For replacing position detecting switches in a breaker, a mechanical breaker switch is moved to permit removal of first and second position detecting switches, the first indicating whether the mechanical breaker switch is in a first position by transitioning between first and second states when disposed at or greater than a first threshold angle, the second indicating whether the mechanical breaker switch is in the second position by transitioning between first and second states when disposed at or less than a second threshold angle. The position detecting switches are removed and replaced with replacement position detecting switches. The first replacement switch is adjusted to transition between the first and second states at when disposed at or greater than the first threshold angle, and the second replacement switch is adjusted to transition between the first and second states at when disposed at or less than the second threshold angle.
For replacing position detecting switches in a breaker, a mechanical breaker switch is moved to permit removal of first and second position detecting switches, the first indicating whether the mechanical breaker switch is in a first position by transitioning between first and second states when disposed at or greater than a first threshold angle, the second indicating whether the mechanical breaker switch is in the second position by transitioning between first and second states when disposed at or less than a second threshold angle. The position detecting switches are removed and replaced with replacement position detecting switches. The first replacement switch is adjusted to transition between the first and second states at when disposed at or greater than the first threshold angle, and the second replacement switch is adjusted to transition between the first and second states at when disposed at or less than the second threshold angle.
Disclosed is a method of reconditioning a vacuum interrupter that comprises determining whether the vacuum interrupter is suitable for reconditioning. Where the vacuum interrupter is suitable for reconditioning, the method comprises reducing pressure inside vacuum interrupter using magnetron pumping, and/or forming at least one hole in an endcap of a vacuum envelope of the vacuum interrupter, cleaning components of the vacuum interrupter inside the vacuum envelope by introducing at least one cleaning solution into the interior of the vacuum envelope through the at least one hole in the endcap, removing the cleaning solution from the interior of the vacuum envelope, installing a plug in the at least one hole, wherein the plug has getter material on a surface thereof facing the interior of the vacuum envelope, and vacuum sealing the plug to the at least one hole such that a vacuum is re-established in the interior of the vacuum envelope.
A closed and open contact method to predict a usable life of vacuum interrupters in the field can include using computer instructions in the data storage to instruct the processor to position a calculated amp or calculated pressure on an ionic or current versus pressure calibration curve for the installed vacuum interrupter and identify trend data from a library of trend data corresponding to the installed vacuum interrupter and to the calculated pressure or calculated amp of the installed vacuum interrupter; thereby determining the anticipated life expectancy.
G01N 27/62 - Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electric discharges, e.g. emission of cathode
A closed and open contact method to predict a usable life of vacuum interrupters in the field can include using computer instructions in the data storage to instruct the processor to position a calculated amp or calculated pressure on an ionic or current versus pressure calibration curve for the installed vacuum interrupter and identify trend data from a library of trend data corresponding to the installed vacuum interrupter and to the calculated pressure or calculated amp of the installed vacuum interrupter; thereby determining the anticipated life expectancy.
A flexible magnetic coil for determining ion migration rates inside a vacuum device can include a plurality of insulated copper wires held together as a bundle. A positive pole can be connected to a first end of the bundle for receiving a positive DC voltage. A negative pole can be connected to a second end of the bundle for completing a circuit with the positive pole. A DC voltage ranging from ten volts to four thousand volts from a power supply can be connected to the positive pole, the negative pole, or combinations thereof. The bundle can be a loop and can form a circuit when the DC voltage is applied to the loop. The bundle can create a flexible electromagnetic field of at least one Gauss around the vacuum device using a calculation of a number of turns of insulated copper wire multiplied by applied DC current.
G01N 27/62 - Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electric discharges, e.g. emission of cathode
H01F 7/20 - Electromagnets; Actuators including electromagnets without armatures
G01R 31/327 - Testing of circuit interrupters, switches or circuit-breakers
A closed and open contact method to predict a usable life of vacuum interrupters in the field can include using computer instructions in the data storage to instruct the processor to position a calculated amp or calculated pressure on an ionic or current versus pressure calibration curve for the installed vacuum interrupter and identify trend data from a library of trend data corresponding to the installed vacuum interrupter and to the calculated pressure or calculated amp of the installed vacuum interrupter; thereby determining the anticipated life expectancy.
An electromagnetic testing assembly to predict a usable life of an installed vacuum interrupter in the field, which can include an electromagnetic testing device connected to a flexible magnetic field coil to generate a potential in a vacuum interrupter in an installation, magnetically monitor ion flow across one or more gaps in the vacuum interrupter, and apply trend data, tube chart information, and an algorithm to predict the usable life.
G01R 31/327 - Testing of circuit interrupters, switches or circuit-breakers
G01N 27/62 - Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electric discharges, e.g. emission of cathode
A closed and open contact method to predict a usable life of vacuum interrupters in the field can include using computer instructions in the data storage to instruct the processor to position a calculated amp or calculated pressure on an ionic or current versus pressure calibration curve for the installed vacuum interrupter and identify trend data from a library of trend data corresponding to the installed vacuum interrupter and to the calculated pressure or calculated amp of the installed vacuum interrupter; thereby determining the anticipated life expectancy.
G06F 19/00 - Digital computing or data processing equipment or methods, specially adapted for specific applications (specially adapted for specific functions G06F 17/00;data processing systems or methods specially adapted for administrative, commercial, financial, managerial, supervisory or forecasting purposes G06Q;healthcare informatics G16H)
G01R 31/333 - Testing of the switching capacity of high-voltage circuit-breakers
G01N 27/62 - Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electric discharges, e.g. emission of cathode
A portable test and control system for selectively testing and operating an electrically operated switch with at least one phase, the electrically operated switch designed to protect electrical circuit. The portable test and control system is adapted for simultaneously performing verification that the electrically operated switch is operating according to stored switch specifications and control of operation of the electrically operated switch by providing power directly to the electrically operated switch.
An electromagnetic testing assembly to predict a usable life of an installed vacuum interrupter in the field, which can include an electromagnetic testing device connected to a flexible magnetic field coil to generate a potential in a vacuum interrupter in an installation, magnetically monitor ion flow across one or more gaps in the vacuum interrupter, and apply trend data, tube chart information, and an algorithm to predict the usable life.
G06F 19/00 - Digital computing or data processing equipment or methods, specially adapted for specific applications (specially adapted for specific functions G06F 17/00;data processing systems or methods specially adapted for administrative, commercial, financial, managerial, supervisory or forecasting purposes G06Q;healthcare informatics G16H)
G01R 31/333 - Testing of the switching capacity of high-voltage circuit-breakers
G01R 31/327 - Testing of circuit interrupters, switches or circuit-breakers
H01H 75/04 - Reset mechanisms for automatically reclosing a limited number of times
A closed and open contact method to predict a usable life of vacuum interrupters in the field can include using computer instructions in the data storage to instruct the processor to position a calculated amp or calculated pressure on an ionic or current versus pressure calibration curve for the installed vacuum interrupter and identify trend data from a library of trend data corresponding to the installed vacuum interrupter and to the calculated pressure or calculated amp of the installed vacuum interrupter; thereby determining the anticipated life expectancy.
G06F 19/00 - Digital computing or data processing equipment or methods, specially adapted for specific applications (specially adapted for specific functions G06F 17/00;data processing systems or methods specially adapted for administrative, commercial, financial, managerial, supervisory or forecasting purposes G06Q;healthcare informatics G16H)
G01R 31/333 - Testing of the switching capacity of high-voltage circuit-breakers
G01R 31/327 - Testing of circuit interrupters, switches or circuit-breakers
A flexible magnetic coil for determining Ion migration rates inside a vacuum device can include a plurality of insulated copper wires held together as a bundle. A positive pole can be connected to a first end of the bundle tor receiving a positive DC voltage. A negative pole can be connected to a second end of the bundle for completing a circuit with the positive pole. A DC voltage ranging from ten volts to four thousand volts from a power supply can be connected to the positive pole, the negative pole, or combinations thereof. The bundle can be a loop and can form a circuit when the DC voltage is applied to the loop. The bundle can create a flexible electromagnetic field of at least one Gauss around the vacuum device using a calculation of a number of turns of insulated copper wire multiplied by applied DC current.
A flexible magnetic coil for determining ion migration rates inside a vacuum device can include a plurality of insulated copper wires held together as a bundle. A positive pole can be connected to a first end of the bundle for receiving a positive DC voltage. A negative pole can be connected to a second end of the bundle for completing a circuit with the positive pole. A DC voltage ranging from ten volts to four thousand volts from a power supply can be connected to the positive pole, the negative pole, or combinations thereof. The bundle can be a loop and can form a circuit when the DC voltage is applied to the loop. The bundle can create a flexible electromagnetic field of at least one Gauss around the vacuum device using a calculation of a number of turns of insulated copper wire multiplied by applied DC current.