The invention provides systems and methods for mounting a fuel system to a vehicle. In some embodiments, the invention provides systems and methods for mounting a fuel system comprising a fuel tank to a vehicle chassis using a bracket, which may be a multi-part bracket, and may be referred to as a “drop and go” bracket.
A pressure receptacle support system is provided that has a pressure receptacle, a first end support assembly, and a rotation interface. The first end support assembly is fastened to a first end of the pressure receptacle. The first end support assembly comprises a ground support and a coupler. The coupler has a receptacle interface at a first end and a rotation interface at or extending from a second end opposite the first end. The receptacle interface is fastened to the first end of the pressure receptacle. The pressure receptacle has a sway range which is provided by rotation of the rotation interface of the coupler relative to the ground support and relative motion of a second end of the pressure receptacle relative to a portion of a deck of a maritime vessel.
Disclosed are gas cylinder assemblies for containing pressurized gas. The gas cylinder assembly has a polymeric liner and a low-permeability barrier layer. The polymeric liner a first end portion, a second end portion and a central body. The central body comprises an outer surface and an inner surface disposed between the first end and the second end. The gas cylinder assembly comprises a reinforcement structure wound over the central body. The gas cylinder assembly further comprises a metal foil interposed between the reinforcement structure and central body. The metal foil is configured to reduce permeation of contents of the polymeric liner.
B32B 7/12 - Interconnection of layers using interposed adhesives or interposed materials with bonding properties
B32B 15/082 - Layered products essentially comprising metal comprising metal as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin comprising vinyl resinsLayered products essentially comprising metal comprising metal as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin comprising acrylic resins
B32B 15/20 - Layered products essentially comprising metal comprising aluminium or copper
B32B 27/08 - Layered products essentially comprising synthetic resin as the main or only constituent of a layer next to another layer of a specific substance of synthetic resin of a different kind
B62D 21/02 - Understructures, i.e. chassis frame on which a vehicle body may be mounted comprising longitudinally or transversely arranged frame members
A breakaway mitigation system is provided for addressing breakaway between a tractor and a trailer unit of a truck. The breakaway mitigation system can include a spool assembly, a sensor, and a controller. The spool assembly has a spool body configured to deploy a length of a tether coupled with the spool body and configured to couple with an energy source supply conduit and to retract the length of the tether. The energy source supply conduit is configured to convey a source of energy for use by a motor or by a fuel cell. The sensor is configured to detect the length of the tether that has been deployed. The controller is configured to receive an input corresponding to the detected length and to implement a countermeasure when the detected amount exceeds a threshold value. Mitigation can be provided by a coupler that decouples under a load over a threshold.
B60D 1/28 - Traction couplingsHitchesDraw-gearTowing devices characterised by arrangements for particular functions for preventing unwanted disengagement, e.g. safety appliances
B60D 1/62 - Auxiliary devices involving supply lines, electric circuits, or the like
B60L 1/00 - Supplying electric power to auxiliary equipment of electrically-propelled vehicles
B60L 3/04 - Cutting-off the power supply under fault conditions
A pressure vessel is provided that has a structural shell formed by winding filaments upon a substantially cylindrical form. The structural shell has a first filament and a second filament. The first filament includes of a first material. The first filament is wound about the form in a primarily hoop direction. The second filament includes a second material. The second material is different from the first material. The second filament is wound about the form in a primarily helical direction. The first filament and second filament are interwoven in a layer upon the form.
A system for powering a vehicle is provided. The system can include an engine or power generation system to be powered by a fuel and a housing. The housing can be configured to couple to one or more frame rails of the vehicle, receive and protect a cylinder configured to store the fuel to be used by the engine or power generation system. The housing can have one or more access panels allowing access to an interior of the housing. The cylinder can include a first end portion, a second end portion, a central body forming an enclosed cavity for storing pressurized gas, a reinforcement structure disposed over the central body, and a metal foil interposed between the reinforcement structure and central body. The metal foil can be configured to reduce permeation of contents of the cylinder.
B32B 7/12 - Interconnection of layers using interposed adhesives or interposed materials with bonding properties
B32B 15/082 - Layered products essentially comprising metal comprising metal as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin comprising vinyl resinsLayered products essentially comprising metal comprising metal as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin comprising acrylic resins
B32B 15/20 - Layered products essentially comprising metal comprising aluminium or copper
B32B 27/08 - Layered products essentially comprising synthetic resin as the main or only constituent of a layer next to another layer of a specific substance of synthetic resin of a different kind
B62D 21/02 - Understructures, i.e. chassis frame on which a vehicle body may be mounted comprising longitudinally or transversely arranged frame members
A breakaway mitigation system is provided for addressing breakaway between a tractor and a trailer unit of a truck. The breakaway mitigation system can include a spool assembly, a sensor, and a controller. The spool assembly has a spool body configured to deploy a length of a tether coupled with the spool body and configured to couple with an energy source supply conduit and to retract the length of the tether. The energy source supply conduit is configured to convey a source of energy for use by a motor or by a fuel cell. The sensor is configured to detect the length of the tether that has been deployed. The controller is configured to receive an input corresponding to the detected length and to implement a countermeasure when the detected amount exceeds a threshold value. Mitigation can be provided by a coupler that decouples under a load over a threshold.
B60D 1/28 - Traction couplingsHitchesDraw-gearTowing devices characterised by arrangements for particular functions for preventing unwanted disengagement, e.g. safety appliances
B60D 1/62 - Auxiliary devices involving supply lines, electric circuits, or the like
B60L 1/00 - Supplying electric power to auxiliary equipment of electrically-propelled vehicles
B60L 3/04 - Cutting-off the power supply under fault conditions
A pressure relief valve configured to vent a pressurized tank in the event of a fire is provided. The pressure relief valve includes a body, a vent passage, a plug and a latch. The vent passage is disposed through the body. The vent passage can be placed in fluid communication with an internal volume of a tank and with the atmosphere. The plug is moveably mounted in the vent passage. The latch has a blocking member disposed in contact with a control end of the plug in a first configuration and out of contact with the control end in a second configuration. The second configuration allows movement of the plug in the vent passage. One or both of a shape memory alloy wire and a trigger piston is configured to actuate the latch from the first to the second configuration. The shape memory alloy wire is configured to shorten when exposed to a temperature above a threshold temperature. The trigger piston moves, e.g., by a pressurized gas, in a trigger actuation passage to actuate the latch from the first configuration to the second configuration.
F16K 17/02 - Safety valvesEqualising valves opening on surplus pressure on one sideSafety valvesEqualising valves closing on insufficient pressure on one side
A pressure receptacle support system is provided that has a pressure receptacle, a first end support assembly, and a rotation interface. The first end support assembly is fastened to a first end of the pressure receptacle. The first end support assembly comprises a ground support and a coupler. The coupler has a receptacle interface at a first end and a rotation interface at or extending from a second end opposite the first end. The receptacle interface is fastened to the first end of the pressure receptacle. The pressure receptacle has a sway range which is provided by rotation of the rotation interface of the coupler relative to the ground support and relative motion of a second end of the pressure receptacle relative to a portion of a deck of a maritime vessel.
A fluid drain system for pressurized fuel systems includes a fluid drain tool that includes: an enclosure including a collection cavity; a fitting configured for removable coupling to a fluid filter drain valve to fluidly couple the fluid drain tool to the fluid filter drain valve; a tube that fluidly couples the fitting to the enclosure, such that fluid collected from the fluid filter drain valve can be transferred through the tube to the collection cavity of the enclosure; and a selectively openable valve having a first end in fluid communication with the collection cavity of the enclosure, and a second end in fluid communication with an atmosphere.
The invention provides systems and methods for mounting a fuel system to a vehicle. In some embodiments, the invention provides systems and methods for mounting a fuel system comprising a fuel tank to a vehicle chassis using a bracket, which may be a multi-part bracket, and may be referred to as a “drop and go” bracket.
A fuel system is provided that includes a mounting block assembly configured to support an end of a fuel tank. The end of the fuel tank has a boss. The mounting block assembly encloses a space configured to receive the boss of the fuel tank. The fuel system also includes a bearing disposed in the space. The bearing has a support surface configured for sliding support of the boss of the fuel tank at an interface between the first portion and the second portion of the mounting block assembly. The fuel system also includes a sleeve. The sleeve is removably coupled to the boss of the fuel tank such that the sleeve is restrained longitudinally relative to the boss. The sleeve is configured to slide longitudinally relative to the support surface when the boss and sleeve are disposed on the support surface within the space of the mounting block assembly.
A pressure vessel is provided that has a structural shell formed by winding filaments upon a substantially cylindrical form. The structural shell has a first filament and a second filament. The first filament includes of a first material. The first filament is wound about the form in a primarily hoop direction. The second filament includes a second material. The second material is different from the first material. The second filament is wound about the form in a primarily helical direction. The first filament and second filament are interwoven in a layer upon the form.
A pressure vessel is provided that has a structural shell formed by winding filaments upon a substantially cylindrical form. The structural shell has a first filament and a second filament. The first filament includes of a first material. The first filament is wound about the form in a primarily hoop direction. The second filament includes a second material. The second material is different from the first material. The second filament is wound about the form in a primarily helical direction. The first filament and second filament are interwoven in a layer upon the form.
A fuel system is provided that includes a mounting block assembly configured to support an end of a fuel tank. The end of the fuel tank has a boss. The mounting block assembly encloses a space configured to receive the boss of the fuel tank. The fuel system also includes a bearing disposed in the space. The bearing has a support surface configured for sliding support of the boss of the fuel tank at an interface between the first portion and the second portion of the mounting block assembly. The mounting block assembly has a debris mitigation structure, such as one or more of a wiper disposed in the bearing adjacent to the support surface, an endcap configured to be mounted around the boss, and a cover configured to at least partially enclose a span of a boss between an enclosed space of the fuel tank and an inboard side of the mounting block assembly.
A system for powering a vehicle is provided. The system can include an engine or power generation system to be powered by a fuel and a housing. The housing can be configured to couple to one or more frame rails of the vehicle, receive and protect a cylinder configured to store the fuel to be used by the engine or power generation system. The housing can have one or more access panels allowing access to an interior of the housing. The cylinder can include a first end portion, a second end portion, a central body forming an enclosed cavity for storing pressurized gas, a reinforcement structure disposed over the central body, and a metal foil interposed between the reinforcement structure and central body. The metal foil can be configured to reduce permeation of contents of the cylinder.
B32B 7/12 - Interconnection of layers using interposed adhesives or interposed materials with bonding properties
B32B 15/082 - Layered products essentially comprising metal comprising metal as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin comprising vinyl resinsLayered products essentially comprising metal comprising metal as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin comprising acrylic resins
B32B 15/20 - Layered products essentially comprising metal comprising aluminium or copper
B32B 27/08 - Layered products essentially comprising synthetic resin as the main or only constituent of a layer next to another layer of a specific substance of synthetic resin of a different kind
B62D 21/02 - Understructures, i.e. chassis frame on which a vehicle body may be mounted comprising longitudinally or transversely arranged frame members
A breakaway mitigation system is provided for addressing breakaway between a tractor and a trailer unit of a truck. The breakaway mitigation system can include a spool assembly, a sensor, and a controller. The spool assembly has a spool body configured to deploy a length of a tether coupled with the spool body and configured to couple with an energy source supply conduit and to retract the length of the tether. The energy source supply conduit is configured to convey a source of energy for use by a motor or by a fuel cell. The sensor is configured to detect the length of the tether that has been deployed. The controller is configured to receive an input corresponding to the detected length and to implement a countermeasure when the detected amount exceeds a threshold value. Mitigation can be provided by a coupler that decouples under a load over a threshold.
B60T 7/20 - Brake-action initiating means for automatic initiationBrake-action initiating means for initiation not subject to will of driver or passenger specially adapted for trailers, e.g. in case of uncoupling of trailer
B60L 15/20 - Methods, circuits or devices for controlling the propulsion of electrically-propelled vehicles, e.g. their traction-motor speed, to achieve a desired performanceAdaptation of control equipment on electrically-propelled vehicles for remote actuation from a stationary place, from alternative parts of the vehicle or from alternative vehicles of the same vehicle train for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
B60T 8/17 - Using electrical or electronic regulation means to control braking
18.
Polymeric liner based gas cylinder with reduced permeability
Disclosed are gas cylinder assemblies for containing pressurized gas. The gas cylinder assembly has a polymeric liner and a low-permeability barrier layer. The polymeric liner a first end portion, a second end portion and a central body. The central body comprises an outer surface and an inner surface disposed between the first end and the second end. The gas cylinder assembly comprises a reinforcement structure wound over the central body. The gas cylinder assembly further comprises a metal foil interposed between the reinforcement structure and central body. The metal foil is configured to reduce permeation of contents of the polymeric liner.
B32B 7/12 - Interconnection of layers using interposed adhesives or interposed materials with bonding properties
B32B 15/082 - Layered products essentially comprising metal comprising metal as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin comprising vinyl resinsLayered products essentially comprising metal comprising metal as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin comprising acrylic resins
B32B 15/20 - Layered products essentially comprising metal comprising aluminium or copper
B32B 27/08 - Layered products essentially comprising synthetic resin as the main or only constituent of a layer next to another layer of a specific substance of synthetic resin of a different kind
B62D 21/02 - Understructures, i.e. chassis frame on which a vehicle body may be mounted comprising longitudinally or transversely arranged frame members
A system for powering a vehicle is provided. The system can include an engine or power generation system to be powered by a fuel and a housing. The housing can be configured to couple to one or more frame rails of the vehicle, receive and protect a cylinder configured to store the fuel to be used by the engine or power generation system. The housing can have one or more access panels allowing access to an interior of the housing. The cylinder can include a first end portion, a second end portion, a central body forming an enclosed cavity for storing pressurized gas, a reinforcement structure disposed over the central body, and a metal foil interposed between the reinforcement structure and central body. The metal foil can be configured to reduce permeation of contents of the cylinder.
B62D 21/02 - Understructures, i.e. chassis frame on which a vehicle body may be mounted comprising longitudinally or transversely arranged frame members
F02M 21/02 - Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
B32B 27/08 - Layered products essentially comprising synthetic resin as the main or only constituent of a layer next to another layer of a specific substance of synthetic resin of a different kind
B32B 15/082 - Layered products essentially comprising metal comprising metal as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin comprising vinyl resinsLayered products essentially comprising metal comprising metal as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin comprising acrylic resins
B32B 15/20 - Layered products essentially comprising metal comprising aluminium or copper
A fuel system is provided that includes a fuel system frame and in some cases access steps. The frame can be mounted to a vehicle frame rail. Bracket assemblies can be coupled to the fuel system frame at a plurality of positions. The fuel tank can be mounted at neck portions thereof and can be supported on the frame rail between the neck portions, e.g., spaced a distance from the neck portions in a longitudinal direction of the fuel system. The access steps can be non-rectangular to provide a wide stepping portion even if the fuel system includes large tanks. The steps can be directly supported by an outside surface of the tank.
F16F 15/08 - Suppression of vibrations of non-rotating, e.g. reciprocating, systemsSuppression of vibrations of rotating systems by use of members not moving with the rotating system using elastic means with rubber springs
F16M 13/02 - Other supports for positioning apparatus or articlesMeans for steadying hand-held apparatus or articles for supporting on, or attaching to, an object, e.g. tree, gate, window-frame, cycle
A pressure relief valve configured to vent a pressurized tank in the event of a fire is provided. The pressure relief valve includes a body, a vent passage, a plug and a latch. The vent passage is disposed through the body. The vent passage can be placed in fluid communication with an internal volume of a tank and with the atmosphere. The plug is moveably mounted in the vent passage. The latch has a blocking member disposed in contact with a control end of the plug in a first configuration and out of contact with the control end in a second configuration. The second configuration allows movement of the plug in the vent passage. One or both of a shape memory alloy wire and a trigger piston is configured to actuate the latch from the first to the second configuration. The shape memory alloy wire is configured to shorten when exposed to a temperature above a threshold temperature. The trigger piston moves, e.g., by a pressurized gas, in a trigger actuation passage to actuate the latch from the first configuration to the second configuration.
F16K 17/38 - Safety valvesEqualising valves actuated in consequence of extraneous circumstances, e.g. shock, change of position of excessive temperature
F16K 17/02 - Safety valvesEqualising valves opening on surplus pressure on one sideSafety valvesEqualising valves closing on insufficient pressure on one side
A fuel system is provided that includes a fuel system frame and in some cases access steps. The frame can be mounted to a vehicle frame rail. Bracket assemblies can be coupled to the fuel system frame at a plurality of positions. The fuel tank can be mounted at neck portions thereof and can be supported on the frame rail between the neck portion, e.g., spaced a distance from the neck portions in a longitudinal direction of the fuel system. The access steps can be non-rectangular to provide a wide stepping portion even if the fuel system includes large tanks. The steps can be directly supported by an outside surface of the tank.
A pressure relief valve configured to vent a pressurized tank in the event of a fire is provided. The pressure relief valve includes a body, a vent passage, a plug and a latch. The vent passage is disposed through the body. The vent passage can be placed in fluid communication with an internal volume of a tank and with the atmosphere. The plug is moveably mounted in the vent passage. The latch has a blocking member disposed in contact with a control end of the plug in a first configuration and out of contact with the control end in a second configuration. The second configuration allows movement of the plug in the vent passage. One or both of a shape memory alloy wire and a trigger piston is configured to actuate the latch from the first to the second configuration. The shape memory alloy wire is configured to shorten when exposed to a temperature above a threshold temperature. The trigger piston moves, e.g., by a pressurized gas, in a trigger actuation passage to actuate the latch from the first configuration to the second configuration.
F16K 17/38 - Safety valvesEqualising valves actuated in consequence of extraneous circumstances, e.g. shock, change of position of excessive temperature
F16K 17/02 - Safety valvesEqualising valves opening on surplus pressure on one sideSafety valvesEqualising valves closing on insufficient pressure on one side
A pressure relief valve configured to vent a pressurized tank in the event of a fire is provided. The pressure relief valve includes a body, a vent passage, a plug and a latch. The vent passage is disposed through the body. The vent passage can be placed in fluid communication with an internal volume of a tank and with the atmosphere. The plug is moveably mounted in the vent passage. The latch has a blocking member disposed in contact with a control end of the plug in a first configuration and out of contact with the control end in a second configuration. The second configuration allows movement of the plug in the vent passage. One or both of a shape memory alloy wire and a trigger piston is configured to actuate the latch from the first to the second configuration. The shape memory alloy wire is configured to shorten when exposed to a temperature above a threshold temperature. The trigger piston moves, e.g., by a pressurized gas, in a trigger actuation passage to actuate the latch from the first configuration to the second configuration.
F16K 17/38 - Safety valvesEqualising valves actuated in consequence of extraneous circumstances, e.g. shock, change of position of excessive temperature
F16K 31/56 - Mechanical actuating means without stable intermediate position, e.g. with snap action
F16K 31/70 - Operating meansReleasing devices responsive to temperature variation mechanically actuated, e.g. by a bimetallic strip
A pressure relief valve configured to vent a pressurized tank in the event of a fire is provided. The pressure relief valve includes a body, a vent passage, a plug and a latch. The vent passage is disposed through the body. The vent passage can be placed in fluid communication with an internal volume of a tank and with the atmosphere. The plug is moveably mounted in the vent passage. The latch has a blocking member disposed in contact with a control end of the plug in a first configuration and out of contact with the control end in a second configuration. The second configuration allows movement of the plug in the vent passage. One or both of a shape memory alloy wire and a trigger piston is configured to actuate the latch from the first to the second configuration. The shape memory alloy wire is configured to shorten when exposed to a temperature above a threshold temperature. The trigger piston moves, e.g., by a pressurized gas, in a trigger actuation passage to actuate the latch from the first configuration to the second configuration.
F17C 13/02 - Special adaptations of indicating, measuring, or monitoring equipment
F16K 17/38 - Safety valvesEqualising valves actuated in consequence of extraneous circumstances, e.g. shock, change of position of excessive temperature
A fuel system is provided that includes a fuel system frame and in some cases access steps. The frame can be mounted to a vehicle frame rail. Bracket assemblies can be coupled to the fuel system frame at a plurality of positions. The fuel tank can be mounted at neck portions thereof and can be supported on the frame rail between the neck portions, e.g., spaced a distance from the neck portions in a longitudinal direction of the fuel system. The access steps can be non-rectangular to provide a wide stepping portion even if the fuel system includes large tanks. The steps can be directly supported by an outside surface of the tank.
F16F 15/08 - Suppression of vibrations of non-rotating, e.g. reciprocating, systemsSuppression of vibrations of rotating systems by use of members not moving with the rotating system using elastic means with rubber springs
F16M 13/02 - Other supports for positioning apparatus or articlesMeans for steadying hand-held apparatus or articles for supporting on, or attaching to, an object, e.g. tree, gate, window-frame, cycle
The invention provides systems and methods for mounting a fuel system to a vehicle. In some embodiments, the invention provides systems and methods for mounting a fuel system comprising a fuel tank to a vehicle chassis using a bracket, which may be a multi-part bracket, and may be referred to as a “drop and go” bracket.
A fuel system including a mounting block assembly supporting an end of a fuel tank. The end of the fuel tank has a boss. The mounting block assembly encloses a space configured to receive the boss of the fuel tank. The fuel system also includes a bearing disposed in the space. The bearing has a support surface configured for sliding support of the boss of the fuel tank at an interface between the first portion and the second portion of the mounting block assembly. The mounting block assembly has a debris mitigation structure, such as one or more of a wiper disposed in the bearing adjacent to the support surface, an endcap configured to be mounted around the boss, and a cover configured to at least partially enclose a span of a boss between an enclosed space of the fuel tank and an inboard side of the mounting block assembly.
A fuel system including a mounting block assembly supporting an end of a fuel tank. The end of the fuel tank has a boss. The mounting block assembly encloses a space configured to receive the boss of the fuel tank. The fuel system also includes a bearing disposed in the space. The bearing has a support surface configured for sliding support of the boss of the fuel tank at an interface between the first portion and the second portion of the mounting block assembly. The mounting block assembly has a debris mitigation structure, such as one or more of a wiper disposed in the bearing adjacent to the support surface, an endcap configured to be mounted around the boss, and a cover configured to at least partially enclose a span of a boss between an enclosed space of the fuel tank and an inboard side of the mounting block assembly.
Disclosed are gas cylinder assemblies for containing pressurized gas. The gas cylinder assembly has a polymeric liner and a low-permeability barrier layer. The polymeric liner a first end portion, a second end portion and a central body. The central body comprises an outer surface and an inner surface disposed between the first end and the second end. The gas cylinder assembly comprises a reinforcement structure wound over the central body. The gas cylinder assembly further comprises a metal foil interposed between the reinforcement structure and central body. The metal foil is configured to reduce permeation of contents of the polymeric liner.
Disclosed are gas cylinder assemblies for containing pressurized gas. The gas cylinder assembly has a polymeric liner and a low-permeability barrier layer. The polymeric liner a first end portion, a second end portion and a central body. The central body comprises an outer surface and an inner surface disposed between the first end and the second end. The gas cylinder assembly comprises a reinforcement structure wound over the central body. The gas cylinder assembly further comprises a metal foil interposed between the reinforcement structure and central body. The metal foil is configured to reduce permeation of contents of the polymeric liner.
A fuel system is provided that includes a fuel system frame and in some cases access steps. The frame can be mounted to a vehicle frame rail. Bracket assemblies can be coupled to the fuel system frame at a plurality of positions. The fuel tank can be mounted at neck portions thereof and can be supported on the frame rail between the neck portions, e.g., spaced a distance from the neck portions in a longitudinal direction of the fuel system. The access steps can be non-rectangular to provide a wide stepping portion even if the fuel system includes large tanks. The steps can be directly supported by an outside surface of the tank.
F16M 7/00 - Details of attaching or adjusting engine beds, frames, or supporting-legs on foundation or baseAttaching non-moving engine parts, e.g. cylinder blocks
A fuel system is provided that includes a fuel system frame and in some cases access steps. The frame can be mounted to a vehicle frame rail. Bracket assemblies can be coupled to the fuel system frame at a plurality of positions. The fuel tank can be mounted at neck portions thereof and can be supported on the frame rail between the neck portions, e.g., spaced a distance from the neck portions in a longitudinal direction of the fuel system. The access steps can be non-rectangular to provide a wide stepping portion even if the fuel system includes large tanks. The steps can be directly supported by an outside surface of the tank.
F16M 7/00 - Details of attaching or adjusting engine beds, frames, or supporting-legs on foundation or baseAttaching non-moving engine parts, e.g. cylinder blocks
37.
Systems for monitoring volatile fuel system components
A fuel system is provided that includes a fuel tank, a heat detector, and a control circuit. The digital heat detector is disposed in proximity to the fuel tank. The control circuit is coupled with the digital heat detector and is configured to detect that a thermal event has occurred. The fuel system is configured to implement an emergency countermeasure in response to the detection of the thermal event.
Methods and systems for modular fuel storage and transportation are provided. In an embodiment, a fuel storage system includes one or more fuel containers each supported by a fuel container support assembly. The fuel storage system may be mounted to a transportation device such as a vehicle or used in a stand-alone fashion. Each support assembly may include a plurality of detachable end support members such as end support members configured to support the end portions of the fuel container and side support members configured to support the body portion of the fuel container. Some of the end support members may include neck grooves such that when the end support members are coupled, the neck grooves form an enclosure around the neck portion of the fuel container. In an embodiment, the support assembly is configured to facilitate release of excess pressure in the fuel container.
Systems and methods may be provided for monitoring a fuel level of a vehicle. The fuel may be a gaseous fuel, such as natural gas. An electronic control unit may be able to receive a signal from one or more sensors. The electronic control unit may provide a command to drive a fuel gauge to display the fuel level. The electronic control unit may determine the gauge command based on the received signal and a filling compensation scheme. The electronic control unit may be initialized through a user interface. A filling compensation scheme may be selected during initialization. The electronic control unit may be capable of communicating various sensors, gauges, devices, controls and/or other ECUs of varying specifications.
A fluid system for a vehicle is provided. The fluid system is configured to couple to a chassis of the vehicle. A frame assembly of the fluid system is configured to couple with the chassis directly or with another component that is coupled, directly or indirectly, with the chassis. A cowling of the fluid system can enclose a fuel pressure vessel and an auxiliary fluid vessel. The auxiliary fluid vessel is configured to be placed in fluid communication with the component powered or operated by the fluid therein.
B65F 3/14 - Vehicles particularly adapted for collecting refuse with devices for charging, distributing, or compressing refuse in the interior of the tank of a refuse vehicle
41.
SYSTEMS FOR MONITORING VOLATILE FUEL SYSTEM COMPONENTS
A fuel system is provided that includes a fuel tank, a heat detector, and a control circuit. The digital heat detector is disposed in proximity to the fuel tank. The control circuit is coupled with the digital heat detector and is configured to detect that a thermal event has occurred. The fuel system is configured to implement an emergency countermeasure in response to the detection of the thermal event.
A fuel system is provided that includes a fuel tank, a heat detector, and a control circuit. The digital heat detector is disposed in proximity to the fuel tank. The control circuit is coupled with the digital heat detector and is configured to detect that a thermal event has occurred. The fuel system is configured to implement an emergency countermeasure in response to the detection of the thermal event.
The invention provides systems and methods for mounting a fuel system to a vehicle. In some embodiments, the invention provides systems and methods for mounting a fuel system comprising a fuel tank to a vehicle chassis using a bracket, which may be a multi-part bracket, and may be referred to as a “drop and go” bracket.
Systems and methods may be provided for monitoring a fuel level of a vehicle. The fuel may be a gaseous fuel, such as natural gas. An electronic control unit may be able to receive a signal from one or more sensors. The electronic control unit may provide a command to drive a fuel gauge to display the fuel level. The electronic control unit may determine the gauge command based on the received signal and a filling compensation scheme. The electronic control unit may be initialized through a user interface. A filling compensation scheme may be selected during initialization. The electronic control unit may be capable of communicating various sensors, gauges, devices, controls and/or other ECUs of varying specifications.
Methods for extending a range of a vehicle are disclosed and include receiving a first data, the first data being indicative of a distance of the vehicle from a target destination, receiving a second data, the second data being indicative of a level of potential energy of an energy source for a power plant of the vehicle, receiving an operating parameter indicative of estimated future energy usage of the power plant, estimating, by a processor, an expected range of the vehicle based on the second data and the estimated future energy usage of the power plant, and adjusting a performance parameter of the power plant to extend an actual range of the vehicle when the estimated expected range is less than the distance of the vehicle from the target destination are disclosed. Systems for extending the range of the vehicle are also disclosed.
B60R 16/023 - Electric or fluid circuits specially adapted for vehicles and not otherwise provided forArrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric for transmission of signals between vehicle parts or subsystems
B60W 30/182 - Selecting between different operative modes, e.g. comfort and performance modes
Methods and systems for fuel storage and transportation are provided. A support assembly for supporting a plurality of fuel containers may comprise a plurality of end support members, and a plurality of side support members that are detachably coupled to the plurality of end support members. The plurality of fuel containers may be configured to be located on a plurality of different planes when supported by the support assembly, in a manner that permits the support assembly to accommodate a plurality of tailgates of different shapes and/or dimensions.
Methods and systems for fuel storage and transportation are provided. A support assembly for supporting a plurality of fuel containers may comprise a plurality of end support members, and a plurality of side support members that are detachably coupled to the plurality of end support members. The plurality of fuel containers may be configured to be located on a plurality of different planes when supported by the support assembly, in a manner that permits the support assembly to accommodate a plurality of tailgates of different shapes and/or dimensions.
Methods and systems for fuel storage and transportation are provided. A support assembly for supporting a plurality of fuel containers may comprise a plurality of end support members, and a plurality of side support members that are detachably coupled to the plurality of end support members. The plurality of fuel containers may be configured to be located on a plurality of different planes when supported by the support assembly, in a manner that permits the support assembly to accommodate a plurality of tailgates of different shapes and/or dimensions.
An assembly bracket system is provided. The system includes a first bracket portion and a second bracket portion. The first bracket portion is configured to be attached to a vehicle tailgate. The second bracket portion is configured to be attached to a vehicle fuel system. The first bracket portion and the second bracket portion are configured to be engaged to each other in a manner that limits at least one degree of freedom of the vehicle fuel system relative to the vehicle tailgate while allowing pivoting of the second bracket portion relative to the first bracket portion.
A fuel system for a vehicle is provided. The fuel system is configured to couple to a frame rail of the vehicle. A fuel system frame assembly of the fuel system is configured to couple with the frame rail directly or with another component that is coupled, directly or indirectly, with the frame rail. A cowling of the fuel system can include a fuel pressure vessel. The fuel pressure vessel configured to be placed within and supported by the fuel system frame assembly. The fuel system is configured to enhance component arrangement efficiency when mounted to a vehicle frame rail.
A fuel system for a vehicle is provided. The fuel system is configured to couple to a frame rail of the vehicle. A fuel system frame assembly of the fuel system is configured to couple with the frame rail directly or with another component that is coupled, directly or indirectly, with the frame rail. A cowling of the fuel system can include a fuel pressure vessel. The fuel pressure vessel configured to be placed within and supported by the fuel system frame assembly. The fuel system is configured to enhance component arrangement efficiency when mounted to a vehicle frame rail.
A fuel system for a vehicle is provided. The fuel system is configured to couple to a frame rail of the vehicle. A fuel system frame assembly of the fuel system is configured to couple with the frame rail directly or with another component that is coupled, directly or indirectly, with the frame rail. A cowling of the fuel system can include a fuel pressure vessel. The fuel pressure vessel configured to be placed within and supported by the fuel system frame assembly. The fuel system is configured to enhance component arrangement efficiency when mounted to a vehicle frame rail.
A fluid system for a vehicle is provided. The fluid system is configured to couple to a chassis of the vehicle. A frame assembly of the fluid system is configured to couple with the chassis directly or with another component that is coupled, directly or indirectly, with the chassis. A cowling of the fluid system can enclose a fuel pressure vessel and an auxiliary fluid vessel. The auxiliary fluid vessel is configured to be placed in fluid communication with the component powered or operated by the fluid therein.
A fluid system for a vehicle is provided. The fluid system is configured to couple to a chassis of the vehicle. A frame assembly of the fluid system is configured to couple with the chassis directly or with another component that is coupled, directly or indirectly, with the chassis. A cowling of the fluid system can enclose a fuel pressure vessel and an auxiliary fluid vessel. The auxiliary fluid vessel is configured to be placed in fluid communication with the component powered or operated by the fluid therein.
Methods and systems for modular fuel storage and transportation are provided. In an embodiment, a fuel storage system includes one or more fuel containers each supported by a fuel container support assembly. The fuel storage system may be mounted to a transportation device such as a vehicle or used in a stand-alone fashion. Each support assembly may include a plurality of detachable end support members such as end support members configured to support the end portions of the fuel container and side support members configured to support the body portion of the fuel container. Some of the end support members may include neck grooves such that when the end support members are coupled, the neck grooves form an enclosure around the neck portion of the fuel container. In an embodiment, the support assembly is configured to facilitate release of excess pressure in the fuel container.
The invention provides systems and methods for mounting a fuel system to a vehicle. In some embodiments, the invention provides systems and methods for mounting a fuel system comprising a fuel tank to a vehicle chassis using a bracket, which may be a multi-part bracket, and may be referred to as a “drop and go” bracket.
An assembly bracket system is provided. The system includes a first bracket portion and a second bracket portion. The first bracket portion is configured to be attached to a vehicle tailgate. The second bracket portion is configured to be attached to a vehicle fuel system. The first bracket portion and the second bracket portion are configured to be engaged to each other in a manner that limits at least one degree of freedom of the vehicle fuel system relative to the vehicle tailgate while allowing pivoting of the second bracket portion relative to the first bracket portion.
Methods and systems for modular fuel storage and transportation are provided. In an embodiment, a fuel storage system includes one or more fuel containers each supported by a fuel container support assembly. The fuel storage system may be mounted to a transportation device such as a vehicle or used in a stand-alone fashion. Each support assembly may include a plurality of detachable end support members such as end support members configured to support the end portions of the fuel container and side support members configured to support the body portion of the fuel container. Some of the end support members may include neck grooves such that when the end support members are coupled, the neck grooves form an enclosure around the neck portion of the fuel container. In an embodiment, the support assembly is configured to facilitate release of excess pressure in the fuel container.
A vehicle fuel system is provided that includes a fuel tank and a manual vent system. The manual vent system includes an emergency valve and an actuator. The manual vent system is configured to cause the emergency valve to open after the actuator has been actuated.
A vehicle fuel system is provided that includes a fuel tank and a manual vent system. The manual vent system includes an emergency valve and an actuator. The manual vent system is configured to cause the emergency valve to open after the actuator has been actuated.
The invention provides devices, systems and methods for absorbing and distributing an impact of a vehicle with another object. The force is absorbed by a bumper bar that extends from the vehicle. The bumper bar distributes the force between a fuel container and a frame or bracket in which the fuel container is attached to the vehicle.
The invention provides devices, systems and methods for absorbing and distributing an impact of a vehicle with another object. The force is absorbed by a bumper bar that extends from the vehicle. The bumper bar distributes the force between a fuel container and a frame or bracket in which the fuel container is attached to the vehicle.
B60R 19/42 - Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects extending primarily along the sides of, or completely encircling, a vehicle
B60R 19/02 - Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
B60R 19/24 - Arrangements for mounting bumpers on vehicles
B60R 19/48 - Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects combined with, or convertible into, other devices or objects, e.g. bumpers combined with road brushes, bumpers convertible into beds
The invention provides systems and methods for mounting a fuel system to a vehicle. In some embodiments, the invention provides systems and methods for mounting a fuel system comprising a fuel tank to a vehicle chassis using a bracket, which may be a multi-part bracket, and may be referred to as a “drop and go” bracket.
Methods and systems for modular fuel storage and transportation are provided. In an embodiment, a fuel storage system includes one or more fuel containers each supported by a fuel container support assembly. The fuel storage system may be mounted to a transportation device such as a vehicle or used in a stand-alone fashion. Each support assembly may include a plurality of detachable end support members such as end support members configured to support the end portions of the fuel container and side support members configured to support the body portion of the fuel container. Some of the end support members may include neck grooves such that when the end support members are coupled, the neck grooves form an enclosure around the neck portion of the fuel container. In an embodiment, the support assembly is configured to facilitate release of excess pressure in the fuel container.
The invention provides systems and methods for mounting a fuel system to a vehicle. In some embodiments, the invention provides systems and methods for mounting a fuel system comprising a fuel tank to a vehicle chassis using a bracket, which may be a multi-part bracket, and may be referred to as a “drop and go” bracket.
The invention provides systems and methods for mounting a fuel system to a vehicle. In some embodiments, the invention provides systems and methods for mounting a fuel system comprising a fuel tank to a vehicle chassis using a bracket, which may be a multi-part bracket, and may be referred to as a "drop and go" bracket.
The invention provides devices, systems and methods for filling, capping and electronically monitoring the closure of a fuel tank. In some embodiments, the invention provides devices, systems and methods for filling, capping and providing an ignition disconnect mechanism upon uncapping of a natural gas fuel tank.
F02D 17/04 - Controlling engines by cutting-out individual cylindersRendering engines inoperative or idling rendering engines inoperative or idling, e.g. caused by abnormal conditions
The invention provides devices, systems and methods for filling, capping and electronically monitoring the closure of a fuel tank. In some embodiments, the invention provides devices, systems and methods for filling, capping and providing an ignition disconnect mechanism upon uncapping of a natural gas fuel tank.
Systems and methods may be provided for monitoring a fuel level of a vehicle. The fuel may be a gaseous fuel, such as natural gas. An electronic control unit may be able to receive a signal from one or more sensors. The electronic control unit may provide a command to drive a fuel gauge to display the fuel level. The electronic control unit may determine the gauge command based on the received signal and a filling compensation scheme. The electronic control unit may be initialized through a user interface. A filling compensation scheme may be selected during initialization. The electronic control unit may be capable of communicating various sensors, gauges, devices, controls and/or other ECUs of varying specifications.
Systems and methods may be provided for monitoring a fuel level of a vehicle. The fuel may be a gaseous fuel, such as natural gas. An electronic control unit may be able to receive a signal from one or more sensors. The electronic control unit may provide a command to drive a fuel gauge to display the fuel level. The electronic control unit may determine the gauge command based on the received signal and a filling compensation scheme. The electronic control unit may be initialized through a user interface. A filling compensation scheme may be selected during initialization. The electronic control unit may be capable of communicating various sensors, gauges, devices, controls and/or other ECUs of varying specifications.
G01F 22/02 - Methods or apparatus for measuring volume of fluids or fluent solid material, not otherwise provided for involving measurement of pressure
74.
SYSTEMS AND METHODS FOR MONITORING AND CONTROLLING FUEL SYSTEMS
Systems and methods may be provided for monitoring a fuel level of a vehicle. The fuel may be a gaseous fuel, such as natural gas. An electronic control unit may be able to receive a signal from one or more sensors. The electronic control unit may provide a command to drive a fuel gauge to display the fuel level. The electronic control unit may determine the gauge command based on the received signal and a filling compensation scheme. The electronic control unit may be initialized through a user interface. A filling compensation scheme may be selected during initialization. The electronic control unit may be capable of communicating various sensors, gauges, devices, controls and/or other ECUs of varying specifications.