01 - Chemical and biological materials for industrial, scientific and agricultural use
09 - Scientific and electric apparatus and instruments
Goods & Services
Kits consisting primarily of reagents and laboratory equipment, namely, microarrays sold as a unit for scientific research use Laboratory equipment, namely, microarrays
09 - Scientific and electric apparatus and instruments
Goods & Services
(Based on Use in Commerce) Chromatography columns for laboratory use; Chromatography columns for laboratory use, namely, chromatography columns for the development of biologics; (Based on Intent To Use) Plastic laboratory consumables, namely 96-well plates having multi-well arrays that can be used in chemical analysis, biological analysis or patterning for laboratory use
01 - Chemical and biological materials for industrial, scientific and agricultural use
Goods & Services
Microbiological cell culture media, biological tissue in the nature of animal blood sera, mammalian and insect cells, mammalian and insect cell culture media and cell culture reagents; all of the foregoing goods for scientific or medical research use
05 - Pharmaceutical, veterinary and sanitary products
10 - Medical apparatus and instruments
Goods & Services
Laboratory reagents, oligonucleotides, primers and probes,
enzymes and enzyme mixes, nucleotide sets and nucleotide
mixes, reference dyes, reaction buffers, detection labels,
sold individually or as a kit, for nucleic acid genotyping,
nucleic acid quantification and nucleic acid amplification
including polymerase chain reaction and reverse
transcription polymerase chain reaction for clinical and
biopharmaceutical use. Probes.
The present disclosure provides reagents that can be used to label synthetic oligonucleotides with rhodamine dyes or dye networks that contain rhodamine dyes.
C07F 9/6561 - Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing systems of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring or ring system, with or without other non-condensed hetero rings
C07F 9/655 - Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms
C07H 21/04 - Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
C07D 311/96 - Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings spiro-condensed with carbocyclic rings or ring systems
C07H 19/04 - Heterocyclic radicals containing only nitrogen as ring hetero atom
01 - Chemical and biological materials for industrial, scientific and agricultural use
Goods & Services
Real-time polymerase chain reaction kits, comprised
primarily of reagents, for scientific laboratory use in the
detection of bacteria and fungi contamination in bioprocess
samples.
09 - Scientific and electric apparatus and instruments
Goods & Services
Polymerase chain reaction (PCR) instruments for scientific,
research, and biopharmaceutical use, namely, laboratory
apparatus and instruments for amplifying DNA using
polymerase chain reaction (PCR); scientific research
instruments for use in measuring and quantifying DNA.
01 - Chemical and biological materials for industrial, scientific and agricultural use
Goods & Services
Real-time polymerase chain reaction kits, comprised primarily of reagents, for scientific laboratory use in the detection of bacteria and fungi contamination in bioprocess samples
16.
COMPOSITIONS, METHODS, AND KITS FOR AMPLIFYING NUCLEIC ACIDS
The present teachings are directed to compositions, methods, and kits for amplifying target nucleic acids while reducing non-specific fluorescence and undesired amplification products, sometimes referred to as secondary amplification products or spurious side-products. The enzyme inhibitors disclosed herein comprise a nucleotide sequence and at least one quencher. Complexes comprising an enzyme inhibitor associated with an enzyme, wherein at least one enzymatic activity of the enzyme is inhibited, are also provided. Methods for amplifying a target nucleic acid while reducing undesired amplification products are disclosed, as are methods for reducing non-specific fluorescence. Kits for expediting the performance of certain disclosed methods are also provided.
C12Q 1/6848 - Nucleic acid amplification reactions characterised by the means for preventing contamination or increasing the specificity or sensitivity of an amplification reaction
C12P 19/34 - Polynucleotides, e.g. nucleic acids, oligoribonucleotides
The present disclosure provides apparatus, systems and method for detecting separately and substantially simultaneously light emissions from a plurality of localized light-emitting analytes. A system according to exemplary embodiments of the present disclosure comprises a sample holder having structures formed thereon for spatially separating and constraining a plurality of light-emitting analytes each having a single nucleic acid molecule or a single nucleic acid polymerizing enzyme, a light source configured to illuminate the sample holder, an optical assembly configured to collect and detect separately and substantially simultaneously light emissions associated with the plurality of light emitting analytes. The system may further include a computer system configured to analyze the light emissions to determine the structures or properties of a target nucleic acid molecule associated with each analyte.
09 - Scientific and electric apparatus and instruments
Goods & Services
Polymerase chain reaction (PCR) instruments for scientific, research, and biopharmaceutical use, namely, laboratory apparatus and instruments for amplifying DNA using polymerase chain reaction (PCR); scientific research instruments for use in measuring and quantifying DNA, all the foregoing for use in connection with scientific research, biopharmaceutical drug development and genetic analysis, and not directly in connection with software and technology for experience management, customer, patient, student, product, and employee feedback analysis, natural language processing, market research, online reputation management, or surveys
05 - Pharmaceutical, veterinary and sanitary products
Goods & Services
Biopharmaceutical laboratory reagents, oligonucleotides, primers and probes, enzymes and enzyme mixes, nucleotide sets and nucleotide mixes, fluorescent dye, all the foregoing for in-vitro medical, clinical or biopharmaceutical use, reaction buffers and sample detection labels in the form of strips of adhesive paper labels for laboratory use for nucleic acid genotyping tools, nucleic acid quantification and nucleic acid amplification including polymerase chain reactions, and reverse transcription polymerase chain reactions, for gene expression, genotyping, microbial testing applications all the foregoing for in-vitro medical, clinical or biopharmaceutical use; Kits comprised of laboratory reagents, oligonucleotides, primers and probes, enzymes and enzyme mixes, nucleotide sets and nucleotide mixes, fluorescent dye, all the foregoing for in-vitro medical, clinical, and biopharmaceutical use, reaction buffers and sample detection labels in the form of strips of adhesive paper labels for laboratory use for nucleic acid genotyping, nucleic acid quantification and nucleic acid amplification including polymerase chain reaction and reverse transcription polymerase chain reactions, all the foregoing for in-vitro medical, or biopharmaceutical use.
Various embodiments of the teachings relate to a system or method for sample preparation or analysis in biochemical or molecular biology procedures. The sample preparation can involve small volume processed in discrete portions or segments or slugs, herein referred to as discrete volumes. A molecular biology procedure can be nucleic acid analysis. Nucleic acid analysis can be an integrated DNA amplification/DNA sequencing procedure.
B01L 3/00 - Containers or dishes for laboratory use, e.g. laboratory glasswareDroppers
F15C 5/00 - Manufacture of fluid-circuit elementsManufacture of assemblages of such elements
F16K 99/00 - Subject matter not provided for in other groups of this subclass
G01N 35/08 - Automatic analysis not limited to methods or materials provided for in any single one of groups Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
G01N 1/14 - Suction devices, e.g. pumpsEjector devices
C12Q 1/6806 - Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
C12Q 1/6874 - Methods for sequencing involving nucleic acid arrays, e.g. sequencing by hybridisation [SBH]
The present invention is directed to methods, reagents, kits, and compositions for identifying and quantifying target polynucleotide sequences. A linker probe comprising a 3′ target specific portion, a loop, and a stem is hybridized to a target polynucleotide and extended to form a reaction product that includes a reverse primer portion and the stem nucleotides. A detector probe, a specific forward primer, and a reverse primer can be employed in an amplification reaction wherein the detector probe can detect the amplified target polynucleotide based on the stem nucleotides introduced by the linker probe. In some embodiments a plurality of short miRNAs are queried with a plurality of linker probes, wherein the linker probes all comprise a universal reverse primer portion a different 3′ target specific portion and different stems. The plurality of queried miRNAs can then be decoded in a plurality of amplification reactions.
C12Q 1/6876 - Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
C12N 9/00 - Enzymes, e.g. ligases (6.)ProenzymesCompositions thereofProcesses for preparing, activating, inhibiting, separating, or purifying enzymes
C07H 21/04 - Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
The present disclosure provides reagents that can be used to label synthetic oligonucleotides with rhodamine dyes or dye networks that contain rhodamine dyes.
C07H 21/04 - Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
C07H 19/04 - Heterocyclic radicals containing only nitrogen as ring hetero atom
C07F 9/6561 - Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing systems of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring or ring system, with or without other non-condensed hetero rings
C07F 9/655 - Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms
C07D 311/96 - Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings spiro-condensed with carbocyclic rings or ring systems
25.
Device and method for making discrete volumes of a first fluid in contact with a second fluid, which are immiscible with each other
A system may include a first conduit configured to form a first batch of discrete volumes of aqueous fluid separated by spacing liquid disposed between consecutive volumes of aqueous fluid, the spacing liquid being immiscible with the aqueous fluid volumes; a second conduit, fluidically coupled to the first conduit, the second conduit configured to statically hold the first batch of discrete volumes of aqueous fluid; and a third conduit configured to receive the first batch of discrete volumes of aqueous fluid from the second conduit. The third conduit can be configured to transfer the discrete volumes of aqueous fluid of the first batch for downstream processing.
G01N 1/14 - Suction devices, e.g. pumpsEjector devices
G01N 35/08 - Automatic analysis not limited to methods or materials provided for in any single one of groups Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
A method for sequencing a nucleic acid template includes forming a nanowire assembly including a semiconductor nanowire and a probe covalently bound to the semiconductor nanowire; contacting the nanowire assembly with a template nucleic acid; contacting the nucleic acid duplexes with an extension nucleic acid, the extension nucleic acid joined to the probe; disrupting the nucleic acid duplexes; and measuring an electrical characteristic of a nanowire assembly of the set of nanowire assemblies.
The present teachings are directed to compositions, methods, and kits for amplifying target nucleic acids while reducing non-specific fluorescence and undesired amplification products, sometimes referred to as secondary amplification products or spurious side-products. The enzyme inhibitors disclosed herein comprise a nucleotide sequence and at least one quencher. Complexes comprising an enzyme inhibitor associated with an enzyme, wherein at least one enzymatic activity of the enzyme is inhibited, are also provided. Methods for amplifying a target nucleic acid while reducing undesired amplification products are disclosed, as are methods for reducing non-specific fluorescence. Kits for expediting the performance of certain disclosed methods are also provided.
C12Q 1/6848 - Nucleic acid amplification reactions characterised by the means for preventing contamination or increasing the specificity or sensitivity of an amplification reaction
Methods of detecting at least one analyte and at least one nucleic acid in a sample are provided. Reagents for carrying out the methods are also provided.
Modification formats having modified nucleotides are provided for siRNA. Short interfering RNA having modification formats and modified nucleotides provided herein reduce off-target effects in RNA interference of endogenous genes. Further modification formatted siRNAs are demonstrated to be stabilized to nuclease-rich environments. Unexpectedly, increasing or maintaining strand bias, while necessary to maintain potency for endogenous RNA interference, is not sufficient for reducing off-target effects in cell biology assays.
A method for dispensing liquid for use in biological analysis may comprise positioning liquid to be dispensed via electrowetting. The positioning may comprise aligning the liquid with a plurality of predetermined locations. The method may further comprise dispensing the aligned liquid from the plurality of predetermined locations through a plurality of openings respectively aligned with the predetermined locations. The dispensing may be via electrowetting.
There is disclosed a system for electrical charge detection comprising a nanoFET device. Also disclosed is a method of electrical charge detection for single molecule sequencing. The method includes attaching a macromolecule or assemblies thereof to a gate of a nanoFET device and flowing in a solution of charge tags, where a charge tag includes a nucleotide attached to a charge complex. The method also includes incorporating one charge tag into the macromolecule or assemblies thereof and cleaving the charge tags from the macromolecule or assemblies thereof. The method further includes detecting at least one of current and voltage from the nanoFET device.
Compositions, methods, and kits for detecting one or more species of RNA molecules are disclosed. In one embodiment, a first adaptor and a second adaptor are ligated to the RNA molecule using a polypeptide comprising double-strand specific RNA ligase activity, without an intervening purification step. The ligated product is reverse transcribed, then at least some of the ribonucleosides in the reverse transcription product are removed. Primers are added and amplified products are generated. In certain embodiments, the sequence of at least part of at least one species of amplified product is determined and at least part of the corresponding RNA molecule is determined. In some embodiments, at least some of the amplified product species are detected, directly or indirectly, allowing the presence and/or quantity of the RNA molecule of interest to be determined.
01 - Chemical and biological materials for industrial, scientific and agricultural use
Goods & Services
Real-time polymerase chain reaction kits, comprised
primarily of reagents, for scientific laboratory use in the
detection of bacterial contamination in bioprocess samples.
Various embodiments of the teachings relate to a system or method for sample preparation or analysis in biochemical or molecular biology procedures. The sample preparation can involve small volume processed in discrete portions or segments or slugs, herein referred to as discrete volumes. A molecular biology procedure can be nucleic acid analysis. Nucleic acid analysis can be an integrated DNA amplification/DNA sequencing procedure.
B01L 3/00 - Containers or dishes for laboratory use, e.g. laboratory glasswareDroppers
F15C 5/00 - Manufacture of fluid-circuit elementsManufacture of assemblages of such elements
F16K 99/00 - Subject matter not provided for in other groups of this subclass
G01N 35/08 - Automatic analysis not limited to methods or materials provided for in any single one of groups Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
G01N 1/14 - Suction devices, e.g. pumpsEjector devices
C12Q 1/6806 - Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
C12Q 1/6874 - Methods for sequencing involving nucleic acid arrays, e.g. sequencing by hybridisation [SBH]
Systems, methods, and analytical approaches for short read sequence assembly and for the detection of insertions and deletions (indels) in a reference genome. A method suitable for software implementation is presented in which indels may be readily identified in a computationally efficient manner.
01 - Chemical and biological materials for industrial, scientific and agricultural use
Goods & Services
Real-time polymerase chain reaction kits, comprised primarily of reagents, for scientific laboratory use in the detection of bacterial contamination in bioprocess samples
Systems and methods are provided for processing a melting or dissociation curve of a DNA or other sample, for example, during PCR processing. In some embodiments, detection of the melting point and melting curve behavior can be enhanced by taking a derivative of the curve, and detecting peaks in the differential dissociation curve. In some embodiments, the derivative operation can comprise the use of edge-processing, or other detection algorithms. In some embodiments, the dissociation analysis can comprise removing low-frequency (or pedestal) components of the differential dissociation curve. In some embodiments, the differential dissociation curve can exhibit a smoothed or more regular appearance than the raw detected data.
A method for dispensing liquid for use in biological analysis may comprise positioning liquid to be dispensed via electrowetting. The positioning may comprise aligning the liquid with a plurality of predetermined locations. The method may further comprise dispensing the aligned liquid from the plurality of predetermined locations through a plurality of openings respectively aligned with the predetermined locations. The dispensing may be via electrowetting.
Modification formats having modified nucleotides are provided for siRNA. Short interfering RNA having modification formats and modified nucleotides provided herein reduce off-target effects in RNA interference of endogenous genes. Further modification formatted siRNAs are demonstrated to be stabilized to nuclease-rich environments. Unexpectedly, increasing or maintaining strand bias, while necessary to maintain potency for endogenous RNA interference, is not sufficient for reducing off-target effects in cell biology assays.
Compositions, methods, and kits for detecting one or more species of RNA molecules are disclosed. In one embodiment, a first adaptor and a second adaptor are ligated to the RNA molecule using a polypeptide comprising double-strand specific RNA ligase activity, without an intervening purification step. The ligated product is reverse transcribed, then at least some of the ribonucleosides in the reverse transcription product are removed. Primers are added and amplified products are generated. In certain embodiments, the sequence of at least part of at least one species of amplified product is determined and at least part of the corresponding RNA molecule is determined. In some embodiments, at least some of the amplified product species are detected, directly or indirectly, allowing the presence and/or quantity of the RNA molecule of interest to be determined.
Disclosed are methods and kits applicable to sequencing methods, such as Sanger dideoxy sequencing methods. The methods and kits disclosed utilize a cationically charged nucleic acid terminator in combination with a discriminatory polymerase.
C07H 21/00 - Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
C12Q 1/68 - Measuring or testing processes involving enzymes, nucleic acids or microorganismsCompositions thereforProcesses of preparing such compositions involving nucleic acids
The present disclosure relates to methods of identifying target nucleic acids by using coded molecules and its analysis by translocation through a nanopore. Generally, coded molecules are subject to a target polynucleotide dependent modification. The modified coded molecule is detected by isolating the modified coded molecules from the unmodified coded molecules prior to analysis through the nanopore or by detecting a change in the signal pattern of the coded molecule when analyzed through the nanopore.
A method for sequencing a nucleic acid template includes forming a nanowire assembly including a semiconductor nanowire and a probe covalently bound to the semiconductor nanowire; contacting the nanowire assembly with a template nucleic acid; contacting the nucleic acid duplexes with an extension nucleic acid, the extension nucleic acid joined to the probe; disrupting the nucleic acid duplexes; and measuring an electrical characteristic of a nanowire assembly of the set of nanowire assemblies.
Compositions, methods, and kits for detecting one or more species of RNA molecules are disclosed. In one embodiment, a first adaptor and a second adaptor are ligated to the RNA molecule using a polypeptide comprising double-strand specific RNA ligase activity, without an intervening purification step. The ligated product is reverse transcribed, then at least some of the ribonucleosides in the reverse transcription product are removed. Primers are added and amplified products are generated. In certain embodiments, the sequence of at least part of at least one species of amplified product is determined and at least part of the corresponding RNA molecule is determined. In some embodiments, at least some of the amplified product species are detected, directly or indirectly, allowing the presence and/or quantity of the RNA molecule of interest to be determined.
The present invention provides methods for determining a nucleic acid sequence by performing successive cycles of duplex extension along a single stranded template. The cycles comprise steps of extension, ligation, and, preferably, cleavage. In certain embodiments the methods make use of extension probes containing phosphorothiolate linkages and employ agents appropriate to cleave such linkages. The invention provides methods of determining information about a sequence using at least two distinguishably labeled probe families. In certain embodiments the methods acquire less than 2 bits of information from each of a plurality of nucleotides in the template in each cycle. In certain embodiments the sequencing reactions are performed on templates attached to immobilized beads. The invention further provides sets of labeled extension probes containing phosphorothiolate linkages In addition, the invention includes performing multiple sequencing reactions on a single template by removing initializing oligonucleotides and extended strands and performing subsequent reactions using different initializing oligonucleotides.
The present disclosure relates to methods of identifying target nucleic acids by using coded molecules and its analysis by translocation through a nanopore. Generally, coded molecules are subject to a target polynucleotide dependent modification. The modified coded molecule is detected by isolating the modified coded molecules from the unmodified coded molecules prior to analysis through the nanopore or by detecting a change in the signal pattern of the coded molecule when analyzed through the nanopore.
Compositions, methods, and kits for detecting one or more species of RNA molecules are disclosed. In one embodiment, a first adaptor and a second adaptor are ligated to the RNA molecule using a polypeptide comprising double-strand specific RNA ligase activity, without an intervening purification step. The ligated product is reverse transcribed, then at least some of the ribonucleosides in the reverse transcription product are removed. Primers are added and amplified products are generated. In certain embodiments, the sequence of at least part of at least one species of amplified product is determined and at least part of the corresponding RNA molecule is determined. In some embodiments, at least some of the amplified product species are detected, directly or indirectly, allowing the presence and/or quantity of the RNA molecule of interest to be determined.
Aspects of the present teachings describe a method and apparatus for automatically controlling a block temperature to reduce undershooting and overshooting of the temperatures of a sample contained in the block and participating in a polymerase chain reaction (PCR). The adaptive thermal block temperature control begins when a sample temperature enters a sample window region between a preliminary setpoint temperature and a target setpoint temperature for the sample. Based on thermodynamic behavior of the sample and the predetermined phase of PCR, predicting a time period measured subsequent to the preliminary setpoint temperature when the sample will reach the target setpoint suitable for the predetermined phase of PCR. During this time period, varying the block temperature ramp rate with a series of cooling and heating changes to ensure the block temperature reaches the target setpoint temperature at approximately the same time as the sample reaches the same. Synchronizing the block temperature and sample temperature to the target setpoint temperature reduces undershooting and overshooting of the sample temperature and increases the speed and efficiency of the overall PCR process as it relates to the thermal cycling operations.
C12P 19/34 - Polynucleotides, e.g. nucleic acids, oligoribonucleotides
B01J 19/00 - Chemical, physical or physico-chemical processes in generalTheir relevant apparatus
B01L 7/00 - Heating or cooling apparatusHeat insulating devices
G05D 23/32 - Automatic controllers with an auxiliary heating device affecting the sensing element, e.g. for anticipating change of temperature with provision for adjustment of the effect of the auxiliary heating device, e.g. as a function of time
Medical laboratory instruments for diagnostic use and medical diagnostic instruments, namely, nucleic acid sequencers and synthesizers, genetic analyzers, fragment analyzers, electrophoresis machines, linkage analyzers, genetic mappers, thermal cyclers, cytometer, chemical reaction mixture containment apparatus and structural parts thereof, protein and peptide synthesizers, mass spectrometer and chromatograph, high-throughput instruments for preparation of nucleic acid samples; laboratory medical and diagnostic supplies, namely, plastic consumables, namely, reaction trays and well plates, racks, vials, caps and septa for use with laboratory glassware for diagnostic purposes, needles, bottles, flask, filters for processing samples and fluids, storage tubes, and seals for laboratory glassware and plastic goods, plastic tray covers for holding microplates, microplate, pipette tips, reagent reservoir, optical heat field covers, plastic cards for sample collection, and plastic capillary arrays, all for diagnostic and medical use
57.
siRNA sequence-independent modification formats for reducing off-target phenotypic effects in RNAI, and stabilized forms thereof
Modification formats having modified nucleotides are provided for siRNA. Short interfering RNA having modification formats and modified nucleotides provided herein reduce off-target effects in RNA interference of endogenous genes. Further modification formatted siRNAs are demonstrated to be stabilized to nuclease-rich environments. Unexpectedly, increasing or maintaining strand bias, while necessary to maintain potency for endogenous RNA interference, is not sufficient for reducing off-target effects in cell biology assays.
Sample preparation processes for in situ RNA or DNA analysis, methods and compositions therefor are provided. Processes provided herein allow DNA or RNA analysis to be carried out in the same tube or on an aliquot of the prepared sample without centrifugation or extraction. The preparation process can be carried out at room temperature in as little as seven minutes and is amenable to high throughput processing using manual or robotic platforms.
Various embodiments of the teachings relate to a system or method for sample preparation or analysis in biochemical or molecular biology procedures. The sample preparation can involve small volume processed in discrete portions or segments or slugs, herein referred to as discrete volumes. A molecular biology procedure can be nucleic acid analysis. Nucleic acid analysis can be an integrated DNA amplification/DNA sequencing procedure.
B01L 3/00 - Containers or dishes for laboratory use, e.g. laboratory glasswareDroppers
F15C 5/00 - Manufacture of fluid-circuit elementsManufacture of assemblages of such elements
F16K 99/00 - Subject matter not provided for in other groups of this subclass
G01N 35/08 - Automatic analysis not limited to methods or materials provided for in any single one of groups Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
G01N 1/14 - Suction devices, e.g. pumpsEjector devices
C12Q 1/6806 - Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
C12Q 1/6874 - Methods for sequencing involving nucleic acid arrays, e.g. sequencing by hybridisation [SBH]
A method for sequencing a nucleic acid template includes forming a nanowire assembly including a semiconductor nanowire and a probe covalently bound to the semiconductor nanowire; contacting the nanowire assembly with a template nucleic acid; contacting the nucleic acid duplexes with an extension nucleic acid, the extension nucleic acid joined to the probe; disrupting the nucleic acid duplexes; and measuring an electrical characteristic of a nanowire assembly of the set of nanowire assemblies.
C12Q 1/68 - Measuring or testing processes involving enzymes, nucleic acids or microorganismsCompositions thereforProcesses of preparing such compositions involving nucleic acids
C12Q 1/00 - Measuring or testing processes involving enzymes, nucleic acids or microorganismsCompositions thereforProcesses of preparing such compositions
A device for performing biological sample reactions may include a plurality of flow cells configured to be mounted to a common microscope translation stage, wherein each flow cell is configured to receive at least one sample holder containing biological sample. Each flow cell also may be configured to be selectively placed in an open position for positioning the at least one sample holder into the flow cell and a closed position for reacting biological sample contained in the at least one sample holder. The plurality of flow cells may be configured to be selectively placed in the open position and the closed position independently of each other.
A method for generating, within a conduit, discrete volumes of one or more fluids that are immiscible with a second fluid. The discrete volumes can be used for biochemical or molecular biology procedures involving small volumes, for example, microliter-sized volumes, nanoliter-sized volumes, or smaller. The discrete volumes are separated from one another by a liquid that is immiscible with the fluid(s) of the discrete volumes, for example, aqueous immiscible-fluid-discrete volumes separated by an oil.
B01L 3/00 - Containers or dishes for laboratory use, e.g. laboratory glasswareDroppers
F15C 5/00 - Manufacture of fluid-circuit elementsManufacture of assemblages of such elements
F16K 99/00 - Subject matter not provided for in other groups of this subclass
G01N 35/08 - Automatic analysis not limited to methods or materials provided for in any single one of groups Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
G01N 1/14 - Suction devices, e.g. pumpsEjector devices
C12Q 1/6806 - Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
C12Q 1/6874 - Methods for sequencing involving nucleic acid arrays, e.g. sequencing by hybridisation [SBH]
The workflow application integrates with a research software application associated with a laboratory instrument to provide a user with step-by-step instructions on how to follow the workflow steps of a laboratory experiment. The instructions are dynamically tailored, according to the nature of the workflow, the samples being experimented upon and/or the operating states of the instrument and/or the research software application. The workflow application significantly reduces the learning curve to operate sophisticated laboratory instruments. In a genetic testing instrument the workflow application can prescribe the need for control samples and can optimize the layout of samples within the instrument's sample receiving plate or fixture.
The present teachings are directed to compositions, methods, and kits for amplifying target nucleic acids while reducing non-specific fluorescence and undesired amplification products, sometimes referred to as secondary amplification products or spurious side-products. The enzyme inhibitors disclosed herein comprise a nucleotide sequence and at least one quencher. Complexes comprising an enzyme inhibitor associated with an enzyme, wherein at least one enzymatic activity of the enzyme is inhibited, are also provided. Methods for amplifying a target nucleic acid while reducing undesired amplification products are disclosed, as are methods for reducing non-specific fluorescence. Kits for expediting the performance of certain disclosed methods are also provided.
There is disclosed a system for electrical charge detection comprising a nanoFET device. Also disclosed is a method of electrical charge detection for single molecule sequencing. The method includes attaching a macromolecule or assemblies thereof to a gate of a nanoFET device and flowing in a solution of charge tags, where a charge tag includes a nucleotide attached to a charge complex. The method also includes incorporating one charge tag into the macromolecule or assemblies thereof and cleaving the charge tags from the macromolecule or assemblies thereof. The method further includes detecting at least one of current and voltage from the nanoFET device.
The invention relates to a method for simultaneous quantification of human nuclear DNA and human male DNA in a biological sample while also detecting the presence of PCR inhibitors in a single reaction. The multiplex quantification method also provides a ratio of human nuclear and male DNA present in a biological sample. Such sample characterization is useful for achieving efficient and accurate results in downstream molecular techniques such as genotyping.
A method for dispensing liquid for use in biological analysis may comprise positioning liquid to be dispensed via electrowetting. The positioning may comprise aligning the liquid with a plurality of predetermined locations. The method may further comprise dispensing the aligned liquid from the plurality of predetermined locations through a plurality of openings respectively aligned with the predetermined locations. The dispensing may be via electrowetting.
The present disclosure relates to methods of identifying target nucleic acids by using coded molecules and its analysis by translocation through a nanopore. Generally, coded molecules are subject to a target polynucleotide dependent modification. The modified coded molecule is detected by isolating the modified coded molecules from the unmodified coded molecules prior to analysis through the nanopore or by detecting a change in the signal pattern of the coded molecule when analyzed through the nanopore.
Systems and methods of manipulating discrete volumes of a first fluid in a second fluid are provided. In some embodiments, discrete volumes can be formed in a conduit. In other embodiments, addition fluid can be added to a discrete volume in a first conduit by injecting the addition fluid at a relatively higher pressure. In some embodiments, discrete volumes that normally would not coalesce can be manipulated to be merged together.
G05D 7/06 - Control of flow characterised by the use of electric means
B01L 3/00 - Containers or dishes for laboratory use, e.g. laboratory glasswareDroppers
B01F 13/00 - Other mixers; Mixing plant, including combinations of dissimilar mixers
G01N 35/08 - Automatic analysis not limited to methods or materials provided for in any single one of groups Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
The present teachings provide methods, compositions, and kits for performing primer extension reactions on at least two target polynucleotides in the same reaction mixture. In some embodiments, a reverse transcription reaction is performed on a first target polynucleotide with a hot start primer comprising a self-complementary stem and a loop, and extension products form at high temperatures but extension products form less so at low temperatures since the self-complementary stem of the hot start primer prevents hybridization of the target specific region to the target. However, non-hot start primers with free target specific regions can hybridize to their corresponding targets at the low temperature and extension can happen at the low temperature.
The present disclosure provides reagents that can be used to label synthetic oligonucleotides with rhodamine dyes or dye networks that contain rhodamine dyes.
C07D 311/96 - Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings spiro-condensed with carbocyclic rings or ring systems
C07H 19/04 - Heterocyclic radicals containing only nitrogen as ring hetero atom
C07F 9/6561 - Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing systems of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring or ring system, with or without other non-condensed hetero rings
C07H 21/04 - Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
A genetic surveillance system comprises a communications network and at least one reader-analyzer instrument. The reader-analyzer instrument has a communication interface to communicate over the network. The reader-analyzer instrument is adapted to perform genetic assay analysis of a sample obtained from a member of a population and to generate detection-related data based upon the analysis. The reader-analyzer instrument is adapted to associate qualifying information with the detection-related data and to communicate the associated qualifying information and detection-related data over the network.
G06F 19/00 - Digital computing or data processing equipment or methods, specially adapted for specific applications (specially adapted for specific functions G06F 17/00;data processing systems or methods specially adapted for administrative, commercial, financial, managerial, supervisory or forecasting purposes G06Q;healthcare informatics G16H)
G06F 19/20 - for hybridisation or gene expression, e.g. microarrays, sequencing by hybridisation, normalisation, profiling, noise correction models, expression ratio estimation, probe design or probe optimisation
G06F 19/22 - for sequence comparison involving nucleotides or amino acids, e.g. homology search, motif or Single-Nucleotide Polymorphism [SNP] discovery or sequence alignment
G06F 19/28 - for programming tools or database systems, e.g. ontologies, heterogeneous data integration, data warehousing or computing architectures
G16H 10/40 - ICT specially adapted for the handling or processing of patient-related medical or healthcare data for data related to laboratory analysis, e.g. patient specimen analysis
G16H 50/80 - ICT specially adapted for medical diagnosis, medical simulation or medical data miningICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for detecting, monitoring or modelling epidemics or pandemics, e.g. flu
76.
Use of antibody-surrogate antigen systems for detection of analytes
Compositions, methods, and kits for detecting one or more species of RNA molecules are disclosed. In one embodiment, a first adaptor and a second adaptor are ligated to the RNA molecule using a polypeptide comprising double-strand specific RNA ligase activity, without an intervening purification step. The ligated product is reverse transcribed, then at least some of the ribonucleosides in the reverse transcription product are removed. Primers are added and amplified products are generated. In certain embodiments, the sequence of at least part of at least one species of amplified product is determined and at least part of the corresponding RNA molecule is determined. In some embodiments, at least some of the amplified product species are detected, directly or indirectly, allowing the presence and/or quantity of the RNA molecule of interest to be determined.
System and method for fluorescent light excitation and detection from samples to enhance the numerical aperture and/or reduce the cross-talk of the fluorescent light. The system for analyzing samples comprising: a light source that provides a non-coherent excitation light; at least one housing, wherein the housing transports samples and propagates the non-coherent excitation light by total internal reflection; a coupling optical element configured to introduce the non-coherent excitation light into the at least one housing through a wall of the at least one housing; and at least one NA enhancing optical element to collect an emitted fluorescence, wherein the NA enhancing optical element is constructed of a first material and the housing is constructed of a second material, wherein the first material has a greater index of refraction than the second material.
Sample preparation processes for in situ RNA or DNA analysis, methods and compositions therefor are provided. Processes provided herein allow DNA or RNA analysis to be carried out in the same tube or on an aliquot of the prepared sample without centrifugation or extraction. The preparation process can be carried out at room temperature in as little as seven minutes and is amenable to high throughput processing using manual or robotic platforms.
A method for dispensing liquid for use in biological analysis may comprise positioning liquid to be dispensed via electrowetting. The positioning may comprise aligning the liquid with a plurality of predetermined locations. The method may further comprise dispensing the aligned liquid from the plurality of predetermined locations through a plurality of openings respectively aligned with the predetermined locations. The dispensing may be via electrowetting.
A method for dispensing liquid for use in biological analysis may comprise positioning liquid to be dispensed via electrowetting. The positioning may comprise aligning the liquid with a plurality of predetermined locations. The method may further comprise dispensing the aligned liquid from the plurality of predetermined locations through a plurality of openings respectively aligned with the predetermined locations. The dispensing may be via electrowetting.
The present invention provides methods for determining a nucleic acid sequence by performing successive cycles of duplex extension along a single stranded template. The cycles comprise steps of extension, ligation, and, preferably, cleavage. In certain embodiments the methods make use of extension probes containing phosphorothiolate linkages and employ agents appropriate to cleave such linkages. The invention provides methods of determining information about a sequence using at least two distinguishably labeled probe families. In certain embodiments the methods acquire less than 2 bits of information from each of a plurality of nucleotides in the template in each cycle. In certain embodiments the sequencing reactions are performed on templates attached to beads. The invention further provides sets of labeled extension probes containing phosphorothiolate linkages. In addition, the invention includes performing multiple sequencing reactions on a single template by removing initializing oligonucleotides and extended strands and performing subsequent reactions using different initializing oligonucleotides.
Systems and methods are provided for processing a melting or dissociation curve of a DNA or other sample, for example, during PCR processing. In some embodiments, detection of the melting point and melting curve behavior can be enhanced by taking a derivative of the curve, and detecting peaks in the differential dissociation curve. In some embodiments, the derivative operation can comprise the use of edge-processing, or other detection algorithms. In some embodiments, the dissociation analysis can comprise removing low-frequency (or pedestal) components of the differential dissociation curve. In some embodiments, the differential dissociation curve can exhibit a smoothed or more regular appearance than the raw detected data.
G06F 19/10 - Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology (in silico methods of screening virtual chemical libraries C40B 30/02;in silico or mathematical methods of creating virtual chemical libraries C40B 50/02)
C12Q 1/68 - Measuring or testing processes involving enzymes, nucleic acids or microorganismsCompositions thereforProcesses of preparing such compositions involving nucleic acids
84.
Fluorescent dye compounds, conjugates and uses thereof
The present teachings generally relate to fluorescent dyes, linkable forms of fluorescent dyes, energy transfer dyes, reagents labeled with fluorescent dyes and uses thereof.
C07H 19/04 - Heterocyclic radicals containing only nitrogen as ring hetero atom
C07H 21/00 - Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
A device having a first substrate and a second substrate separated from the first substrate to form a volume between the first and second substrates, electrodes disposed on the first and second substrates and facing the volume, each substrate comprising at least one electrode, and a first insulating layer disposed on the first substrate and a second insulating layer disposed on the second substrate to separate the electrodes from the volume.
The present invention provides methods for determining a nucleic acid sequence by performing successive cycles of duplex extension along a single stranded template. The cycles comprise steps of extension, ligation, and, preferably, cleavage. In certain embodiments the methods make use of extension probes containing phosphorothiolate linkages and employ agents appropriate to cleave such linkages. The invention provides methods of determining information about a sequence using at least two distinguishably labeled probe families. In certain embodiments the methods acquire less than 2 bits of information from each of a plurality of nucleotides in the template in each cycle. In certain embodiments the sequencing reactions are performed on templates attached to immobilized beads. The invention further provides sets of labeled extension probes containing phosphorothiolate linkages. In addition, the invention includes performing multiple sequencing reactions on a single template by removing initializing oligonucleotides and extended strands and performing subsequent reactions using different initializing oligonucleotides.
The invention relates generally to polymers and copolymers comprising N-vinylamide-type monomers, their preparation, and compositions, such as electrophoresis separation media, containing the same; to supports, such as capillaries, containing these polymers; and methods for separating a mixture of biomolecules, especially polynucleotides, using capillary electrophoresis. Separation media comprising such polymers yield advantageous performance in the analysis and separation of biomolecules by capillary electrophoresis.
The present disclosure relates to methods of identifying target nucleic acids by using coded molecules and its analysis by translocation through a nanopore. Generally, coded molecules are subject to a target polynucleotide dependent modification. The modified coded molecule is detected by isolating the modified coded molecules from the unmodified coded molecules prior to analysis through the nanopore or by detecting a change in the signal pattern of the coded molecule when analyzed through the nanopore.
Systems and methods for multiple analyte detection include a system for distribution of a biological sample that includes a substrate, wherein the substrate includes a plurality of sample chambers, a sample introduction channel for each sample chamber, and a venting channel for each sample chamber. The system may further include a preloaded reagent contained in each sample chamber and configured for nucleic acid analysis of a biological sample that enters the substrate and a sealing instrument configured to be placed in contact with the substrate to seal each sample chamber so as to substantially prevent sample contained in each sample chamber from flowing out of each sample chamber. The substrate can be constructed of detection-compatible and assay-compatible materials.
C12Q 1/68 - Measuring or testing processes involving enzymes, nucleic acids or microorganismsCompositions thereforProcesses of preparing such compositions involving nucleic acids
B01L 3/00 - Containers or dishes for laboratory use, e.g. laboratory glasswareDroppers
G01N 35/02 - Automatic analysis not limited to methods or materials provided for in any single one of groups Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
90.
Methods, compositions, and kits for detecting protein aggregates
The present teachings provide methods, compositions, and kits for detecting the presence of protein aggregates. In some embodiments, the protein aggregate is treated with a labeled precursor, and the labeled precursor is incorporated into the protein aggregate to form a labeled protein aggregate. The labeled protein aggregate is then measured, thus detecting the presence of the protein aggregate. In some embodiments, the labeled protein aggregate is detected by interaction of labeled precursors, for example by a proximity ligation assay.
C12Q 1/68 - Measuring or testing processes involving enzymes, nucleic acids or microorganismsCompositions thereforProcesses of preparing such compositions involving nucleic acids
C07K 14/47 - Peptides having more than 20 amino acidsGastrinsSomatostatinsMelanotropinsDerivatives thereof from animalsPeptides having more than 20 amino acidsGastrinsSomatostatinsMelanotropinsDerivatives thereof from humans from vertebrates from mammals
91.
Sample preparation for in situ nucleic acid analysis, methods and compositions therefor
Sample preparation processes for in situ RNA or DNA analysis, methods and compositions therefor are provided. Processes provided herein allow DNA or RNA analysis to be carried out in the same tube or on an aliquot of the prepared sample without centrifugation or extraction. The preparation process can be carried out at room temperature in as little as seven minutes and is amenable to high throughput processing using manual or robotic platforms.
The present teachings relate to improved methods, kits, and reaction mixtures for amplifying nucleic acids. In some embodiments a novel direct buffer formulation is provided which allows for the direct amplification of the nucleic acids in a crude sample with minimal sample purification.
Method and system providing an automated workflow for installing and/or calibrating laboratory equipment. The workflow empowers an end user to perform installation and calibration thereby reducing the costs associated with such activities. The automated workflow taught herein, can greatly reduce the incidence of calibration error by providing for verification of certain events during the calibration process.
G01N 3/00 - Investigating strength properties of solid materials by application of mechanical stress
G01N 33/00 - Investigating or analysing materials by specific methods not covered by groups
G01N 31/00 - Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroupsApparatus specially adapted for such methods
G01D 18/00 - Testing or calibrating apparatus or arrangements provided for in groups
94.
SiRNA sequence-independent modification formats for reducing off-target phenotypic effects in RNAi, and stabilized forms thereof
Modification formats having modified nucleotides are provided for siRNA. Short interfering RNA having modification formats and modified nucleotides provided herein reduce off-target effects in RNA interference of endogenous genes. Further modification formatted siRNAs are demonstrated to be stabilized to nuclease-rich environments. Unexpectedly, increasing or maintaining strand bias, while necessary to maintain potency for endogenous RNA interference, is not sufficient for reducing off-target effects in cell biology assays.
The present teachings relate to microfluidic valves and pumping systems, which may be suitable for controlling and facilitating liquid flow. Electrodes are disposed proximately to volumes containing a liquid. The liquid flow can be facilitated by electrowetting forces. Processes for controlling the flow of liquids, as well as for pumping liquids, are also disclosed.
A method for dispensing liquid for use in biological analysis may comprise positioning liquid to be dispensed via electrowetting. The positioning may comprise aligning the liquid with a plurality of predetermined locations. The method may further comprise dispensing the aligned liquid from the plurality of predetermined locations through a plurality of openings respectively aligned with the predetermined locations. The dispensing may be via electrowetting.
Ligation-enhanced nucleic acid detection assay embodiments for detection of RNA or DNA are described. The assay embodiments rely on ligation of chimeric oligonucleotide probes to generate a template for amplification and detection. The assay embodiments are substantially independent of the fidelity of a polymerase for copying compromised nucleic acid. Very little background amplification is observed and as few as 1000 copies of target nucleic acid can be detected. Method embodiments are particularly adept for detection of RNA from compromised samples such as formalin-fixed and paraffin-embedded samples. Heavily degraded and cross-linked nucleic acids of compromised samples, in which classic quantitative real time PCR assays typically fail to adequately amplify signal, can be reliably detected and quantified.
C12Q 1/68 - Measuring or testing processes involving enzymes, nucleic acids or microorganismsCompositions thereforProcesses of preparing such compositions involving nucleic acids
C07H 21/00 - Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
C07H 21/02 - Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with ribosyl as saccharide radical
C07H 21/04 - Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
Compositions, methods, and kits for detecting one or more species of RNA molecules are disclosed. In one embodiment, a first adaptor and a second adaptor are ligated to the RNA molecule using a polypeptide comprising double-strand specific RNA ligase activity, without an intervening purification step. The ligated product is reverse transcribed, then at least some of the ribonucleosides in the reverse transcription product are removed. Primers are added and amplified products are generated. In certain embodiments, the sequence of at least part of at least one species of amplified product is determined and at least part of the corresponding RNA molecule is determined. In some embodiments, at least some of the amplified product species are detected, directly or indirectly, allowing the presence and/or quantity of the RNA molecule of interest to be determined.
The invention relates to methods of separating polynucleotides, such as DNA, RNA and PNA, from solutions containing polynucleotides by reversibly binding the polynucleotides to a solid surface, such as a magnetic microparticle.
Embodiments are provided that provide for parallel sequencing of nucleic acid segments. In some embodiments, a single sequence is sequenced by at least two different sequencing techniques and the results compared, allowing for deficiencies or strengths of one technique to be complemented by the second technique.
C40B 20/08 - Direct analysis of the library members per se by physical methods, e.g. spectroscopy
C12Q 1/68 - Measuring or testing processes involving enzymes, nucleic acids or microorganismsCompositions thereforProcesses of preparing such compositions involving nucleic acids
G06F 19/22 - for sequence comparison involving nucleotides or amino acids, e.g. homology search, motif or Single-Nucleotide Polymorphism [SNP] discovery or sequence alignment