A switchable privacy display device comprises a spatial light modulator comprising an in-plane display polariser, an out-of-plane polariser and a polarisation switch arranged between the in-plane display polariser and the out-of-plane polariser. The display achieves high image visibility to an off-axis user in a wide-angle mode and high image security to an off-axis snooper in privacy mode of operation.
G02F 1/13 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
G02F 1/1335 - Structural association of cells with optical devices, e.g. polarisers or reflectors
G02F 1/13363 - Birefringent elements, e.g. for optical compensation
G02F 1/1337 - Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
A switchable privacy display device comprises a spatial light modulator comprising an in-plane display polariser, an out-of-plane polariser and a polarisation switch arranged between the in-plane display polariser and the out-of-plane polariser. The display achieves high image visibility to an off-axis user in a wide-angle mode and high image security to an off-axis snooper in privacy mode of operation.
A privacy display comprises a spatial light modulator and a compensated switchable liquid crystal retarder arranged between first and second polarisers arranged in series with the spatial light modulator. In a privacy mode of operation, on-axis light from the spatial light modulator is directed without loss, whereas off-axis light has reduced luminance. The visibility of the display to off-axis snoopers is reduced by means of luminance reduction over a wide polar field. In a wide angle mode of operation, the switchable liquid crystal retardance is adjusted so that off-axis luminance is substantially unmodified.
G02F 1/13 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
G02F 1/1335 - Structural association of cells with optical devices, e.g. polarisers or reflectors
G02F 1/1337 - Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
G02F 1/1347 - Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
G02F 1/137 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
An anamorphic near-eye display apparatus comprises a spatial light modulator with asymmetric pixels; an input transverse anamorphic lens; an input waveguide that passes input light to a lateral anamorphic component arranged to provide imaging of the spatial light modulator in the lateral direction; and an extraction waveguide arranged to receive light from the lateral anamorphic component. Partially reflective extraction elements are arranged between the rear and front guide surfaces of the extraction waveguide to extract the imaged light towards the pupil of an observer, maintaining the directionality of the fan of light rays from the spatial light modulator and anamorphic imaging system. A thin, transparent and efficient anamorphic display apparatus for Augmented Reality and Virtual Reality displays is provided.
An anamorphic directional illumination device may provide a near-eye display apparatus or a vehicle external light device. The anamorphic near-eye display device comprises a spatial light modulator with asymmetric pixels; an input transverse anamorphic lens; and an extraction waveguide that passes input light in a first direction between a polarisation-sensitive reflector and rear guide surface to a lateral anamorphic reflector, and to reflect the light back through the extraction waveguide to output through the front guide surface. Deflection features are arranged on the front side of the polarisation-sensitive reflector to deflect the reflected light towards the pupil of a viewer, maintaining the directionality of the fan of light rays from the SLM and anamorphic imaging system. A thin, transparent and efficient anamorphic display apparatus for Augmented Reality and Virtual Reality displays and for scene illumination is provided.
An anamorphic directional illumination device may provide a near-eye display apparatus or a vehicle external light device. The anamorphic near-eye display device comprises a spatial light modulator with asymmetric pixels; an input transverse anamorphic lens; and an extraction waveguide that passes input light in a first direction between a polarisation-sensitive reflector and rear guide surface to a lateral anamorphic reflector, and to reflect the light back through the extraction waveguide to output through the front guide surface. Deflection features are arranged on the front side of the polarisation-sensitive reflector to deflect the reflected light towards the pupil of a viewer, maintaining the directionality of the fan of light rays from the SLM and anamorphic imaging system. A thin, transparent and efficient anamorphic display apparatus for Augmented Reality and Virtual Reality displays and for scene illumination is provided.
F21S 43/40 - Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the combination of reflectors and refractors
G02B 27/28 - Optical systems or apparatus not provided for by any of the groups , for polarising
An anamorphic near-eye display apparatus comprises a spatial light modulator with asymmetric pixels; an input transverse anamorphic lens; an input waveguide that passes input light in a first direction to a partially reflective mirror, an intermediate waveguide comprising a reflective lateral anamorphic component arranged to receive light from the partially reflective mirror and to provide imaging of the spatial light modulator in the lateral direction; and an extraction waveguide arranged to receive light from the reflective lateral anamorphic component. Reflective extraction elements are arranged to extract the imaged light towards the pupil of an observer, maintaining the directionality of the fan of light rays from the spatial light modulator and anamorphic imaging system. A thin, transparent and efficient anamorphic display apparatus for Augmented Reality and Virtual Reality displays is provided.
An anamorphic near-eye display apparatus comprises a spatial light modulator with asymmetric pixels; an input transverse anamorphic lens; an input waveguide that passes input light to a lateral anamorphic component arranged to provide imaging of the spatial light modulator in the lateral direction; and an extraction waveguide arranged to receive light from the lateral anamorphic component. Partially reflective extraction elements are arranged between the rear and front guide surfaces of the extraction waveguide to extract the imaged light towards the pupil of an observer, maintaining the directionality of the fan of light rays from the spatial light modulator and anamorphic imaging system. A thin, transparent and efficient anamorphic display apparatus for Augmented Reality and Virtual Reality displays is provided.
F21S 43/40 - Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the combination of reflectors and refractors
An anamorphic near-eye display apparatus comprises a spatial light modulator with asymmetric pixels; an input transverse anamorphic lens; an input waveguide that passes input light in a first direction to a partially reflective mirror, an intermediate waveguide comprising a reflective lateral anamorphic component arranged to receive light from the partially reflective mirror and to provide imaging of the spatial light modulator in the lateral direction; and an extraction waveguide arranged to receive light from the reflective lateral anamorphic component. Reflective extraction elements are arranged to extract the imaged light towards the pupil of an observer, maintaining the directionality of the fan of light rays from the spatial light modulator and anamorphic imaging system. A thin, transparent and efficient anamorphic display apparatus for Augmented Reality and Virtual Reality displays is provided.
F21S 43/40 - Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the combination of reflectors and refractors
A switchable privacy display device comprises a spatial light modulator and a switchable diffractive view angle control retarder arrangement arranged between a display polariser of the spatial light modulator and an additional polariser. The display achieves high image visibility to an off-axis user in a share mode of operation and high image security to an off-axis snooper in privacy mode of operation.
G02F 1/13 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
G02F 1/133 - Constructional arrangementsOperation of liquid crystal cellsCircuit arrangements
G02F 1/1335 - Structural association of cells with optical devices, e.g. polarisers or reflectors
A switchable privacy display device comprises a spatial light modulator and a switchable diffractive view angle control retarder arrangement arranged between a display polariser of the spatial light modulator and an additional polariser. The display achieves high image visibility to an off-axis user in a share mode of operation and high image security to an off-axis snooper in privacy mode of operation.
G02F 1/13 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
G02F 1/133 - Constructional arrangementsOperation of liquid crystal cellsCircuit arrangements
G02F 1/1335 - Structural association of cells with optical devices, e.g. polarisers or reflectors
A switchable privacy display device comprises a spatial light modulator and a switchable diffractive view angle control retarder arrangement arranged between a display polariser of the spatial light modulator and an additional polariser. The display achieves high image visibility to an off-axis user in a share mode of operation and high image security to an off-axis snooper in privacy mode of operation.
G02F 1/13 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
B60J 3/04 - Antiglare equipment associated with windows or windscreensSun visors for vehicles adjustable in transparency
A privacy display comprises a spatial light modulator and a view angle control element that may comprise a first polariser that may be a reflective polariser, a liquid crystal retarder, a compensation retarder and an additional polariser. The layer of liquid crystal material is patterned with a mark. The display provides visibility of the mark in reflected light to an off-axis snooper but no visibility of the image on the spatial light modulator; and provides high visibility of an image with no visibility of the mark to an on-axis display user.
A privacy display comprises a spatial light modulator and a view angle control element that may comprise a first polariser that may be a reflective polariser, a liquid crystal retarder, a compensation retarder and an additional polariser. The layer of liquid crystal material is patterned with a mark. The display provides visibility of the mark in reflected light to an off-axis snooper but no visibility of the image on the spatial light modulator; and provides high visibility of an image with no visibility of the mark to an on-axis display user.
G02F 1/1347 - Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
G02F 1/13 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
A switchable privacy display comprises a spatial light modulator with output polariser, a reflective polariser, a polar control liquid crystal retarder and an additional polariser. The electrodes of the polar control liquid crystal retarder are patterned with a mark. In wide angle and narrow angle operational modes, the electrodes of the liquid crystal retarder are driven such that the mark is not visible. In a mark display state, the electrodes are driven to provide visibility of the mark in reflected light to an off-axis observer.
G02F 1/13 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
G02F 1/01 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour
G02F 1/1347 - Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
G09G 3/34 - Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix by control of light from an independent source
G09G 3/36 - Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix by control of light from an independent source using liquid crystals
A display device comprising a spatial light modulator having a display polariser arranged on one side is provided with an additional polariser arranged on the same side as the display polariser and a polar control retarder between the additional polariser and the display polariser. The polar control retarder includes a liquid crystal retarder having two surface alignment layers disposed adjacent to a layer of liquid crystal material on opposite sides. The surface alignment layers provide alignment in the adjacent liquid crystal material with a twist. The out-of-plane orientation of the twisted layer of liquid crystal material is modified across at least one region of the display device to provide a transmission function in response to the measured location of an off-axis snooper, achieving increased size of polar region for which desired uniformity of security factor, or reduced distraction across the display to the driver in an automotive application is achieved.
G02F 1/13 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
G02F 1/133 - Constructional arrangementsOperation of liquid crystal cellsCircuit arrangements
Methods and devices for generating reference data for adjusting a digital representation of a head region, and methods and devices for adjusting the digital representation of a head region are disclosed. In some arrangements, training data are received. A first machine learning algorithm generates first reference data using the training data. A second machine learning algorithm generates second reference data using the same training data and the first reference data generated by the first machine learning algorithm.
An anamorphic directional illumination device comprises an array of light sources arranged to input light into an anamorphic optical system. The anamorphic optical system comprises a transverse anamorphic component arranged to provide optical imaging of the array of light sources in a transverse direction. Opposed guide surfaces are arranged to guide input light along a waveguide from the transverse optical system to an extraction reflector, the extraction reflector being arranged to extract the input light. The extraction reflector is a lateral anamorphic component arranged to image the array of light sources in a lateral direction orthogonal to the transverse direction. A thin, high brightness and high efficiency controllable directional illumination device is provided that can be used for vehicle headlights, image projectors and other directional illumination and display applications.
F21S 43/40 - Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the combination of reflectors and refractors
An anamorphic directional detection device comprises an array of light detectors arranged to detect light from an anamorphic optical system. The anamorphic optical system comprises a transverse anamorphic component arranged to provide optical imaging of an external scene to the array of light detectors in a transverse direction. Opposed guide surfaces are arranged to guide input light along a waveguide towards the transverse optical system from an injection reflector arranged to inject the input light. The injection reflector is a lateral anamorphic component arranged to image the external scene towards the array of detectors in a lateral direction orthogonal to the transverse direction. A thin and high efficiency directional detection device is provided that can be used for LIDAR and other light detection purposes such as cameras. A thin display apparatus comprising a high efficiency camera arranged behind a light transmitting spatial light modulator may be provided.
An anamorphic directional illumination device comprises an array of light sources arranged to input light into an anamorphic optical system. The anamorphic optical system comprises a transverse anamorphic component arranged to provide optical imaging of the array of light sources in a transverse direction. Opposed guide surfaces are arranged to guide input light along a waveguide from the transverse optical system to an extraction reflector, the extraction reflector being arranged to extract the input light. The extraction reflector is a lateral anamorphic component arranged to image the array of light sources in a lateral direction orthogonal to the transverse direction. A thin, high brightness and high efficiency controllable directional illumination device is provided that can be used for vehicle headlights, image projectors and other directional illumination and display applications.
G02B 6/27 - Optical coupling means with polarisation selective and adjusting means
G02B 30/33 - Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer’s left and right eyes of the autostereoscopic type involving directional light or back-light sources
G02B 26/08 - Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
G02B 30/25 - Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer’s left and right eyes of the stereoscopic type using polarisation techniques
An anamorphic directional detection device comprises an array of light detectors arranged to detect light from an anamorphic optical system. The anamorphic optical system comprises a transverse anamorphic component arranged to provide optical imaging of an external scene to the array of light detectors in a transverse direction. Opposed guide surfaces are arranged to guide input light along a waveguide towards the transverse optical system from an injection reflector arranged to inject the input light. The injection reflector is a lateral anamorphic component arranged to image the external scene towards the array of detectors in a lateral direction orthogonal to the transverse direction. A thin and high efficiency directional detection device is provided that can be used for LIDAR and other light detection purposes such as cameras. A thin display apparatus comprising a high efficiency camera arranged behind a light transmitting spatial light modulator may be provided.
G02B 6/10 - Light guidesStructural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
A switchable backlight for a switchable privacy display apparatus comprises a collimated waveguide, first and second light sources and an optical turning film comprising elongate prismatic elements with facet orientations that pupillate the output of the waveguide in two orthogonal directions for each of first and second light sources. High luminance uniformity is achieved for a head-on user in privacy and public viewing modes and high uniformity of security factor is achieved for off-axis snoopers, with increased speed of privacy switch-on in privacy mode.
G02F 1/13 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
B60K 35/00 - Instruments specially adapted for vehiclesArrangement of instruments in or on vehicles
F21V 8/00 - Use of light guides, e.g. fibre optic devices, in lighting devices or systems
G02F 1/1335 - Structural association of cells with optical devices, e.g. polarisers or reflectors
G02F 1/139 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
An anamorphic directional illumination device may provide a near-eye display apparatus or a vehicle external light device. The anamorphic near-eye display apparatus comprises a spatial light modulator with asymmetric pixels; an input transverse anamorphic lens; and an extraction waveguide that passes input light in a first direction between a polarization-sensitive reflector and front guide surface to a lateral anamorphic reflector, and to reflect the light back through the extraction waveguide to guide between the rear guide surface and front guide surface. Reflective extraction features are arranged to extract the reflected light towards the pupil of a viewer, maintaining the directionality of the fan of light rays from the spatial light modulator and anamorphic imaging system. A thin, transparent and efficient anamorphic display apparatus for Augmented Reality and Virtual Reality displays and for scene illumination is provided.
G02B 13/12 - Anamorphotic objectives with variable magnification
G02B 27/00 - Optical systems or apparatus not provided for by any of the groups ,
G02B 27/28 - Optical systems or apparatus not provided for by any of the groups , for polarising
F21S 43/20 - Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by refractors, transparent cover plates, light guides or filters
An anamorphic directional illumination device may provide a near-eye display apparatus or a vehicle external light device. The anamorphic near-eye display apparatus comprises a spatial light modulator with asymmetric pixels; an input transverse anamorphic lens; and an extraction waveguide that passes input light in a first direction between a polarisation-sensitive reflector and front guide surface to a lateral anamorphic reflector, and to reflect the light back through the extraction waveguide to guide between the rear guide surface and front guide surface. Reflective extraction features are arranged to extract the reflected light towards the pupil of a viewer, maintaining the directionality of the fan of light rays from the spatial light modulator and anamorphic imaging system. A thin, transparent and efficient anamorphic display apparatus for Augmented Reality and Virtual Reality displays and for scene illumination is provided.
A display device comprising a spatial light modulator having a display polariser arranged on one side of the spatial light modulator is provided with an additional polariser arranged on the same side as the display polariser and polar control retarders between the additional polariser and the display polariser. The polar control retarders include a liquid crystal retarder having two surface alignment layers disposed adjacent to a layer of liquid crystal material on opposite sides. The surface alignment layers provide alignment in the adjacent liquid crystal material with an in-plane component, wherein the angle of said in-plane component changes monotonically along a predetermined axis across the display device, providing reduction of luminance in directions that are offset from a viewing axis, increasing uniformity in the reduction of luminance in directions that are offset from a viewing axis.
G02F 1/139 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
F21V 8/00 - Use of light guides, e.g. fibre optic devices, in lighting devices or systems
G02F 1/1335 - Structural association of cells with optical devices, e.g. polarisers or reflectors
G02F 1/13363 - Birefringent elements, e.g. for optical compensation
G02F 1/1337 - Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
G02F 1/1347 - Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
A directional illumination device for a vehicle external light comprises an array of light sources and an imaging waveguide comprising an input surface and a reflective end. Opposed guide surfaces are arranged to guide input light from the input surface to the reflective end and back along the waveguide after reflection at the reflective end, the waveguide being arranged to extract input light as it is guided back along the waveguide after reflection and to cause the extracted light to exit through the first guide surface. The reflective end has positive optical power in the direction laterally across the waveguide and the waveguide is arranged to direct the extracted light in respective output illumination directions distributed in a lateral direction in dependence on the input positions of the light sources in the direction laterally across the waveguide. A thin, high brightness and high efficiency controllable directional vehicle headlight is provided.
A near-eye display apparatus comprises a spatial light modulator illuminated by a directional backlight and a magnifying lens arranged to provide a magnified wide field of view image to an eye of a user. The directional backlight comprises an array of light sources and a stepped waveguide comprising a curved reflective end. Light propagates along the waveguide without loss and is reflected from the reflective end. The steps of the waveguide are arranged to provide a virtual optical window for each light source. The magnifying lens images the virtual optical window to a real pupil window in an eyebox. The real pupil window may be steered in response to the measured location of the user's pupil. High illumination efficiency is provided to the user in a thin form factor.
A near-eye display apparatus comprises a spatial light modulator illuminated by a directional backlight and a magnifying lens arranged to provide a magnified wide field of view image to an eye of a user. The directional backlight comprises an array of light sources and a stepped waveguide comprising a curved reflective end. Light propagates along the waveguide without loss and is reflected from the reflective end. The steps of the waveguide are arranged to provide a virtual optical window for each light source. The magnifying lens images the virtual optical window to a real pupil window' in an eyebox. The real pupil window' may be steered in response to the measured location of the user's pupil. High illumination efficiency is provided to the user in a thin form factor.
G02B 6/10 - Light guidesStructural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
A privacy display comprises a spatial light modulator and a compensated switchable guest-host liquid crystal retarder arranged between first and second polarisers arranged in series with the spatial light modulator. In a privacy mode of operation, on-axis light from the spatial light modulator is directed without loss, whereas off-axis light has reduced luminance. The visibility of the display to off-axis snoopers is reduced by means of luminance reduction over a wide polar field. In a wide angle mode of operation, the switchable liquid crystal retardance is adjusted so that off-axis luminance is substantially unmodified.
G02F 1/137 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
G02F 1/13 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
G02F 1/1335 - Structural association of cells with optical devices, e.g. polarisers or reflectors
A colour micro-LED display apparatus comprises an array of reflective optical elements and an array of micro-LED pixels with a uniform emission colour across the array arranged between the army of reflective optical elements and an output substrate. Light from the micro-LEDs is directed into the reflective optical elements and is incident on scattering regions in the apparatus. Colour converted scattered light is transmitted by the output substrate. A thin and efficient display apparatus may be provided with high spatial and angular colour uniformity and long lifetime.
H01L 23/538 - Arrangements for conducting electric current within the device in operation from one component to another the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
H01L 25/075 - Assemblies consisting of a plurality of individual semiconductor or other solid-state devices all the devices being of a type provided for in a single subclass of subclasses , , , , or , e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group
An anamorphic near-eye display apparatus comprises a spatial light modulator with asymmetric pixels; an input transverse anamorphic lens; and an extraction waveguide that passes input light in a first direction to a lateral anamorphic reflector arranged to reflect the light back through the waveguide. Partially reflective extraction elements are arranged between the rear and front guide surfaces of the waveguide to extract the reflected light towards the pupil of an observer, maintaining the directionality of the fan of light rays from the spatial light modulator and anamorphic imaging system. A thin, transparent and efficient anamorphic display apparatus for Augmented Reality and Virtual Reality displays is provided.
An anamorphic near-eye display apparatus comprises a spatial light modulator with asymmetric pixels; an input transverse anamorphic lens; and an extraction waveguide that passes input light in a first direction to a lateral anamorphic reflector arranged to reflect the light back through the waveguide. The transverse and lateral anamorphic components are arranged to achieve desirable aberrations of light cones output from the spatial light modulator. Extraction elements are arranged along the waveguide to extract the reflected light towards the pupil of an observer, maintaining the directionality of the fan of light rays from the spatial light modulator and anamorphic imaging system. A thin, transparent and efficient anamorphic display apparatus for Augmented Reality and Virtual Reality displays is provided.
An anamorphic near-eye display apparatus comprises a spatial light modulator with asymmetric pixels; an input transverse anamorphic lens; and an extraction waveguide that passes input light in a first direction to a lateral anamorphic reflector arranged to reflect the light back through the waveguide. Partially reflective extraction elements are arranged between the rear and front guide surfaces of the waveguide to extract the reflected light towards the pupil of an observer, maintaining the directionality of the fan of light rays from the spatial light modulator and anamorphic imaging system. A thin, transparent and efficient anamorphic display apparatus for Augmented Reality and Virtual Reality displays is provided.
G02B 6/00 - Light guidesStructural details of arrangements comprising light guides and other optical elements, e.g. couplings
G02B 26/08 - Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
G02B 13/12 - Anamorphotic objectives with variable magnification
B60Q 1/02 - Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
G03H 1/02 - Holographic processes or apparatus using light, infrared, or ultraviolet waves for obtaining holograms or for obtaining an image from themDetails peculiar thereto Details
An anamorphic near-eye display apparatus comprises a spatial light modulator with asymmetric pixels; an input transverse anamorphic lens; and an extraction waveguide that passes input light in a first direction to a lateral anamorphic reflector arranged to reflect the light back through the waveguide. The transverse and lateral anamorphic components are arranged to achieve desirable aberrations of light cones output from the spatial light modulator. Extraction elements are arranged along the waveguide to extract the reflected light towards the pupil of an observer, maintaining the directionality of the fan of light rays from the spatial light modulator and anamorphic imaging system. A thin, transparent and efficient anamorphic display apparatus for Augmented Reality and Virtual Reality displays is provided.
G02B 6/00 - Light guidesStructural details of arrangements comprising light guides and other optical elements, e.g. couplings
G02B 26/08 - Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
B60Q 1/02 - Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
G02B 13/12 - Anamorphotic objectives with variable magnification
B60Q 1/00 - Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
G03H 1/02 - Holographic processes or apparatus using light, infrared, or ultraviolet waves for obtaining holograms or for obtaining an image from themDetails peculiar thereto Details
G02B 26/00 - Optical devices or arrangements for the control of light using movable or deformable optical elements
An imaging directional backlight apparatus including a waveguide, a light source array, for providing large area directed illumination from localized light sources. The waveguide may include a stepped structure, in which the steps may further include extraction features optically hidden to guided light, propagating in a first forward direction. Returning light propagating in a second backward direction may be refracted, diffracted, or reflected by the features to provide discrete illumination beams exiting from the top surface of the waveguide. Retarder stack arrangements are provided to reduce the display visibility to snoopers located in polar viewing regions of the display while achieving minimal reduction of head-on luminance. Further visibility of light reflections from automotive windscreens may be reduced.
A privacy display comprises a polarised output spatial light modulator, reflective polariser, plural polar control retarders and a polariser. In a privacy mode of operation, on-axis light from the spatial light modulator is directed without loss, whereas off-axis light has reduced luminance. Further, display reflectivity is reduced for on-axis reflections of ambient light, while reflectivity is increased for off-axis light. The visibility of the display to off-axis snoopers is reduced by means of luminance reduction and increased frontal reflectivity to ambient light. In a public mode of operation, the liquid crystal retardance is adjusted so that off-axis luminance and reflectivity are unmodified.
G02F 1/13 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
G02F 1/1335 - Structural association of cells with optical devices, e.g. polarisers or reflectors
G02F 1/13363 - Birefringent elements, e.g. for optical compensation
G02F 1/1337 - Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
Forming an array of metallised light input wells and an array of light-deflecting wells in an optical waveguide involves the steps of forming holes through a capped adhesive layer, attaching the adhesive layer to a substrate, metallising the substrate and adhesive layer and removing the capping to expose adhesive and metallised regions. The substrate is aligned to a well layer with an array of light input through-holes and an array of light-deflecting through-holes. The substrate is attached to the well layer with an array of metallised light input wells and an array of metallised light-deflecting wells. The array of light input wells receive light from a respective aligned array of light-emitting diodes. The array of light-deflecting wells reflects guided light in the region around each light-emitting diode. Extracted light from the waveguide is output by refraction and total internal reflection by a light turning optical component.
H01P 11/00 - Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
G02B 6/00 - Light guidesStructural details of arrangements comprising light guides and other optical elements, e.g. couplings
G02B 6/10 - Light guidesStructural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
G02B 1/10 - Optical coatings produced by application to, or surface treatment of, optical elements
G02B 6/132 - Integrated optical circuits characterised by the manufacturing method by deposition of thin films
Forming an array of metallised light input wells and an array of light-deflecting wells in an optical waveguide involves the steps of forming holes through a capped adhesive layer, attaching the adhesive layer to a substrate, metallising the substrate and adhesive layer and removing the capping to expose adhesive and metallised regions. The substrate is aligned to a well layer with an array of light input through-holes and an array of light-deflecting through-holes. The substrate is attached to the well layer with an array of metallised light input wells and an array of metallised light-deflecting wells. The array of light input wells receive light from a respective aligned array of light-emitting diodes. The array of light-deflecting wells reflects guided light in the region around each light-emitting diode. Extracted light from the waveguide is output by refraction and total internal reflection by a light turning optical component.
A display device comprising a spatial light modulator having a display polariser arranged on one side is provided with an additional polariser arranged on the same side as the display polariser and a polar control retarder between the additional polariser and the display polariser. The polar control retarder includes a liquid crystal retarder having two surface alignment layers disposed adjacent to a layer of liquid crystal material on opposite sides. The surface alignment layers provide alignment in the adjacent liquid crystal material with a twist. The out-of-plane orientation of the twisted layer of liquid crystal material is modified across at least one region of the display device to provide a transmission function in response to the measured location of an off-axis snooper, achieving increased size of polar region for which desired uniformity of security factor, or reduced distraction across the display to the driver in an automotive application is achieved.
G02F 1/13 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
G02F 1/133 - Constructional arrangementsOperation of liquid crystal cellsCircuit arrangements
G02F 1/1335 - Structural association of cells with optical devices, e.g. polarisers or reflectors
G02F 1/13363 - Birefringent elements, e.g. for optical compensation
G02F 1/1337 - Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
A dual view display for an automotive vehicle comprises a spatial light modulator and a polar control retarder comprising a switchable liquid crystal retarder arranged between a first pair of polarisers. The switchable liquid crystal retarder comprises a polarisation-switch retarder and a polar control retarder with an average director that is directed towards an off-axis viewing location. In a first temporal phase of operation, the spatial light modulator and polar control retarder are arranged to direct light comprising a first image towards a first direction and in a second temporal phase of operation to direct light comprising a second image towards a second direction.
G02F 1/13 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
G02F 1/01 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour
G02F 1/1337 - Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
F21V 8/00 - Use of light guides, e.g. fibre optic devices, in lighting devices or systems
G02F 1/13363 - Birefringent elements, e.g. for optical compensation
G02F 1/1335 - Structural association of cells with optical devices, e.g. polarisers or reflectors
A dual view display for an automotive vehicle comprises a spatial light modulator and a polar control retarder comprising a switchable liquid crystal retarder arranged between a first pair of polarisers. The switchable liquid crystal retarder comprises a polarisation-switch retarder and a polar control retarder with an average director that is directed towards an off-axis viewing location. In a first temporal phase of operation, the spatial light modulator and polar control retarder are arranged to direct light comprising a first image towards a first direction and in a second temporal phase of operation to direct light comprising a second image towards a second direction.
G02F 1/13 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
G02F 1/1335 - Structural association of cells with optical devices, e.g. polarisers or reflectors
G03H 1/02 - Holographic processes or apparatus using light, infrared, or ultraviolet waves for obtaining holograms or for obtaining an image from themDetails peculiar thereto Details
An illumination apparatus is manufactured by selectively removing passive optical nanostructures from a monolithic array of light-emitting elements while preserving their relative spatial position. The nanostructures are selected such that, in at least one direction, for at least one pair of the selectively removed passive optical nanostructures, for each respective pair there is at least one nanostructure that is not selected that was positioned in the monolithic array between the pair of selectively removed passive optical nanostructures in the at least one direction, forming a non-monolithic array of passive optical nanostructures with the selectively removed passive optical nanostructures while preserving their relative spatial position, and aligning each of the passive optical nanostructures of the non-monolithic array with a respective light-emitting element of the non-monolithic array of light-emitting elements.
B82Y 20/00 - Nanooptics, e.g. quantum optics or photonic crystals
H01L 33/62 - Arrangements for conducting electric current to or from the semiconductor body, e.g. leadframe, wire-bond or solder balls
H01L 33/24 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction
A switchable directional backlight for a privacy display comprises a waveguide with first and second opposing input ends and a turning film arranged to collect light output from the waveguide for input into a spatial light modulator. The waveguide has an array of light deflecting features arranged on one guiding surface and an opposing planar surface. Light deflecting features are arranged such that light input from the first input end is output with a narrow angular range and light input from the second input end is output with a wide angular range.
F21V 8/00 - Use of light guides, e.g. fibre optic devices, in lighting devices or systems
G02F 1/13 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
A switchable privacy display comprises an emissive SLM, a parallax barrier, a switchable LC retarder, and passive retarders arranged between parallel output polarisers. In privacy mode, on-axis light from the SLM is directed without loss, whereas the parallax barrier and retarder layers cooperate to increase the VSL to off-axis snoopers. The display may be rotated to achieve privacy operation in landscape and portrait orientations. In public mode, the LC retardance is adjusted so that off-axis luminance is increased so that the image visibility is increased for multiple users. The display may also switch between day-time and night-time operation, for example for use in an automotive environment. A low reflectivity emissive display for use in ambient illumination comprises a SLM with emissive pixels, an absorptive parallax barrier and a high spectral leakage optical isolator. Head-on light from the pixels is directed with increased transmission efficiency while ambient light is strongly absorbed.
G02F 1/13 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
A display device comprising a spatial light modulator having a display polariser arranged on one side is provided with an additional polariser arranged on the same side as the display polariser and a polar control retarder between the additional polariser and the display polariser. The polar control retarder includes a liquid crystal retarder having two surface alignment layers disposed adjacent to a layer of liquid crystal material on opposite sides. The surface alignment layers provide alignment in the adjacent liquid crystal material with a twist. The out-of-plane orientation of the twisted layer of liquid crystal material is modified across at least one region of the display device to provide a transmission function in response to the measured location of an off-axis snooper, achieving increased size of polar region for which desired uniformity of security factor, or reduced distraction across the display to the driver in an automotive application is achieved.
G02F 1/13 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
G02F 1/335 - Acousto-optical deflection devices having an optical waveguide structure
46.
DISPLAY DEVICE WITH UNIFORM OFF-AXIS LUMINANCE REDUCTION
A display device comprising a spatial light modulator having a display polariser arranged on one side of the spatial light modulator is provided with an additional polariser arranged on the same side as the display polariser and a polar control retarder between the additional polariser and the display polariser. The polar control retarder includes a liquid crystal retarder having two surface alignment layers disposed adjacent to a layer of liquid crystal material on opposite sides. The surface alignment layers provide alignment in the adjacent liquid crystal material with a twist. The out-of-plane orientation of the twisted layer of liquid crystal material is modified across at least one region of the display device to provide a pupillated transmission function, achieving increased luminance uniformity to a display user and increased uniformity of security factor to an off-axis snooper, or reduced distraction across the display to the driver in an automotive application.
A display device comprising a spatial light modulator having a display polariser arranged on one side of the spatial light modulator is provided with an additional polariser arranged on the same side as the display polariser and a polar control retarder between the additional polariser and the display polariser. The polar control retarder includes a liquid crystal retarder having two surface alignment layers disposed adjacent to a layer of liquid crystal material on opposite sides. The surface alignment layers provide alignment in the adjacent liquid crystal material with a twist. The out-of-plane orientation of the twisted layer of liquid crystal material is modified across at least one region of the display device to provide a pupillated transmission function, achieving increased luminance uniformity to a display user and increased uniformity of security factor to an off-axis snooper, or reduced distraction across the display to the driver in an automotive application.
H04N 9/31 - Projection devices for colour picture display
B60K 35/00 - Instruments specially adapted for vehiclesArrangement of instruments in or on vehicles
G02F 1/13 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
G02F 1/1335 - Structural association of cells with optical devices, e.g. polarisers or reflectors
G02F 1/13363 - Birefringent elements, e.g. for optical compensation
G02F 1/1337 - Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
G02F 1/137 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
A privacy display comprises a spatial light modulator and a compensated switchable liquid crystal retarder arranged between first and second polarisers arranged in series with the spatial light modulator. In a privacy mode of operation, on-axis light from the spatial light modulator is directed without loss, whereas off-axis light has reduced luminance. The visibility of the display to off-axis snoopers is reduced by means of luminance reduction over a wide polar field. In a wide angle mode of operation, the switchable liquid crystal retardance is adjusted so that off-axis luminance is substantially unmodified.
G02F 1/13 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
G02F 1/13363 - Birefringent elements, e.g. for optical compensation
G02F 1/1337 - Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
G02F 1/1347 - Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
G02F 1/137 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
A switchable privacy display comprises a spatial light modulator with output polariser, a reflective polariser, a polar control liquid crystal retarder and an additional polariser. The electrodes of the polar control liquid crystal retarder are patterned with a mark. In wide angle and narrow angle operational modes, the electrodes of the liquid crystal retarder are driven such that the mark is not visible. In a mark display state, the electrodes are driven to provide visibility of the mark in reflected light to an off-axis observer.
G02F 1/01 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour
G02F 1/13 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
G02F 1/1335 - Structural association of cells with optical devices, e.g. polarisers or reflectors
G02F 1/1337 - Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
G02F 1/1347 - Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
G09G 3/34 - Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix by control of light from an independent source
G09G 3/36 - Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix by control of light from an independent source using liquid crystals
A switchable privacy display comprises a spatial light modulator with output polariser, a reflective polariser, a polar control liquid crystal retarder and an additional polariser. The electrodes of the polar control liquid crystal retarder are patterned with a mark. In wide angle and narrow angle operational modes, the electrodes of the liquid crystal retarder are driven such that the mark is not visible. In a mark display state, the electrodes are driven to provide visibility of the mark in reflected light to an off-axis observer.
A switchable privacy display comprises a spatial light modulator with output polariser, a reflective polariser, a polar control liquid crystal retarder and an additional polariser. The electrodes of the polar control liquid crystal retarder are patterned with a mark. In wide angle and narrow angle operational modes, the electrodes of the liquid crystal retarder are driven such that the mark is not visible. In a mark display state, the electrodes are driven to provide visibility of the mark in reflected light to an off-axis observer.
G02F 1/13 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
G09G 3/36 - Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix by control of light from an independent source using liquid crystals
G09G 3/34 - Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix by control of light from an independent source
G02F 1/01 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour
G02F 1/1335 - Structural association of cells with optical devices, e.g. polarisers or reflectors
G02F 1/1337 - Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
G02F 1/1347 - Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
A privacy display comprises a spatial light modulator and a passive retarder arranged between first and second polarisers arranged in series with the spatial light modulator, On-axis light from the spatial light modulator is directed without loss, and off-axis light has reduced luminance. The visibility of the display to off-axis snoopers is reduced by means of luminance reduction over a wide polar field of view. Off-axis visibility of the display in an automotive vehicle can be reduced.
A directional illumination apparatus comprises an array of light emitting diodes formed on a support substrate, a waveguide and a light turning optical component. An array of light input wells are arranged in the waveguide to receive light from the respective aligned array of light emitting diodes. An array of light deflecting wells are arranged in the waveguide to reflect guided light in the region around each light emitting diode. Extracted light from the waveguide is output by means of refraction and total internal reflection by a light turning optical component. A directional illumination output may be provided. A backlight for a high dynamic range display may achieve high efficiency and luminance. A privacy display with high security factor and high dynamic range may be achieved.
G02F 1/295 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the position or the direction of light beams, i.e. deflection in an optical waveguide structure
G02F 1/315 - Digital deflection devices based on the use of controlled total internal reflection
G02B 6/122 - Basic optical elements, e.g. light-guiding paths
G09F 9/35 - Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being liquid crystals
A directional illumination apparatus comprises an array of light emitting diodes formed on a support substrate, a waveguide and a light turning optical component. An array of light input wells are arranged in the waveguide to receive light from the respective aligned array of light emitting diodes. An array of light deflecting wells are arranged in the waveguide to reflect guided light in the region around each light emitting diode. Extracted light from the waveguide is output by means of refraction and total internal reflection by a light turning optical component. A directional illumination output may be provided. A backlight for a high dynamic range display may achieve high efficiency and luminance. A privacy display with high security factor and high dynamic range may be achieved.
A switchable backlight for a switchable privacy display apparatus comprises a collimated waveguide, first and second light sources and an optical turning film comprising elongate prismatic elements with facet orientations that pupillate the output of the waveguide in two orthogonal directions for each of first and second light sources. High luminance uniformity is achieved for a head-on user in privacy and public viewing modes and high uniformity of security factor is achieved for off-axis snoopers, with increased speed of privacy switch-on in privacy mode.
G02F 1/13 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
F21V 8/00 - Use of light guides, e.g. fibre optic devices, in lighting devices or systems
G02F 1/1335 - Structural association of cells with optical devices, e.g. polarisers or reflectors
B60K 35/00 - Instruments specially adapted for vehiclesArrangement of instruments in or on vehicles
G02F 1/139 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
Gaze is corrected by adjusting multi-view images of a head. Image patches containing the left and right eyes of the head are identified and a feature vector is derived from plural local image descriptors of the image patch in at least one image of the multi-view images. A displacement vector field representing a transformation of an image patch is derived, using the derived feature vector to look up reference data comprising reference displacement vector fields associated with possible values of the feature vector produced by machine learning. The multi-view images are adjusted by transforming the image patches containing the left and right eyes of the head in accordance with the derived displacement vector field.
G06V 10/46 - Descriptors for shape, contour or point-related descriptors, e.g. scale invariant feature transform [SIFT] or bags of words [BoW]Salient regional features
G06V 40/18 - Eye characteristics, e.g. of the iris
H04N 13/344 - Displays for viewing with the aid of special glasses or head-mounted displays [HMD] with head-mounted left-right displays
H04N 13/117 - Transformation of image signals corresponding to virtual viewpoints, e.g. spatial image interpolation the virtual viewpoint locations being selected by the viewers or determined by viewer tracking
57.
Controlling light sources of a directional backlight
Disclosed is an imaging directional backlight including an array of light sources, and a control system arranged to provide variable distribution of luminous fluxes, scaled inversely by the width associated with the respective light sources in the lateral direction, across the array of light sources. The luminous intensity distribution of output optical windows may be controlled to provide desirable luminance distributions in the window plane of an autostereoscopic display, a directional display operating in wide angle 2D mode, privacy mode and low power consumption mode. Image quality may be improved and power consumption reduced.
G09G 5/00 - Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
G06F 3/01 - Input arrangements or combined input and output arrangements for interaction between user and computer
B60K 35/00 - Instruments specially adapted for vehiclesArrangement of instruments in or on vehicles
F21V 8/00 - Use of light guides, e.g. fibre optic devices, in lighting devices or systems
H04N 13/32 - Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using arrays of controllable light sourcesImage reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using moving apertures or moving light sources
H04N 13/356 - Image reproducers having separate monoscopic and stereoscopic modes
G02B 30/33 - Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer’s left and right eyes of the autostereoscopic type involving directional light or back-light sources
A directional display may include a waveguide. The waveguide may include light extraction features arranged to direct light from an array of light sources by total internal reflection to an array of viewing windows and a reflector arranged to direct light from the waveguide by transmission through extraction features of the waveguide to the same array of viewing windows. A further spatially multiplexed display device comprising a spatial light modulator and parallax element is arranged to cooperate with the illumination from the waveguide. An efficient and bright autostereoscopic display system with low cross talk and high resolution can be achieved.
G02B 30/27 - Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer’s left and right eyes of the autostereoscopic type involving lenticular arrays
A switchable directional backlight for a privacy display comprises a waveguide with first and second opposing input ends and a turning film arranged to collect light output from the waveguide for input into a spatial light modulator. The waveguide has an array of light deflecting features arranged on one guiding surface and an opposing planar surface. Light deflecting features are arranged such that light input from the first input end is output with a narrow angular range and light input from the second input end is output with a wide angular range.
F21V 8/00 - Use of light guides, e.g. fibre optic devices, in lighting devices or systems
G02F 1/13 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
60.
Display device with uniform off-axis luminance reduction
A display device comprising a spatial light modulator having a display polariser arranged on one side of the spatial light modulator is provided with an additional polariser arranged on the same side as the display polariser and polar control retarders between the additional polariser and the display polariser. The polar control retarders include a liquid crystal retarder having two surface alignment layers disposed adjacent to a layer of liquid crystal material on opposite sides. The surface alignment layers provide alignment in the adjacent liquid crystal material with an in-plane component, wherein the angle of said in-plane component changes monotonically along a predetermined axis across the display device, providing reduction of luminance in directions that are offset from a viewing axis, increasing uniformity in the reduction of luminance in directions that are offset from a viewing axis.
G02F 1/139 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
G02F 1/1337 - Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
G02F 1/1335 - Structural association of cells with optical devices, e.g. polarisers or reflectors
G02F 1/13363 - Birefringent elements, e.g. for optical compensation
G02F 1/1347 - Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
F21V 8/00 - Use of light guides, e.g. fibre optic devices, in lighting devices or systems
An illumination apparatus comprises a first substrate, an optical structure, an array of light emitting elements disposed on the first substrate and between the first substrate and the optical structure, and a mask comprising a plurality of apertures therein. The optical structure is configured to receive light emitted by the array of light emitting elements, direct the received light into a direction away from the first substrate, direct at least some of the light which has been directed away from the first substrate back towards the first substrate, and direct at least some of the light which has been directed back towards the first substrate through the plurality of apertures of the mask.
F21V 8/00 - Use of light guides, e.g. fibre optic devices, in lighting devices or systems
G09F 9/33 - Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
A switchable privacy display apparatus comprises a polarised output spatial light modulator, and an additional polariser. A reflective polariser, switchable liquid crystal polar control retarder, passive polar control retarders and air gap are arranged between the display output polariser and additional polariser. The passive retarders are arranged to provide no phase difference to polarised light from the spatial light modulator for on-axis light; and simultaneously provide a non-zero phase difference for polarised light in off-axis directions. The polar control retarders are further arranged to achieve low reflectivity for light propagating through the air gap. A switchable privacy display that can be conveniently assembled at low cost can be provided with high contrast images for display users while maintaining high visual security level for off-axis snoopers.
G02F 1/137 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
G02F 1/1335 - Structural association of cells with optical devices, e.g. polarisers or reflectors
F21V 8/00 - Use of light guides, e.g. fibre optic devices, in lighting devices or systems
G02F 1/13363 - Birefringent elements, e.g. for optical compensation
G02F 1/13 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
G02F 1/1337 - Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
G02F 1/139 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
G06F 3/044 - Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
A display apparatus comprises at least one spatial light modulator and at least one curved view angle control element that comprises plural retarders arranged between the display polariser of each spatial light modulator, and an additional polariser. The curvature of the view angle control element provides increased luminance uniformity for a head-on user and increased visual security to an off-axis snooper.
G02F 1/13 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
G02F 1/01 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour
F21V 8/00 - Use of light guides, e.g. fibre optic devices, in lighting devices or systems
A privacy display comprises a polarised output spatial light modulator, reflective polariser, plural polar control retarders and a polariser. A birefringent surface relief diffuser structure is arranged to transmit light from the display with high transparency and provide diffuse reflection of ambient light to head-on display users. In a privacy mode of operation, on-axis light from the spatial light modulator is directed without loss and with low diffusion, whereas off-axis light has reduced luminance and increased diffusion. Further, overall display reflectivity is reduced for on-axis reflections of ambient light, while reflectivity is increased for off-axis light. The visibility of the display to off-axis snoopers is reduced by means of luminance reduction, increased frontal reflectivity and diffusion of ambient light. In a public mode of operation, the liquid crystal retardance is adjusted so that off-axis luminance and reflectivity are unmodified.
Methods and devices for generating reference data for adjusting a digital representation of a head region, and methods and devices for adjusting the digital representation of a head region are disclosed. In some arrangements, training data are received. A first machine learning algorithm generates first reference data using the training data. A second machine learning algorithm generates second reference data using the same training data and the first reference data generated by the first machine learning algorithm.
A display comprises a polarised output spatial light modulator, switchable liquid crystal retarder, absorbing polariser and touch panel electrodes. The electrodes of the switchable liquid crystal retarder shield the touch panel electrodes from the electrical noise of the spatial light modulator addressing. The touch panel control and sensing may be synchronised with the driving signal of the switchable liquid crystal retarder. The touch panel may be operated independently of the timing of the data addressing of the spatial light modulator.
G02F 1/13 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
A switchable privacy display apparatus comprises a spatial light modulator, a light control film, and a polar control retarder that comprises plural retarders arranged between a display polariser of the spatial light modulator and an additional polariser. The display achieves high image visibility to an off-axis user in a public mode of operation and high image security to an off-axis snooper in privacy mode of operation.
G02F 1/137 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
G02F 1/13363 - Birefringent elements, e.g. for optical compensation
G02F 1/1335 - Structural association of cells with optical devices, e.g. polarisers or reflectors
G02F 1/01 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour
G02F 1/1337 - Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
A directional illumination device for a vehicle external light comprises an array of light sources and an imaging waveguide comprising an input surface and a reflective end. Opposed guide surfaces are arranged to guide input light from the input surface to the reflective end and back along the waveguide after reflection at the reflective end, the waveguide being arranged to extract input light as it is guided back along the waveguide after reflection and to cause the extracted light to exit through the first guide surface. The reflective end has positive optical power in the direction laterally across the waveguide and the waveguide is arranged to direct the extracted light in respective output illumination directions distributed in a lateral direction in dependence on the input positions of the light sources in the direction laterally across the waveguide. A thin, high brightness and high efficiency controllable directional vehicle headlight is provided.
An imaging directional backlight apparatus including a waveguide, a light source array, for providing large area directed illumination from localized light sources. The waveguide may include a stepped structure, in which the steps may further include extraction features optically hidden to guided light, propagating in a first forward direction. Returning light propagating in a second backward direction may be refracted, diffracted, or reflected by the features to provide discrete illumination beams exiting from the top surface of the waveguide. The directional backlight may be arranged to switch between at least a first wide angular luminance profile mode and a second narrow angular luminance profile mode. The directional backlight is arranged to illuminate an LCD with a bias electrode arranged to switch liquid crystal directors in black state pixels between a first wide angular contrast profile mode and a second narrow angular contrast profile mode. Performance of privacy operation for off-axis snoopers is enhanced in comparison to displays with only directional backlights or switchable contrast properties.
G02F 1/295 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the position or the direction of light beams, i.e. deflection in an optical waveguide structure
G02F 1/365 - Non-linear optics in an optical waveguide structure
G02F 1/1335 - Structural association of cells with optical devices, e.g. polarisers or reflectors
G02F 1/13 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
G02F 1/13363 - Birefringent elements, e.g. for optical compensation
G02F 1/1337 - Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
G02F 1/137 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
G02F 1/1347 - Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
F21V 8/00 - Use of light guides, e.g. fibre optic devices, in lighting devices or systems
An illumination apparatus comprises a first substrate; an optical structure; an array of light emitting elements disposed between the first substrate and the optical structure and an array of passive optical nanostructures disposed between the first substrate and the optical structure. Each of the passive optical nanostructures are disposed on a respective one of the light emitting elements and each passive optical nanostructure comprises an air gap. Each passive optical nanostructure is disposed between its respective light emitting element and the optical structure, wherein each passive optical nanostructure is configured to receive light emitted by its respective light emitting element, pass the received light, and output the pass light towards the optical structure.
H01L 25/075 - Assemblies consisting of a plurality of individual semiconductor or other solid-state devices all the devices being of a type provided for in a single subclass of subclasses , , , , or , e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group
A control system for a switchable privacy display apparatus comprises sensors arranged to determine device location, operating environment, document type, application type and further comprises a privacy policy for control of privacy images. High image visibility is provided for public mode operation while in privacy mode a high visual security level may be obtained by means of control of image luminance, contrast and white point in response to the privacy policy.
G02F 1/137 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
G02F 1/13 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
G02F 1/1335 - Structural association of cells with optical devices, e.g. polarisers or reflectors
A directional illumination device for a vehicle external light comprises an array of light sources and an imaging waveguide comprising an input surface and a reflective end. Opposed guide surfaces are arranged to guide input light from the input surface to the reflective end and back along the waveguide after reflection at the reflective end, the waveguide being arranged to extract input light as it is guided back along the waveguide after reflection and to cause the extracted light to exit through the first guide surface. The reflective end has positive optical power in the direction laterally across the waveguide and the waveguide is arranged to direct the extracted light in respective output illumination directions distributed in a lateral direction in dependence on the input positions of the light sources in the direction laterally across the waveguide. A thin, high brightness and high efficiency controllable directional vehicle headlight is provided.
G02B 6/10 - Light guidesStructural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
Generating data to provide an animated visual representation is disclosed. A method comprises receiving input data obtained by a first sensor system measuring information about at least one target person. One data unit is selected from a database comprising a plurality of the data units. Each data unit comprises information about a reference person in a reference state measured at a previous time by the first sensor system or by a second sensor system. The information in each data unit allows generation of an animated visual representation of the reference person in the reference state. The reference state is different for each of the data units. The selected data unit and the input data are used to generate output data usable to provide an animated visual representation corresponding to the target person and synchronized with activity of the target person measured by the first sensor system.
A control system for a switchable privacy display apparatus comprises an ambient light sensor and a display luminance controller arranged to control the luminance of the display in response to measured illuminance. High image visibility is provided for public mode operation while in privacy mode visual security level above a perceived privacy threshold may be obtained by means of control of image luminance, in response to the output of the ambient light sensor.
G09G 3/34 - Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix by control of light from an independent source
G06F 21/84 - Protecting input, output or interconnection devices output devices, e.g. displays or monitors
A switchable privacy display comprises a spatial light modulator, and switchable liquid crystal retarder arranged between crossed quarter-wave plates and polarisers. In a privacy mode of operation, on-axis light from the spatial light modulator is directed without loss, whereas off-axis light has reduced luminance to reduce the visibility of the display to off-axis snoopers. The display may be rotated to achieve privacy operation in landscape and portrait orientations. Further, display reflectivity may be reduced for on-axis reflections of ambient light, while reflectivity may be increased for off-axis light to achieve increased visual security. In a public mode of operation, the liquid crystal retardance is adjusted so that off-axis luminance and reflectivity are unmodified. The display may also be operated to switch between day-time and night-time operation, for example for use in an automotive environment.
G02F 1/1335 - Structural association of cells with optical devices, e.g. polarisers or reflectors
G02F 1/03 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on ceramics or electro-optical crystals, e.g. exhibiting Pockels or Kerr effect
G02F 1/13363 - Birefringent elements, e.g. for optical compensation
G02F 1/137 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
A switchable backlight for a switchable privacy display apparatus comprises a collimated waveguide, first and second light sources and an optical turning film comprising elongate prismatic elements with facet orientations that pupillate the output of the waveguide in two orthogonal directions for each of first and second light sources. High luminance uniformity is achieved for a head-on user in privacy and public viewing modes and high uniformity of security factor is achieved for off-axis snoopers, with increased speed of privacy switch-on in privacy mode.
G02F 1/13 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
F21V 8/00 - Use of light guides, e.g. fibre optic devices, in lighting devices or systems
G02F 1/1335 - Structural association of cells with optical devices, e.g. polarisers or reflectors
B60K 35/00 - Instruments specially adapted for vehiclesArrangement of instruments in or on vehicles
G02F 1/139 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
A switchable backlight for a switchable privacy display apparatus comprises a collimated waveguide, first and second light sources and an optical turning film comprising elongate prismatic elements with facet orientations that pupillate the output of the waveguide in two orthogonal directions for each of first and second light sources. High luminance uniformity is achieved for a head-on user in privacy and public viewing modes and high uniformity of security factor is achieved for off-axis snoopers, with increased speed of privacy switch-on in privacy mode.
G02B 27/00 - Optical systems or apparatus not provided for by any of the groups ,
G02B 30/20 - Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer’s left and right eyes
G02B 30/26 - Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer’s left and right eyes of the autostereoscopic type
G02B 30/33 - Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer’s left and right eyes of the autostereoscopic type involving directional light or back-light sources
A switchable backlight for a switchable privacy display apparatus comprises a collimated waveguide and an optical turning film comprising first and second arrays of elongate prismatic elements. High image luminance and image visibility is provided for off-axis viewers in a public mode of operation while in a privacy mode of operation visual security level above a perceived privacy threshold may be achieved for off-axis snoopers.
G02F 1/13 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
A switchable backlight for a switchable privacy display apparatus comprises a collimated waveguide and an optical turning film comprising first and second arrays of elongate prismatic elements. High image luminance and image visibility is provided for off-axis viewers in a public mode of operation while in a privacy mode of operation visual security level above a perceived privacy threshold may be achieved for off-axis snoopers.
F21V 8/00 - Use of light guides, e.g. fibre optic devices, in lighting devices or systems
H01L 51/52 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED) - Details of devices
A display comprises a polarised output spatial light modulator, switchable liquid crystal retarder, absorbing polarizer and touch panel electrodes. The switchable liquid crystal layer is stabilised by a cured reactive mesogen material during application of an applied voltage. Light scatter in privacy mode is reduced and visual security level enhanced. Visibility of disclinations during application of applied pressure, for example from a finger on a touch screen is minimised.
G02F 1/137 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
G02F 1/13363 - Birefringent elements, e.g. for optical compensation
G02F 1/13 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
G02F 1/139 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
G06F 3/044 - Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
An imaging directional backlight apparatus includes a waveguide and a light source array, providing large area directed illumination from localized light sources. The waveguide may include a stepped structure, and the steps may further include extraction features optically hidden to guided light, propagating in a forward direction. Returning light propagating in a backward direction may be refracted, diffracted, or reflected by the features to provide discrete illumination beams exiting from the top surface of the waveguide. Viewing windows are formed through imaging individual light sources and define the relative positions of system elements and ray paths. The imaging directional backlight apparatus further includes a control system for controlling the light output directional distribution in an automotive or vehicle environment in dependence on the output from sensors mounted on the vehicle. The control system is arranged to control the light output direction distribution of portable directional displays co-located with the vehicle.
G06T 7/70 - Determining position or orientation of objects or cameras
G02F 1/13 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
G02F 1/133 - Constructional arrangementsOperation of liquid crystal cellsCircuit arrangements
H04N 7/18 - Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
A privacy display comprises a spatial light modulator and a compensated switchable guest-host liquid crystal retarder arranged between first and second polarisers arranged in series with the spatial light modulator. In a privacy mode of operation, on-axis light from the spatial light modulator is directed without loss, whereas off-axis light has reduced luminance. The visibility of the display to off-axis snoopers is reduced by means of luminance reduction over a wide polar field. In a wide angle mode of operation, the switchable liquid crystal retardance is adjusted so that off-axis luminance is substantially unmodified.
G02F 1/137 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
G02F 1/1335 - Structural association of cells with optical devices, e.g. polarisers or reflectors
G02F 1/13 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
A privacy display comprises a polarised output spatial light modulator, reflective polariser, plural polar control retarders and a polariser. A birefringent surface relief diffuser structure is arranged to transmit light from the display with high transparency and provide diffuse reflection of ambient light to head-on display users. In a privacy mode of operation, on-axis light from the spatial light modulator is directed without loss and with low diffusion, whereas off-axis light has reduced luminance and increased diffusion. Further, overall display reflectivity is reduced for on-axis reflections of ambient light, while reflectivity is increased for off-axis light. The visibility of the display to off-axis snoopers is reduced by means of luminance reduction, increased frontal reflectivity and diffusion of ambient light. In a public mode of operation, the liquid crystal retardance is adjusted so that off-axis luminance and reflectivity are unmodified.
A switchable privacy display comprises a spatial light modulator (SLM), a first switchable liquid crystal (LC) retarder and first passive retarder between a first pair of polarisers and a second switchable LC retarder and second passive retarder between a second pair of polarisers. The first switchable LC retarder comprises a homeotropic alignment layer and a homogeneous alignment layer. The second switchable LC crystal retarder comprises two homeotropic alignment layers or two homogeneous alignment layers. In landscape or portrait privacy mode, on-axis light from the SLM is directed without loss, whereas off-axis light has reduced luminance to reduce visibility to off-axis snoopers. Display reflectivity may be reduced for on-axis reflections of ambient light, while reflectivity may be increased for off-axis light to achieve increased visual security. In public mode, the LC retardance is adjusted so that off-axis luminance and reflectivity are unmodified. The display may switch between day-time and night-time operation.
G02F 1/1337 - Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
G02F 1/1335 - Structural association of cells with optical devices, e.g. polarisers or reflectors
G02B 30/31 - Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer’s left and right eyes of the autostereoscopic type involving parallax barriers involving active parallax barriers
G06F 21/84 - Protecting input, output or interconnection devices output devices, e.g. displays or monitors
A switchable privacy display for an automotive vehicle comprises a spatial light modulator, a first switchable liquid crystal retarder and first passive retarder arranged between a first pair of polarisers and a second switchable liquid crystal retarder and second passive retarder arranged between a second pair of polarisers. The first switchable liquid crystal retarder comprises a homeotropic alignment layer and a homogeneous alignment layer. The second switchable liquid crystal retarder comprises two homeotropic alignment layers or two homogeneous alignment layers. In a privacy mode of operation, on-axis light from the spatial light modulator is directed without loss to the passenger, whereas off-axis light has reduced luminance to reduce the visibility of the display to off-axis driver leaning towards the display. In a shared mode of operation, the liquid crystal layers are controlled so that off-axis luminance and reflectivity are unmodified.
G02F 1/1337 - Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
G02F 1/1335 - Structural association of cells with optical devices, e.g. polarisers or reflectors
G02B 30/31 - Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer’s left and right eyes of the autostereoscopic type involving parallax barriers involving active parallax barriers
G06F 21/84 - Protecting input, output or interconnection devices output devices, e.g. displays or monitors
A switchable privacy display comprises a spatial light modulator, a first switchable liquid crystal retarder and first passive retarder arranged between a first pair of polarisers and a second switchable liquid crystal retarder and second passive retarder arranged between a second pair of polarisers. Each switchable liquid crystal retarder comprises a homeotropic alignment layer and a homogeneous alignment layer. In a privacy mode of operation, on-axis light from the spatial light modulator is directed without loss, whereas off-axis light has reduced luminance to reduce the visibility of the display to off-axis snoopers. The display may be rotated to achieve privacy operation in landscape and portrait orientations. The display may also be operated to switch between day-time and night-time operation, for example for use in an automotive environment.
G02F 1/13 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
G02F 1/01 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour
G02F 1/133 - Constructional arrangementsOperation of liquid crystal cellsCircuit arrangements
G02F 1/1337 - Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
A switchable privacy display for an automotive vehicle comprises a spatial light modulator, a first switchable liquid crystal retarder and first passive retarder arranged between a first pair of polarisers and a second switchable liquid crystal retarder and second passive retarder arranged between a second pair of polarisers. A first switchable liquid crystal retarder comprises a two homeotropic alignment layers and a second switchable liquid crystal retarder comprises two homogeneous alignment layers. In a privacy mode of operation, on-axis light from the spatial light modulator is directed without loss to the passenger, whereas off-axis light has reduced luminance to reduce the visibility of the display to off-axis driver leaning towards the display. In a shared mode of operation, the liquid crystal layers are controlled so that off-axis luminance and reflectivity are unmodified.
G02B 30/33 - Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer’s left and right eyes of the autostereoscopic type involving directional light or back-light sources
G02F 1/01 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour
G02F 1/13 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
G02F 1/133 - Constructional arrangementsOperation of liquid crystal cellsCircuit arrangements
A switchable privacy display comprises a spatial light modulator (SLM), a first switchable liquid crystal (LC) retarder and first passive retarder arranged between a first pair of polarisers and a second switchable LC retarder and second passive retarder arranged between a second pair of polarisers. Each switchable LC retarder comprises a homeotropic alignment layer and a homogeneous alignment layer. In privacy mode, on-axis light from the SLM is directed without loss, whereas off-axis light has reduced luminance to reduce the visibility of the display to off-axis snoopers. The display may achieve privacy operation in landscape and portrait orientations. Further, display reflectivity may be reduced for on-axis reflections of ambient light, while reflectivity may be increased for off-axis light to achieve increased visual security. In public mode, the liquid crystal retardance is adjusted so that off-axis luminance and reflectivity are unmodified. The display may be switched between day-time and night-time operation.
G02F 1/1337 - Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
G02F 1/1335 - Structural association of cells with optical devices, e.g. polarisers or reflectors
G02B 30/31 - Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer’s left and right eyes of the autostereoscopic type involving parallax barriers involving active parallax barriers
G06F 21/84 - Protecting input, output or interconnection devices output devices, e.g. displays or monitors
A switchable privacy display comprises a spatial light modulator (SLM), a first switchable liquid crystal (LC) retarder and first passive retarder between a first pair of polarisers and a second switchable LC retarder and second passive retarder between a second pair of polarisers. The first switchable LC retarder comprises two homeotropic alignment layers and the second switchable LC retarder comprises two homogeneous alignment layers. In privacy mode, on-axis light from the SLM is directed without loss, whereas off-axis light has reduced luminance to reduce visibility to off-axis snoopers. The display may achieve privacy operation in landscape and portrait orientations. Further, display reflectivity may be reduced for on-axis reflections of ambient light, while reflectivity may be increased for off-axis light to achieve increased visual security. In public mode, the LC retardance is adjusted so that off-axis luminance and reflectivity are unmodified. The display may switch between day-time and night-time operation.
G02F 1/13 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
F21V 8/00 - Use of light guides, e.g. fibre optic devices, in lighting devices or systems
G02F 1/01 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour
G02F 1/1347 - Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
A switchable privacy display for an automotive vehicle comprises a spatial light modulator, a first switchable liquid crystal retarder and first passive retarder arranged between a first pair of polarisers and a second switchable liquid crystal retarder and second passive retarder arranged between a second pair of polarisers. A first switchable liquid crystal retarder comprises a two homeotropic alignment layers and a second switchable liquid crystal retarder comprises two homogeneous alignment layers. In a privacy mode of operation, on-axis light from the spatial light modulator is directed without loss to the passenger, whereas off-axis light has reduced luminance to reduce the visibility of the display to off-axis driver leaning towards the display. In a shared mode of operation, the liquid crystal layers are controlled so that off-axis luminance and reflectivity are unmodified.
G02F 1/13 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
F21V 8/00 - Use of light guides, e.g. fibre optic devices, in lighting devices or systems
G02F 1/01 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour
G02F 1/1347 - Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
A switchable privacy display comprises a spatial light modulator (SLM), a first switchable liquid crystal (LC) retarder and first passive retarder between a first pair of polarisers and a second switchable LC retarder and second passive retarder between a second pair of polarisers. The first switchable LC retarder comprises a homeotropic alignment layer and a homogeneous alignment layer. The second switchable LC crystal retarder comprises two homeotropic alignment layers or two homogeneous alignment layers. In landscape or portrait privacy mode, on-axis light from the SLM is directed without loss, whereas off-axis light has reduced luminance to reduce visibility to off-axis snoopers. Display reflectivity may be reduced for on-axis reflections of ambient light, while reflectivity may be increased for off-axis light to achieve increased visual security. In public inode, the LC retardance is adjusted so that off-axis luminance and reflectivity' are unmodified. The display may switch between day-time and night-time operation.
A switchable privacy display comprises a spatial light modulator, a first switchable liquid crystal retarder and first passive retarder arranged between a first pair of polarisers and a second switchable liquid crystal retarder and second passive retarder arranged between a second pair of polarisers. The first switchable liquid crystal retarder comprises two homeotropic alignment layers and the second switchable liquid crystal retarder comprises two homogeneous alignment layers. In a privacy mode of operation, on-axis light from the spatial light modulator is directed without loss, whereas off-axis light has reduced luminance to reduce the visibility of the display to off-axis snoopers. The display may be rotated to achieve privacy operation in landscape and portrait orientations. The display may also be operated to switch between day-time and night-time operation, for example for use in an automotive environment.
G02B 30/33 - Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer’s left and right eyes of the autostereoscopic type involving directional light or back-light sources
G02F 1/01 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour
G02F 1/13 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
G02F 1/133 - Constructional arrangementsOperation of liquid crystal cellsCircuit arrangements
A switchable privacy display for an automotive vehicle comprises a spatial light modulator, a first switchable liquid crystal retarder and first passive retarder arranged between a first pair of polarisers and a second switchable liquid crystal retarder and second passive retarder arranged between a second pair of polarisers. The first switchable liquid crystal retarder comprises a homeotropic alignment layer and a homogeneous alignment layer. The second switchable liquid crystal retarder comprises two homeotropic alignment layers or two homogeneous alignment layers. In a privacy mode of operation, on-axis light from the spatial light modulator is directed without loss to the passenger, whereas off-axis light has reduced luminance to reduce the visibility of the display to off-axis driver leaning towards the display. In a shared mode of operation, the liquid crystal layers are controlled so that off-axis luminance and reflectivity are unmodified.
G02B 30/33 - Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer’s left and right eyes of the autostereoscopic type involving directional light or back-light sources
G02F 1/01 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour
G02F 1/13 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
G02F 1/133 - Constructional arrangementsOperation of liquid crystal cellsCircuit arrangements
A privacy display comprises a polarised output spatial light modulator, reflective polariser, plural polar control retarders and a polariser. In a privacy mode of operation, on-axis light from the spatial light modulator is directed without loss, whereas off-axis light has reduced luminance. Further, display reflectivity is reduced for on-axis reflections of ambient light, while reflectivity is increased for off-axis light. The visibility of the display to off-axis snoopers is reduced by means of luminance reduction and increased frontal reflectivity to ambient light. In a public mode of operation, the liquid crystal retardance is adjusted so that off-axis luminance and reflectivity are unmodified.
G02F 1/13 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
G02F 1/1335 - Structural association of cells with optical devices, e.g. polarisers or reflectors
G02F 1/1337 - Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
G02F 1/13363 - Birefringent elements, e.g. for optical compensation
09 - Scientific and electric apparatus and instruments
42 - Scientific, technological and industrial services, research and design
Goods & Services
Display screen technology, namely, electronic display screen hardware with embedded software for enabling advanced directional features on cinema screens, television screens, personal computer monitors, tablet computer devices and mobile smart phones; downloadable software for enabling advanced directional features on cinema screens, television screens, personal computer monitors, tablet computer devices and mobile smart phones Providing display screen technology to third parties, namely, design and development of display screen hardware specifications to enable advanced directional features on cinema screens, television screens, personal computer monitors, tablet computer devices and mobile smart phones
A switchable privacy display apparatus comprises a polarised output spatial light modulator, and an additional polariser. A reflective polariser, switchable liquid crystal polar control retarder, passive polar control retarders and air gap are arranged between the display output polariser and additional polariser. The passive retarders are arranged to provide no phase difference to polarised light from the spatial light modulator for on-axis light; and simultaneously provide a non-zero phase difference for polarised light in off-axis directions. The polar control retarders are further arranged to achieve low reflectivity for light propagating through the air gap. A switchable privacy display that can be conveniently assembled at low cost can be provided with high contrast images for display users while maintaining high visual security level for off-axis snoopers.
G02F 1/137 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
F21V 8/00 - Use of light guides, e.g. fibre optic devices, in lighting devices or systems
G06F 3/044 - Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
G02F 1/13363 - Birefringent elements, e.g. for optical compensation
G02F 1/13 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
G02F 1/139 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
97.
Illumination apparatus including mask with plurality of apertures and display apparatus comprising same
An illumination apparatus comprises a first substrate, an optical structure, an array of light emitting elements disposed on the first substrate and between the first substrate and the optical structure, and a mask comprising a plurality of apertures therein. The optical structure is configured to receive light emitted by the array of light emitting elements, direct the received light into a direction away from the first substrate, direct at least some of the light which has been directed away from the first substrate back towards the first substrate, and direct at least some of the light which has been directed back towards the first substrate through the plurality of apertures of the mask.
F21V 8/00 - Use of light guides, e.g. fibre optic devices, in lighting devices or systems
G09F 9/33 - Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
An illumination apparatus comprises a first substrate, an optical structure, an array of light emitting elements disposed on the first substrate and between the first substrate and the optical structure, and a mask comprising a plurality of apertures therein. The optical structure is configured to receive light emitted by the array of light emitting elements, direct the received light into a direction away from the first substrate, direct at least some of the light which has been directed away from the first substrate back towards the first substrate, and direct at least some of the light which has been directed back towards the first substrate through the plurality of apertures of the mask.
A switchable directional backlight for a privacy display comprises a waveguide with first and second opposing input ends and a turning film arranged to collect light output from the waveguide for input into a spatial light modulator. The waveguide has an array of light deflecting features arranged on one guiding surface and an opposing planar surface. Light deflecting features are arranged such that light input from the first input end is output with a narrow angular range and light input from the second input end is output with a wide angular range.
F21V 8/00 - Use of light guides, e.g. fibre optic devices, in lighting devices or systems
G02F 1/13 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulatingNon-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
Reflections from a display device are controlled using retarders arranged on the output side of a display panel which outputs light with a predetermined polarization state. First and second planes of incidence are defined in respect of first and second rays of light output from the device and first and second normals to first and second surfaces of optically transmissive material at first and second points at which the first and second rays of light are reflected. The retarders are selected to cause the polarization state of the first ray to be linearly polarized in a direction that is in the first plane of incidence, and to cause the polarization state of the second ray to be linearly polarized in a direction that is in the second plane of incidence. The reflections from the surfaces are minimized because for both surfaces the polarization direction is in-plane.
G02B 27/28 - Optical systems or apparatus not provided for by any of the groups , for polarising
B60R 1/00 - Optical viewing arrangementsReal-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
B60K 35/00 - Instruments specially adapted for vehiclesArrangement of instruments in or on vehicles