovery process for 2,3-BDO using acetalization and trans-acetalization sequence. Acetalization with butyraldehyde using heterogeneous catalysts, either Amberlyst-15® or Nafion NR50®, efficiently isolates 2,3-BDO as phase-separated protected dioxolane. The approach provides significant process advantages with easy product recovery and high recyclability of the catalyst. Trans-acetalization of dioxolane with methanol (methanolysis) followed by distillation of acetal, yielded very high purity 2,3-BDO with about 90% isolated yield. Alternatively, dioxolane is used in a process direct to methyl ethyl ketone (MEK) as a BDO synthon allowing for recovery of the aldehyde.
C07C 29/92 - SeparationPurificationStabilisationUse of additives by treatment giving rise to a chemical modification of at least one compound by a consecutive conversion and reconstruction
NATIONAL TECHNOLOGY & ENGINEERING SOLUTIONS OF SANDIA, LLC (USA)
U.S. DEPARTMENT OF ENERGY (USA)
Inventor
Briggs, Timothy
Abstract
An apparatus and method for preparing Double Cantilever Beam (DCB) specimens are disclosed as an apparatus and method for conducting Mode I fracture resistance testing using the DCB specimens. In a first embodiment, a drill jig is used to locate the DCB specimen and guide a drilling process during creation of at least one through-hole in the DCB specimen. The drilling process may employ a traditional drill and drill bit, a laser drill, or a water jet. In another embodiment, a set of rotating pin blocks, each with a full-round or a half-round specimen pin at one end and a hanger full-round pin at the other end, engage the DCB specimen and facilitate the internal application of a fracturing load to the DCB specimen for the Mode I fracture resistance test. The present invention may significantly reduce the time and materials needed to prepare and test a DCB specimen.
A system and methods for selective transmission and reception for stationary wireless networks. The system and method include an end user equipment, a primary base station, a core network, and a selective server. The end user equipment transmits a request for transmission to the primary base station receiver. The primary base station authenticates the end user equipment using a cellular network authentication process. The primary base station then searches for a time slot data for the end user equipment from the selective server and determines whether the time slot is open for transmission, steers a beam towards the end user equipment when time slot is open for transmission. The primary base station then enables transmission from the end user equipment, wherein the enabling is performed by the primary base station. The core network receives the transmission from the end user equipment.
H04B 7/06 - Diversity systemsMulti-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
A chemical structure, and a process for synthesizing the chemical structure, of:
A chemical structure, and a process for synthesizing the chemical structure, of:
C08G 65/40 - Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols and other compounds
C08G 65/48 - Polymers modified by chemical after-treatment
B01J 20/28 - Solid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof characterised by their form or physical properties
B01J 20/30 - Processes for preparing, regenerating or reactivating
A magnetic undulator shim having three interconnected sections arranged one after the other in a direction substantially parallel to the beam axis. The first section is adapted to magnetically engage a magnet having a horizontal surface and configured to extend partially onto the horizontal surface of the magnet. The magnet is adjacent to a pole and the magnet and the pole form a boundary. The second third sections are interconnected to form a shape. The shape corresponds to the boundary. The third section is adapted to magnetically engage a surface of the pole.
A gas sensor (100,200) includes at least one sensor device including a surface acoustic wave (SAW) device (110) or a quartz crystal microbalance (QCM) device (210), and a layer of metal organic framework (MOF) material (120,220) disposed on each of the at least one sensor device. The at least one sensor device is structured to sense a change in mass of the MOF material.
B01J 20/22 - Solid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof comprising organic material
G01N 33/00 - Investigating or analysing materials by specific methods not covered by groups
A method for rapid detection of actinides including the steps of having a support including a colorimetric complexation, placing the support in communication with a sample through urinalysis, and receiving a visual indicator from the colorimetric complexation. The sample having an unknown concentration of at least one actinide within it. The colorimetric complexation is configured to activate when contacted by a threshold concentration of an actinide.
G01N 21/78 - Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
G01N 21/88 - Investigating the presence of flaws, defects or contamination
The invention provides a system for removing target moieties from gas streams, the system comprising a supersonic expander coaxially positioned within an array of oblique shock inducers. Also provided is a method for removing target moieties from gas streams, the method comprising simultaneously subjecting the streams to supersonic expansion and oblique shock compression.
B01D 49/00 - Separating dispersed particles from gases, air or vapours by other methods
B01D 53/00 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols
B01D 45/14 - Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces generated by rotating vanes, discs, drums or brushes
A system and method for storing information in a quantum computer using a quantum storage ring. The method comprises cooling ions in the quantum storage ring to a low temperature; and binding the ions into a lattice structure, forming an ion Coulomb crystal.
G11C 16/04 - Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
H01L 49/00 - Solid state devices not provided for in groups and and not provided for in any other subclass; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof
G06N 10/00 - Quantum computing, i.e. information processing based on quantum-mechanical phenomena
G11C 11/54 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor using elements simulating biological cells, e.g. neuron
Methods and systems including a microwave radiation source are described. A first region of a pure magnetic field can be generated in a first processing zone using a microwave radiation source of the first processing zone. The first processing zone can be a single mode microwave radiation chamber. A second region of a pure electric field can be generated in the first processing zone using the microwave radiation source. The second region can be spatially distinct from the first region. A first portion of an amorphous alloy can be loaded automatically into the first processing zone. The first portion can be positioned in an annealing region. The annealing region can be a single field region selected from the first region and the second region. The first portion can be heated in the annealing region. The first portion can be automatically unloaded from the first processing zone.
The method presented uses thermally emissive materials for the extraction of heat through the use of electromagnetic waveguides, wherein the emissive material comprises materials which emit electromagnetic radiation due to thermal excitation, wherein the electromagnetic radiation is coupled to electromagnetic waveguides; a receiver adapted to receive the electromagnetic radiation for utilization, wherein the extracted electromagnetic radiation may propagate arbitrary distances inside the waveguides before the need for processing, for example, to maximize the temperature differential between the emissive material and that of the receiver; and the exchange of the chemical composition of some portion of the environment the apparatus is housed in. The thermal energy extraction apparatus described herein has the purpose of removing heat from a source for conversion to other forms of energy such as electricity and for thermal management applications. Wherein for heat management, the benefit of waveguides would constitute reduced interference with electronics through electromagnetic coupling.
F28F 13/00 - Arrangements for modifying heat transfer, e.g. increasing, decreasing
F28F 13/18 - Arrangements for modifying heat transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflectingArrangements for modifying heat transfer, e.g. increasing, decreasing by surface treatment, e.g. polishing
G02B 6/10 - Light guidesStructural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
F28F 21/08 - Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
G02B 6/04 - Light guidesStructural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
According to one aspect of the invention, a system to separate salt from uranium. The system has a vessel, a heater, a pump, and a condenser. The vessel is adapted to receive a uranium that has a salt concentration. The heater heats the uranium for a period of time, causing the salt to turn into a salt vapor and the uranium to melt. The melted uranium releases the salt vapor. The pump circulates an inert gas that carries the salt vapor away from the melted uranium. The condenser is adapted to receive the salt vapor.
Provided is an axial flux motor including a rotor having a wound ribbon core, the wound ribbon core including a metal amorphous nanocomposite material. The axial flux motor further includes a stator assembly spaced apart from the rotor along a rotation axis of the rotor. The stator assembly includes a body including a metal amorphous nanocomposite material and a plurality of permanent magnets substantially free of rare-earth materials. The plurality of permanent magnets is arranged on the body of the stator assembly.
H02K 1/02 - Details of the magnetic circuit characterised by the magnetic material
H02K 1/2796 - Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets where both axial sides of the rotor face a stator
H02K 3/12 - Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
H02K 19/10 - Synchronous motors for multi-phase current
H02K 21/44 - Synchronous motors having permanent magnetsSynchronous generators having permanent magnets with rotating flux distributors, and armatures and magnets both stationary with armature windings wound upon the magnets
An inverted heat exchanger device includes an exterior conduit elongated and extending around a center axis between a first end and second end. The exterior conduit including a body having an exterior surface, an interior surface, a center core elongated along the center axis, and plural walls extending between the center core and the interior surface. A first conduit is disposed inside the exterior conduit that includes an inlet, plural core passages, an outlet, and internal manifolds. A first fluid is configured to flow along the first conduit. A second conduit is also disposed inside the exterior conduit. The second conduit includes an inlet, plural core passages, an outlet, and internal manifolds. A second fluid is configured to flow along the second conduit. The plural walls are configured to define the first conduit and the second conduit within the body of the exterior conduit.
F28F 7/02 - Blocks traversed by passages for heat-exchange media
F28F 1/42 - Tubular elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
F28F 13/08 - Arrangements for modifying heat transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by varying the cross-section of the flow channels
B33Y 80/00 - Products made by additive manufacturing
The invention provides medical devices comprising high-strength alloys which degrade over time in the body of a human or animal, at controlled degradation rates, without generating emboli and which have enhanced degradation due to the presence of a halogen component. In one embodiment the alloy is formed into a bone fixation device such as an anchor, screw, plate, support or rod. In another embodiment the alloy is formed into a tissue fastening device such as staple. In yet another embodiment, the alloy is formed into a dental implant or a stent.
One or more embodiments relates to a system and method for growing ultrasmooth and high quantum efficiency photocathodes. The method includes exposing a substrate of Si wafer to an alkali source; controlling co-evaporating growth and co-deposition forming a growth including Te; and monitoring a stoichiometry of the growth, forming the photocathodes.
H01J 9/12 - Manufacture of electrodes or electrode systems of photo-emissive cathodesManufacture of electrodes or electrode systems of secondary-emission electrodes
One or more embodiments relates to a method of growing ultrasmooth and high quantum efficiency CsTe photocathodes. The method includes exposing a substrate of Cs using an alkali source such as an effusion cell; and controlling co-evaporating growth and co-deposition forming a CsTe growth. The method further includes monitoring a stoichiometry of the CsTe growth.
G01J 3/46 - Measurement of colourColour measuring devices, e.g. colorimeters
H01S 3/106 - Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
H01S 3/094 - Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
H01S 3/11 - Mode lockingQ-switchingOther giant-pulse techniques, e.g. cavity dumping
G01N 21/31 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
48.
Tunable coherent light filter for optical sensing and imaging
BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM (USA)
U.S. DEPARTMENT OF ENERGY (USA)
Inventor
Wasserman, Daniel
Shaner, Eric A.
Abstract
Systems and methods are provided for filtering coherent infrared light from a thermal background for protection of infrared (IR) imaging arrays and detection systems. A Michelson interferometer is used for coherent light filtering. In an implementation, a system includes a fixed mirror, a beam splitter, and a moving mirror which can be controlled translationally, as well as tip/tilt. The Michelson interferometer may be used as an imaging system. For imaging applications, a system may comprise a tunable array of micro-electromechanical systems (MEMS) mirrors. A mid-wave IR interferometer with electronic feedback and MEMS mirror array is provided.
Various examples are provided related to transformer designs that offer very high isolation while maintaining high coupling between the windings. In one example, an isolation transformer includes a first excitation coil wound around a first core and a second excitation coil wound about a second core. The second core is electrically separated from the first core by a high resistivity magnetic material or a non-conductive material. The first and second cores can include corresponding core segments arranged in a trident geometry or a quindent geometry. The core segments can align when the first excitation coil is inserted into a void of the second excitation coil. The isolation transformer designs are mechanically separable which can result in safe, energized, plug operations.
Beacon-based Precision Navigation and Timing (PNT) may use a constellation of space vehicles (e.g., small, low cost satellites) coupled to a network of ground stations and a network of beacons. Such a system be provided at a cost that is approximately 100 times lower than GPS both to build and to operate. The resulting system may also provide fast acquisition, improved SNR, improved anti-jam and anti-spoofing capabilities, and six-inch scale location determination, making it applicable to both existing PNT applications and enabling new applications.
G01S 19/08 - Cooperating elementsInteraction or communication between different cooperating elements or between cooperating elements and receivers providing integrity information, e.g. health of satellites or quality of ephemeris data
G01S 19/12 - Cooperating elementsInteraction or communication between different cooperating elements or between cooperating elements and receivers providing dedicated supplementary positioning signals wherein the cooperating elements are telecommunication base stations
According to one aspect of the invention, a potentiometric sensor having a cathode and an anode. The cathode is configured to provide a summary voltage representative of at least two voltage points. The anode is configured to provide a first voltage. The cathode is in communication with the anode by a first electrolyte forming an open circuit having an open circuit potential. Within the first electrolyte is a concentration of a target ion. The open circuit potential mathematically corresponds to the concentration of the target ion.
The present disclosure relates to a method for the removal of organic contaminates from wastewater. The method comprises contacting wastewater comprising water and an organic contaminate with a basic immobilized amine sorbent, where the basic immobilized amine sorbent comprises a polyamine bound to an inorganic support via a linker, such that contacting the wastewater causes at a least a portion of the organic contaminate to bind to the basic immobilized amine sorbent.
B01J 20/28 - Solid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof characterised by their form or physical properties
C02F 1/28 - Treatment of water, waste water, or sewage by sorption
B01J 20/10 - Solid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
One or more embodiments relates to a method of catalytically converting a reactant gas mixture for pollution abatement of products of hydrocarbon fuel combustion. The method provides substituted mixed-metal oxides where catalytically active metals are substituted within the crystal lattice to create an active and well dispersed metal catalyst available to convert the reactant gas mixture. Embodiments may be used with gasoline and diesel fueled internal combustion engine exhaust, although specific embodiments may differ somewhat for each.
F01N 3/10 - Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
F01N 3/035 - Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors
F01N 3/08 - Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
55.
Personal power using metal-supported solid oxide fuel cells operated in a camping stove flame
One or more embodiments relates to a portable, personal device for providing cooking and power and adapted for use with a burner, the device including a plurality of metal-supported solid oxide fuel cells (MS-SOFCs) coupled together; a microelectronic control circuit connected to at least the MS-SOFCs; a light source coupled to at least the microelectronic control circuit; and at least one USB port coupled to at least the microelectronic control circuit; whereby the device is able to simultaneously provide light and power a personal device.
One or more embodiments relates to a method of catalytically converting a reactant gas mixture for pollution abatement of products of hydrocarbon fuel combustion. The method provides substituted mixed-metal oxides where catalytically active metals are substituted within the crystal lattice to create an active and well dispersed metal catalyst available to convert the reactant gas mixture. Embodiments may be used with gasoline and diesel fueled internal combustion engine exhaust, although specific embodiments may differ somewhat for each.
F01N 3/035 - Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors
F01N 3/10 - Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
B01D 53/94 - Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
F01N 3/08 - Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
Embodiments provide a multi-cone X-ray imaging Bragg crystal spectrometer for spectroscopy of small x-ray sources with a well-defined spectral resolution. The spectrometer includes a glass substrate machined to a multi-cone form; and a thin crystal slab attached to the glass substrate, whereby the multi-cone X-ray imaging Bragg crystal spectrometer provides rotational symmetry of a ray pattern, providing for accurate imaging, for each wavelength in the spectral range of interest. One or more embodiments include a streak camera and/or a gated strip detector.
G01N 23/20 - Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups , or by using diffraction of the radiation by the materials, e.g. for investigating crystal structureInvestigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups , or by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materialsInvestigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups , or by using reflection of the radiation by the materials
G01N 23/20008 - Constructional details of analysers, e.g. characterised by X-ray source, detector or optical systemAccessories thereforPreparing specimens therefor
G01N 23/20091 - Measuring the energy-dispersion spectrum [EDS] of diffracted radiation
G01N 23/207 - Diffractometry, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions
G21K 1/06 - Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction, or reflection, e.g. monochromators
58.
Electrodes for making nanocarbon-infused metals and alloys
A method for preparing a covetic, nanocarbon-infused, metal composite material is described is herein. The method comprises heating a stirring molten mixture of a metal (e.g., Cu, Al, Ag, Au, Fe, Ni, Pt, Sn, Pb, Zn, Si, and the like) and carbon (e.g., graphite) at a temperature sufficient to maintain the mixture in the molten state in a reactor vessel, while passing an electric current through the molten mixture via at least two spaced electrodes submerged or partially submerged in the molten metal. Each of the electrodes has an electrical conductivity that is at least about 50 percent of the electrical conductivity of the molten mixture at the temperature of the molten mixture. Preferably, the conductivity of the electrodes is equal to or greater than the conductivity of the molten mixture.
B01J 20/10 - Solid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
B01J 20/04 - Solid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
B01J 20/28 - Solid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof characterised by their form or physical properties
B01J 20/30 - Processes for preparing, regenerating or reactivating
B01D 53/82 - Solid phase processes with stationary reactants
B01J 20/22 - Solid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof comprising organic material
B01J 23/78 - Catalysts comprising metals or metal oxides or hydroxides, not provided for in group of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups with alkali- or alkaline earth metals or beryllium
C01B 3/40 - Production of hydrogen or of gaseous mixtures containing hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
62.
Ceramic waste form production from used nuclear fuel
According to one aspect of the invention, a method to create a ceramic waste form from used nuclear fuel. An active metal salt waste, a rare earth metal waste, and raw materials are received. The active metal salt waste is combined with the rare earth metal waste, forming a waste salt. The waste salt is then heated to approximately 500° C. The raw materials are also heated to approximately 500° C. The waste salt and raw materials are then blended to form a homogenous waste mixture. The homogenous waste mixture is heated to a first predetermined temperature for a predetermined amount of time, creating a ceramic waste form. The ceramic waste form is cooled to a second predetermined temperature.
B01D 53/14 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by absorption
A gap measurement device. The device has a circuit having a variable inductor and a capacitor. The variable inductor has an indicator. The device has a gap that includes a gap measurement and a gap length. The gap measurement is related to the inductance. The gap is configured to receive at least a portion of the variable inductor while the variable inductor moves along the gap length. The movement of the variable inductor along the gap length causes the inductance to change in response to the gap measurement.
G01B 7/14 - Measuring arrangements characterised by the use of electric or magnetic techniques for measuring distance or clearance between spaced objects or spaced apertures
G08B 5/02 - Visible signalling systems, e.g. personal calling systems, remote indication of seats occupied using only mechanical transmission
F01D 21/00 - Shutting-down of machines or engines, e.g. in emergencyRegulating, controlling, or safety means not otherwise provided for
65.
THERMAL PROCESSING TECHNIQUES FOR METALLIC MATERIALS
A method of thermally processing a material with a thermal processing system includes providing a material for treating in an in-line thermal process to a heating system, providing a force to the material at a portion of the material configured to be heated by the heating system, adjusting the heating system to a specified temperature value, and heating the portion of the material to the specified temperature value while the portion of the material is under the force to change a magnetic property in the portion of the material. The heating system is moveable from a first position that is away from a path of the material through the in-line thermal process to a second position in which the heating system is configured to heat the portion of the material to the specified temperature value. The heating system can include induction-based heating.
Materials, methods of making, and methods of using an integrated wireless detector for real time interrogating metallic tubular structures comprising: an RF patch antenna; a passive surface acoustic wave (SAW) sensor; and data analytic methodologies. An embodiment relates to interrogating a metallic structure having a uniform cross section using an antenna which launches electromagnetic radiation. A sensor may be located within the structure is configured to re-emit electromagnetic radiation modified depending on parameters for which the sensor has been functionalized. An antenna may receive radiation as modified by the sensor, or may receive the transmitted or backscattered radiation directly, without use of a sensor. The antenna then communicates wirelessly with an interrogator providing data which may be used to understand the operational status of the structure in real-time.
G06K 7/10 - Methods or arrangements for sensing record carriers by electromagnetic radiation, e.g. optical sensingMethods or arrangements for sensing record carriers by corpuscular radiation
67.
Production of pure hydrogen and synthesis gas or carbon with CUO-Fe2O3 oxygen carriers using chemical looping combustion and methane decomposition/reforming
C01B 3/40 - Production of hydrogen or of gaseous mixtures containing hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
C01B 3/24 - Production of hydrogen or of gaseous mixtures containing hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
C01B 3/06 - Production of hydrogen or of gaseous mixtures containing hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
68.
Implantable medical devices comprising bio-degradable alloys with enhanced degradation rates
The invention provides medical devices comprising high-strength alloys which degrade over time in the body of a human or animal, at controlled degradation rates, without generating emboli and which have enhanced degradation due to the presence of a halogen component. In one embodiment the alloy is formed into a bone fixation device such as an anchor, screw, plate, support or rod. In another embodiment the alloy is formed into a tissue fastening device such as staple. In yet another embodiment, the alloy is formed into a dental implant or a stent.
Disclosed is a hermetic bond for a joint including a first layer of silicon carbide; a second layer of silicon carbide; and a bonding layer positioned between the first layer and the second layer, wherein the bonding layer includes an iridium layer, a first reaction zone positioned between the iridium foil layer and the first layer, and a second reaction zone positioned between the iridium foil layer and the second layer, wherein the first reaction zone and the second reaction zone include iridium silicides.
B32B 37/10 - Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using direct action of vacuum or fluid pressure
B32B 15/04 - Layered products essentially comprising metal comprising metal as the main or only constituent of a layer, next to another layer of a specific substance
B23K 103/00 - Materials to be soldered, welded or cut
A nanocomposite coating that in turn extract self-replenishing (or -healing), superlubricious carbon film directly from natural gas or hydrocarbon gas in mechanical systems. The coating deposits on sealing and sliding surfaces reducing friction and wear. The result is a reduction in inefficiency, machine breakdown, and adverse environmental impact.
C23C 28/00 - Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of main groups , or by combinations of methods provided for in subclasses and
C23C 14/06 - Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
C23C 14/35 - Sputtering by application of a magnetic field, e.g. magnetron sputtering
72.
Metal ferrite catalyst for conversion of CO2 and methane to synthesis gas via reforming
C01B 3/40 - Production of hydrogen or of gaseous mixtures containing hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
B01J 23/78 - Catalysts comprising metals or metal oxides or hydroxides, not provided for in group of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups with alkali- or alkaline earth metals or beryllium
73.
Electrochemical filter for removal of trace level ions
An electrochemical filter system is provided that can produce an ultra-clean electrolyte solution. The filter uses a working electrode with binding sites that adsorb impurities present in the electrolyte solution using a pseudocapacitive process.
A multi electrode sensor that provides in-situ, real time measurements for molten salts and other process fluids such as real-time concentration and salt level measurements for nuclear systems such as molten salt reactors, nuclear reprocessing facilities utilizing molten salts and concentrated solar power systems. The sensor has multiple electrodes with unique lengths which are connected to a potentiostat. Measurements are taken when the electrodes are immersed in the process fluid.
According to one aspect of the invention, a method for separating and recovering uranium from a nuclear fuel element. The method includes immersing a nuclear fuel element containing nuclear fuel and cladding in a molten metal. The nuclear fuel includes uranium. The cladding is selectively dissolved from the nuclear fuel element when immersed in the molten metal. The nuclear fuel is separated from the cladding. The method then includes loading the nuclear fuel into a permeable basket that is electrically configured as an anode of an electrolytic cell. There are also a molten salt electrolyte and a cathode in the electrolytic cell. Then, the method includes applying an electric charge across the electrolytic cell. The molten salt electrolyte selectively transfers uranium from the anode to the cathode.
Embodiments relate to materials, methods to prepare, and methods of use of a thermal electrokinetic microjet apparatus. The electrokinetic microjet apparatus includes a reservoir; a jet assembly fluidly communicating with at least the reservoir; and a target electrode spaced from at least the jet assembly.
B05B 1/24 - Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means incorporating means for heating the liquid or other fluent material, e.g. electrically
C25B 1/04 - Hydrogen or oxygen by electrolysis of water
C25B 9/06 - Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
H02N 11/00 - Generators or motors not provided for elsewhereAlleged perpetua mobilia obtained by electric or magnetic means
The present invention comprises a precision cooking oven that utilizes laser sheets to cook food, thus creating homogeneously heated and uniformly seared food bodies and surfaces. Laser sheets move back and forth evenly injecting heat into items being cooked. All food cold or hot areas can be eliminated since intersecting laser lines can be completely projected on and accommodate an item's exterior surfaces. Items with non-uniform cross-sections and properties can be cooked uniformly by controlling the exact amount of energy projected into differing sections of the food. The oven is also capable of cooking autonomously. Since laser sheets can be precisely controlled, cooking results can be very predictable once the boundary conditions for a thermal analysis are determined. The oven can detect the properties of the items to be cooked and thereafter compute the needed time and power to achieve the desired results stipulated by an oven operator.
A23L 5/10 - General methods of cooking foods, e.g. by roasting or frying
A23L 5/30 - Physical treatment, e.g. electrical or magnetic means, wave energy or irradiation
F24C 7/04 - Stoves or ranges heated by electric energy with heat radiated directly from the heating element
A21B 1/02 - Bakers' ovens characterised by the heating arrangements
H05B 6/00 - Heating by electric, magnetic or electromagnetic fields
F24C 7/08 - Arrangement or mounting of control or safety devices
F24C 7/00 - Stoves or ranges heated by electric energy
F24C 1/00 - Stoves or ranges in which the fuel or energy supply is not restricted to solid fuel or to a type covered by a single one of groups Stoves or ranges in which the type of fuel or energy supply is not specified
78.
Mechanical processing of metallic component surfaces
A method of mechanically processing a metallic material component is provided whereby alloying, carburizing, nitriding and boriding can be performed using a friction stir processing tool. This method for mechanically processing metallic material surfaces is cost effective, efficient and does not require specialized equipment.
C23C 10/20 - Solid state diffusion of only metal elements or silicon into metallic material surfaces using liquids, e.g. salt baths, liquid suspensions only one element being diffused
79.
Nanomaterial assisted bonding method to produce curved surfaces
A method of fabricating a curved surface bonding technique using low melting temperature nanoparticles or nanofilms/nanoparticles of reactive metals as eutectic compounds. The ability of nanomaterials to melt at low temperature lowers the bonding temperature and reduces/eliminates the residual stresses generated in bulk material during the bonding process of two materials with different coefficients of thermal expansion. The nanoscale materials will then be integrated and the new bond will assume properties of the bulk material, including its higher melting temperature.
B32B 37/10 - Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using direct action of vacuum or fluid pressure
B32B 37/06 - Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
B32B 1/00 - Layered products having a non-planar shape
B32B 37/08 - Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the cooling method
80.
Palladium and platinum-based nanoparticle functional sensor layers and integration with engineered filter layers for selective H2 sensing
4 as well as modifications to modify the effective refractive indices through combinations and/or doping of such materials. Additional exemplary matrix materials consist of zeolitic and zeolite-derivative structures which are microporous and/or nanoporous such as the alumino-silicates and the dealuminated zeolite NaA structures. Additional sensing layers may be comprised of (1) a single “nanocomposite” layer comprised of Pd- or Pt-based particles dispersed within an inert matrix, (2) multi-layered sensing layers comprised of a nanocomposite layer with a filter overlayer, (3) core-shell layers comprised of matrix materials surrounding a core of Pd-based or Pt-based nanoparticles, and any combinations of the above.
A reaction apparatus includes a hollow chamber with a stirring shaft. The chamber is maintained at a predetermined pressure and accepts at least two reactants from two storage tanks. The stirring shaft rotates around an axis and creates a reaction product. Taylor vortexes are created while the pressure minimizes the volume possession of the gas phase. The reaction product of micron and sub-micron particles is removed from the chamber and depressurized.
C08G 73/06 - Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromoleculePolyhydrazidesPolyamide acids or similar polyimide precursors
C08F 34/00 - Homopolymers or copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain and having one or more carbon-to-carbon double bonds in a heterocyclic ring
B01D 53/02 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by adsorption, e.g. preparative gas chromatography
C07D 403/02 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group containing two hetero rings
A method to separate rare earth material from a rare earth magnet. At least one embodiment comprises a method that heats a provided rare earth magnet to at least 600° C. whereby the rare earth magnet absorbs a dry gas. Separated rare earth materials are created. Magnetic rare earth materials are produced from the separated rare earth materials.
The present invention comprise an elastic piston system for the conversion of solar energy to electrical energy, the system comprising a solar energy concentrator 202, and at least two solar energy conversion cells 200 being configured to receive the sunlight 204 reflected from the solar energy concentrator 202. The solar energy conversion cell 200 comprises at least two elastic piston 302, 304 components. The elastic pistons 302, 304 being coupled via a conduit 314, 416 for the transmittal of a predetermined working fluid 418. The elastic pistons 302, 304 are configured to receive polarized sunlight and generate electrical energy in response to the reception of the polarized sunlight, The solar energy conversion cell further comprises a controller 306 component, The controller 306 being configured to regulate the compression cycles within the elastic piston 302, 304 components and extract electrical energy produced within the cell 200.
F03G 6/06 - Devices for producing mechanical power from solar energy with solar energy concentrating means
G02F 1/01 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour
G02B 27/28 - Optical systems or apparatus not provided for by any of the groups , for polarising
85.
Conducting metal oxides integrated with the surface acoustic wave (SAW) sensor platform
One or more embodiments relates a single port surface acoustic wave sensor (SAW) device adapted for use in a wide range of operational temperatures and gas phase chemical species. The device includes a piezoelectric crystal substrate; at least one interdigitated electrode/transducer (IDT) positioned on the piezoelectric crystal substrate; and at least one conducting metal oxide film positioned on the piezoelectric crystal substrate and in communication with at least the IDT.
Disclosed is a thermocouple assembly having a resilient mount; a buffer having a first side and a second side, with the buffer first side connecting with the resilient mount; an insulator having a first side and a second side, with the insulator first side connecting with the buffer second side; and a thermocouple having a first side and a second side, the thermocouple first side connecting with the insulator second side, and the thermocouple second side being configured to be in thermal contact with an object to be measured.
G01K 1/00 - Details of thermometers not specially adapted for particular types of thermometer
G01K 1/143 - SupportsFastening devicesArrangements for mounting thermometers in particular locations for measuring surface temperatures
G01K 7/02 - Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat using thermoelectric elements, e.g. thermocouples
A non-circular coolant passage is disclosed, which includes one or more walls axially defining a flow path; an inlet connecting to a first end of the flow path; and an exit connecting to a second end of the flow path, wherein a size of a passage cross-section varies in the axial direction. In certain exemplary embodiments the passage cross-section size varies uniformly, while in others the passage cross-section size varies incrementally. In certain exemplary embodiments, an angular orientation of the passage cross-section varies in the axial direction. The cross-section angular orientation can vary uniformly, incrementally, or a combination of both. In still other embodiments, both the size of the passage cross-section and the angular orientation of the passage cross-section vary in the axial direction. In these embodiments, the passage cross-section size and/or the angular orientation of the passage cross-section can vary uniformly, incrementally, and/or a combination of the two.
A solar cell system is formed with a dynamic surface relief grating. Movement members are actuated by a controller to produce a force on the reflective surface. The reflective surface deforms in response to the force creating a surface relief grating that can adapt to changing light conditions.
H02S 20/32 - Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
H02S 40/22 - Light-reflecting or light-concentrating means
H01L 31/054 - Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
H01L 31/056 - Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
89.
Tunable anisotropy of co-based nanocomposites for magnetic field sensing and inductor applications
A method includes producing an amorphous precursor to a nanocomposite, the amorphous precursor comprising a material that is substantially without crystals not exceeding 20% volume fraction; performing devitrification of the amorphous precursor, wherein the devitrification comprises a process of crystallization; forming, based on the devitrification, the nanocomposite with nano-crystals that contains an induced magnetic anisotropy; tuning, based on one or more of composition, temperature, configuration, and magnitude of stress applied during annealing and modification, the magnetic anisotropy of the nanocomposite; and adjusting, based on the tuned magnetic anisotropy, a magnetic permeability of the nanocomposite.
H01F 1/153 - Amorphous metallic alloys, e.g. glassy metals
G01R 33/02 - Measuring direction or magnitude of magnetic fields or magnetic flux
H01F 41/02 - Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformersApparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils or magnets
G01R 33/00 - Arrangements or instruments for measuring magnetic variables
90.
Hard and super-hard metal alloys and methods for making the same
B22F 1/00 - Metallic powderTreatment of metallic powder, e.g. to facilitate working or to improve properties
B22F 3/14 - Both compacting and sintering simultaneously
B22F 3/16 - Both compacting and sintering in successive or repeated steps
B22F 5/00 - Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
B22F 9/04 - Making metallic powder or suspensions thereofApparatus or devices specially adapted therefor using physical processes starting from solid material, e.g. by crushing, grinding or milling
C22C 9/01 - Alloys based on copper with aluminium as the next major constituent
91.
Reduction-oxidation of actinides extraction process (ROANEX) for used nuclear fuel recycling
A method for evaluating the pH of an aqueous solution by utilizing the optical properties of a pH sensing material includes optically active nanoparticles fixed to a substrate. The optically active nanoparticles have a localized refractive index modulation over a pH range from 2.0 to 12.0 of at least 1% and, where the plurality of optically active nanoparticles have an average nanoparticle diameter of less than about 500 nanometers. The method includes contacting the pH sensing material with the aqueous solution, illuminating the pH sensing material, and monitoring an optical signal generated through comparison of incident light and exiting light to determine the optical transmission, absorption, reflection, and/or scattering of the pH sensitive material. The optical signal of the pH sensitive material varies in response to the pH of the aqueous solution, providing a means by which the pH and any changes in the pH may be analyzed.
G01N 21/77 - Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
G01N 33/84 - Chemical analysis of biological material, e.g. blood, urineTesting involving biospecific ligand binding methodsImmunological testing involving inorganic compounds or pH
G01N 31/22 - Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroupsApparatus specially adapted for such methods using chemical indicators
93.
Alloys for shaped charge liners method for making alloys for shaped charge liners
3, the alloy comprising a single phase solution of tungsten, nickel, and iron. Also provided is a cone liner for use in shaped charges, the liner comprised of a tungsten, nickel, iron alloy having a single phase microstructure. Substantially no precipitates or second phases exist in the alloy. One embodiment of the invention further provides a method for producing a single phase alloy, the method comprising establishing a melt of iron and nickel; dissolving tungsten in the melt to form a solution; wherein the atomic percents of the nickel, tungsten and iron range from between approximately Ni-7%W-0%Fe, Ni-18%W-0%Fe, and Ni-8%W-24%Fe, wherein Ni is the remainder, maintaining the solution at a first temperature sufficient to create a homogeneous mixture; allowing the homogeneous mixture to solidify; and thermochemically treating the solidified mixture for a time to dissolve any second phases or microstructure within the mixture.
F42B 1/032 - Shaped or hollow charges characterised by the material of the liner
C22F 1/10 - Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
C22C 19/03 - Alloys based on nickel or cobalt based on nickel
41 - Education, entertainment, sporting and cultural services
42 - Scientific, technological and industrial services, research and design
45 - Legal and security services; personal services for individuals.
Goods & Services
Preparedness services, namely, training services for response to nuclear and radiological incidents Scientific laboratory services, engineering services, and research and development services in the fields of nuclear reactors, nuclear propulsion, nuclear fuel technologies, energy, chemistry, computing technologies, materials, and sensors Security threat analysis and investigations for protecting public safety related to nuclear and radiological incidents; providing security services for personnel and buildings in the event of nuclear and radiological incidents; Personal, physical, and public safety security consultation services related to nuclear and radiological incidents
95.
System and method for concentrating rare earth elements from coal byproducts/slag
The disclosure relates to a method for concentrating rare earth elements (REEs) from a coal byproduct. The method includes mixing the coal byproduct input with aluminum phosphate, sulfur and/or other compounds used as an additive; heating the coal byproduct input in air for a period of 3 minutes or longer at a temperature above a liquid starting temperature of the coal byproduct input, forming a molten coal byproduct; cooling the molten coal byproduct at a rate slower than critical glass transition cooling rate of the melt, forming REE phosphate product; heating the coal byproduct input above the liquid starting temperature of the coal byproduct after REE phosphate product is formed; and cooling the coal byproduct input at a rate faster than the critical glass transition cooling rate of the melt, minimizing forming unwanted solids.
B01J 19/00 - Chemical, physical or physico-chemical processes in generalTheir relevant apparatus
C22B 9/10 - General processes of refining or remelting of metalsApparatus for electroslag or arc remelting of metals with refining or fluxing agentsUse of materials therefor
96.
System for kick detection during a drilling operation
The disclosure provides a kick detection system for use during a drilling operation where wellbore kick warnings are provided based on indications of standoff conditions in a compensated instrument system. The system provides a warning of a potential kick condition by analyzing a current instrument compensation against a time series of past compensations, in order to monitor whether conditions within the standoff region of the wellbore are unexpectedly changing. The system comprises a source, a short-spaced detector, and a long-spaced detector, and a processor receives the short-spaced signal and the long-spaced signal, compensates the long-spaced signal, and generates standoff data reflecting the corrections applied to the long-range signal. The processor determines and maintains the standoff data as a time series and periodically compares a recent data point to a moving average in order to evaluate indications of a potential well kick.
E21B 47/10 - Locating fluid leaks, intrusions or movements
E21B 47/12 - Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
E21B 47/14 - Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves
E21B 47/01 - Devices for supporting measuring instruments on drill bits, pipes, rods or wirelinesProtecting measuring instruments in boreholes against heat, shock, pressure or the like
G01V 5/12 - Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays using gamma- or X-ray sources
G01V 5/10 - Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays using neutron sources
G01V 3/30 - Electric or magnetic prospecting or detectingMeasuring magnetic field characteristics of the earth, e.g. declination or deviation specially adapted for well-logging operating with electromagnetic waves
A xenon capture system that reduces the concentration of xenon in a carrier gas is disclosed. An example xenon capture system includes a carrier gas with a first concentration of xenon that flows through an intake into a chamber. Within the chamber is a reaction area that has at least one peripheral sidewall. The reaction area operates at a predetermined temperature, flow rate, and low pressure. Within the reaction area is at least one xenon capture mechanism that is at least partially formed of a transition metal. When the carrier gas is exposed to the xenon capture mechanism, the xenon capture mechanism adsorbs xenon from the carrier gas. The carrier gas, with a second concentration of xenon, exits the chamber through the exhaust outlet.
B01D 53/04 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
B01J 20/02 - Solid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof comprising inorganic material
B01J 20/04 - Solid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
B01D 53/02 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by adsorption, e.g. preparative gas chromatography
42 - Scientific, technological and industrial services, research and design
Goods & Services
Technical research in the field of transportation; Development services, namely, architectural design and engineering services in the field of transportation
99.
MSE based drilling optimization using neural network simulaton
The method disclosed receives a data stream from an MWD system and determines the response of a specific energy (SE) relationship and a rate of penetration (ROP) relationship respectively to variables controllable by the operator, in order to enable operation at a lowest SE, or a highest Rate-of-Penetration (ROP) to SE ratio. The method utilizes artificial neural networks trained by MWD data to deduce a depth-of-cut and torque based on relationships manifesting between the various data points collected, and an SE equation and a predicted ROP is evaluated over a series of probable operating points. The method continuously gathers and analyzes MWD data during the drilling operation and allows an operator to manage the controllable parameters such that operation at the lowest SE or highest ROP or ROP to SE ratio can be achieved during the drilling operation.
E21B 44/00 - Automatic control systems specially adapted for drilling operations, i.e. self-operating systems which function to carry out or modify a drilling operation without intervention of a human operator, e.g. computer-controlled drilling systemsSystems specially adapted for monitoring a plurality of drilling variables or conditions
The method and system disclosed provides radionuclide contamination mitigation by applying an aqueous carrier solution comprising a cation to a surface bearing a radionuclide contaminant to cause the radionuclide contaminant to enter solution forming a laden solution, then contacting the laden solution with a sequestering agent to bind to the radionuclide contaminant to form a laden sequestering agent. The removal and sequestration of the radionuclide contaminant from the contaminated surface leads directly to a reduction in the amount of radiologically-impacted critical infrastructure and the environment. The method and system are able to be performed or utilized economically with materials quickly available in the event of a radiological dispersion event.