An eroding assembly for use in water-soluble chemical feeder where a solid chemical material is eroded by water so as to produce a sanitizing solution of dissolved chemical and water having removal components in its structure for ease of cleaning and removal of any undissolved chemical material, particularly the sieve plate and weir.
01 - Chemical and biological materials for industrial, scientific and agricultural use
05 - Pharmaceutical, veterinary and sanitary products
07 - Machines and machine tools
11 - Environmental control apparatus
Goods & Services
Chemical additives for fuel; Chemical additives for motor fuels Biocides fuel additive injectors Chlorinating units for water treatment; Water treatment equipment, namely, chemical sterilization units
Apparatus and method in which a solid or liquid additive is dispensed within a mixing chamber for mixing with a fluid from the pressurized fluid flow line and is effective mixed in a vortex under vacuum while precluding contamination of the unused additive.
Apparatus and method in which a solid or liquid additive is dispensed within a mixing chamber for mixing with a fluid from the pressurized fluid flow line and is effective mixed in a vortex under vacuum while precluding contamination of the unused additive. It is therefore, a principle object of the present disclosure to provide an apparatus for mixing of an additive material into a fluid and method of use which includes a cylindrical mixing container, an additive supply unit, a linear actuator coupled to the additive supply unit and adapted to withdraw the additive supply unit from the cylindrical mixing container to a point above an isolating valve,
A system for delivering an additive to a flowing fluid wherein the system is in whole or in part powered by the flow of the fluid is provided. The fluid-additive delivery system includes a fluid motor, a speed sensor, an electricity generation and storage system, a clutch, an additive pump, and a flow meter, where the fluid motor and the flow meter are in fluid communication with a piping of the fluid to which the fluid additive is to be added. The flow meter provides high resolution with infinite turndown, providing a flow meter which may be used in low flow situations and with fluid additives. The flow rate of an additive fluid is determined in real time with high resolution by providing a novel reciprocating positive-displacement flow meter using magnetically coupled components and a transducer to identify the flow rate of the fluid.
G05D 11/035 - Controlling ratio of two or more flows of fluid or fluent material with auxiliary non-electric power
F04B 13/00 - Pumps specially modified to deliver fixed or variable measured quantities
G01F 3/16 - Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with measuring chambers which expand or contract during measurement having rigid movable walls comprising reciprocating pistons, e.g. reciprocating in a rotating body in stationary cylinders
G05D 7/03 - Control of flow with auxiliary non-electric power
G01F 3/00 - Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow
G01P 5/08 - Measuring speed of fluids, e.g. of air streamMeasuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring variation of an electric variable directly affected by the flow, e.g. by using dynamo-electric effect
A system for delivering an additive to a flowing fluid wherein the system is in whole or in part powered by the flow of the fluid is provided. The fluid-additive delivery system includes a fluid motor, a speed sensor, an electricity generation and storage system, a clutch, an additive pump, and a flow meter, where the fluid motor and the flow meter are in fluid communication with a piping of the fluid to which the fluid additive is to be added. The flow meter provides high resolution with infinite turndown, providing a flow meter which may be used in low flow situations and with fluid additives. The flow rate of an additive fluid is determined in real time with high resolution by providing a novel reciprocating positive-displacement flow meter using magnetically coupled components and a transducer to identify the flow rate of the fluid.
G05D 7/06 - Control of flow characterised by the use of electric means
G01F 3/14 - Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with measuring chambers which expand or contract during measurement having rigid movable walls comprising reciprocating pistons, e.g. reciprocating in a rotating body
A system for delivering an additive to a flowing fluid wherein the system is in whole or in part powered by the flow of the fluid is provided. The fluid-additive delivery system includes a fluid motor, a speed sensor, an electricity generation and storage system, a clutch, an additive pump, and a flow meter, where the fluid motor and the flow meter are in fluid communication with a piping of the fluid to which the fluid additive is to be added. The flow meter provides high resolution with infinite turndown, providing a flow meter which may be used in low flow situations and with fluid additives. The flow rate of an additive fluid is determined in real time with high resolution by providing a novel reciprocating positive-displacement flow meter using magnetically coupled components and a transducer to identify the flow rate of the fluid.
G01F 11/06 - Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with measuring chambers which expand or contract during measurement of the free-piston type with provision for varying the stroke of the piston
24.
Fluid additive delivery system powered by the flowing fluid
A system for delivering an additive to a flowing fluid wherein the system is in whole or in part powered by the flow of the fluid is provided. The fluid-additive delivery system includes a fluid motor, a speed sensor, an electricity generation and storage system, a clutch, an additive pump, and a flow meter, where the fluid motor and the flow meter are in fluid communication with a piping of the fluid to which the fluid additive is to be added. Preferably, the fluid is a fuel and the fluid additive to be added is a fuel additive.
System for determining the flow rate of a fluid and for controlling flow rates. The system provides high resolution with infinite turndown, providing a flow meter which may be used in low flow situations and with fluid additives. The flow rate of an additive fluid is determined in real time with high resolution by providing a novel reciprocating positive-displacement flow meter using magnetically coupled components and a transducer to identify the flow rate of the fluid. A system and method may be incorporated into a flow control system for monitoring the flow rate of a fluid which may be included with an additive delivery system for use with the flowing supply of an additive to be introduced into a flow of untreated fluid in relatively minute quantities.
An apparatus for moving parked aircraft with an omni-directional tractor via an aircraft lift dolly that is revolvably coupled thereto which includes a hinged gate to entrap the aircraft nose gear. The aircraft lift dolly may be removably detachably coupled to the omnidirectional tractor or may be integral to it through two attachment points via attachment members. The aircraft lift dolly includes a lift mechanism having a lift carriage which is selectively elevated. The lift carriage includes a fixed forward chock and a rear chock that it repositioned longitudinally with respect to the forward chock and is hingedly coupled. The chocks are positioned about the aircraft nose gear without movement of the aircraft. Elevating the lift cradle elevates the chocks and the nose gear cradled therebetween.
A liquid metering device that dispenses liquid into an adjacent reservoir at a precise ratio relative to the total volume of the adjacent reservoir as the reservoir is filled with liquid. The hydrostatic dispensing system includes an additive reservoir, a calibrated dispensing vessel, a hydrostatic pressure chamber, and a three-way valve that passively arms and dis-arms the system. The precise dispensing of liquid by a calibrated dispensing vessel into the adjacent reservoir is accomplished entirely through the management and arrangement of hydrostatic pressure creating a liquid piston generated by the addition of liquid to the adjacent reservoir and its subsequent application to the liquid in the calibrated vertical column that displaces the calibrated volume of liquid into the reservoir at the same rate that liquid is added to the reservoir.
A liquid metering device that dispenses liquid into an adjacent reservoir at a precise ratio relative to the total volume of the adjacent reservoir as the reservoir is filled with liquid. The hydrostatic dispensing system includes an additive reservoir, a calibrated dispensing vessel, a hydrostatic pressure chamber, and a three-way valve that passively arms and dis-arms the system. The precise dispensing of liquid by a calibrated dispensing vessel into the adjacent reservoir is accomplished entirely through the management and arrangement of hydrostatic pressure creating a liquid piston generated by the addition of liquid to the adjacent reservoir and its subsequent application to the liquid in the calibrated vertical column that displaces the calibrated volume of liquid into the reservoir at the same rate that liquid is added to the reservoir.
In a preferred embodiment, a method and apparatus for moving parked aircraft including an omni-directional tractor and an aircraft lift dolly that is removably and revolvably coupled thereto. The aircraft lift dolly includes a lift mechanism having a lift carriage which is selectively elevated. The lift carriage includes a fixed forward chock and a rear chock that moves longitudinally and laterally with respect to the forward chock. The chocks are positioned about the aircraft nose gear without movement of the aircraft. Elevating the lift cradle elevates the chocks and the nose gear cradled therebetween.
An omni-directional vehicle (ODV) with a circular frame revolvably coupled to an appendage ring using a full circumferential coupling assembly. The appendage ring serves as a point of attachment for a push bar, trailer, tool, vehicle chassis, or other device. Two independent drive wheels located on an axis through the center of the frame are mounted at the same distance from a central vertical axis through the frame. Each wheel is powered independently and can rotate at variable speeds in either direction. The ODV is capable of movement in any direction by rotating the axis of the drive wheels to a position which is perpendicular to the desired direction of travel. The ODV can spin about its vertical axis such that the axis of the drive wheels can be oriented at any direction without changing the original footprint of the space that the frame occupies over the ground.
B62D 11/02 - Steering non-deflectable wheelsSteering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides