Wireless communication is provided over an extended distance using a line or a series of drones traveling along a transmission path between a transmitter and a receiver. The transmitter sends a data signal to a first drone that is within range of the transmitter. The first drone sends the data signal to an adjacent drone in the line of drones which retransmits the data signal to the next drone in line. The data signal is transmitted between drones until it reaches a final drone within range of the receiver. The final drone transmits the data signal to the receiver. As the drones travel along the transmission path, new drones are launched from a location within range of the transmitter to replace drones that land after transmitting a data signal to the receiver.
A communication system uses multiple communications links, preferably links that use different communications media. The multiple communications links may include a high latency/high bandwidth link using a fiber-optic cable configured to carry large volumes of data but having a high latency. The communications links may also include a low latency/low bandwidth link implemented using skywave propagation of radio waves and configured to carry smaller volumes of data with a lower latency across a substantial portion of the earth's surface. The two communications links may be used together to coordinate various activities such as the buying and selling of financial instruments.
A communication system transmits a data signal between a transmitter and a receiver. A service provider operates the communication system for a client. When the data signal is received at the receiver, the data signal is decoded and the service provider decides whether the decoded data signal is accurate or whether the decoded data signal should be rejected. The service provider transmits the decoded data signal and its determination as to its accuracy to the client. Metadata including information about the transmission of the data signal is also provided to the client so that the client can make its own determination regarding whether to accept or reject the decoded data signal.
A communication system includes a transmitting station and a receiving station, A primary communication channel communicatively couples the transmitting station to the receiving station, A market feed provides market, data to the transmitting station, A compression subsystem configured to compress the market data from the market feed to a compressed data symbol. A transmitting modem is configured to change a modulation scheme for the compressed data symbol based on a condition of the primary communication channel. A transmitting antenna configured to transmit the compressed data symbol modulated according to the modulation scheme over the primary communication channel.
A gear shifting technique has been developed in which modulation and equalization are shifted to achieve optional performance. In one form, two or more equalizers, each associated with a demodulator and message decoder, determine if the modulation being used can be increased in complexity in order to increase the channel throughput or determine if the modulation method should be reduced in complexity in order to improve the receiver error performance. The quality metrics can based on which equalizer-demodulator-decoder is set to first detect a valid message. Other factors can be considered with this technique such as a packet-error ratio and a signal-to-noise ratio. In a financial trading system, message erasures can be favored over errored messages by limiting the number of bit or symbol corrections permitted per message to less than the maximum possible for the selected decoding schemes.
A method and communication system has been developed to increase the number of messages sent over a bandwidth limited channel and/or under noisy conditions by using a variable message length encoding and decoding scheme. With this technique, the messages having a higher probability of being sent are shorter as compared to the messages that are less likely to be sent under the current conditions. With this technique, a higher number of transactions per unit of time can be communicated and/or executed over a given bandwidth limited channel. When the transmitted message is received, the receiver does not know the message length, but the receiver deduces the length by using information from various error detection and correction techniques, such as forward error correction (FEC) and cyclic redundancy check (CRC) techniques.
An equalization method has been developed for low latency, low bandwidth wireless communication channel environments. With this method, an exact copy, nearly exact copy, or some facsimile of a message (or associated information), which was transmitted via a low latency, low bandwidth wireless communication channel, is also sent via a backend communication channel such as a fiber optic network. Equalization is generally performed by comparing the originally received message to the copy sent via the backend channel. The original message can incorporate an added channel delay to compensate for the time delay between the primary wireless channel and the backend channel.
A communication system uses multiple communications links, preferably links that use different communications media. The multiple communications links may include a high latency/high bandwidth link using a fiber-optic cable configured to carry large volumes of data but having a high latency. The communications links may also include a low latency/low bandwidth link implemented using skywave propagation of radio waves and configured to carry smaller volumes of triggering data with a lower latency across a substantial portion of the earth's surface. The triggering data may be sent in a data stream as data frames without headers, security information, or error checking codes. The two communications links may be used together to coordinate various activities such as the buying and selling of financial instruments.
A communication system allows for clock synchronization between a transmitter and a receiver when switching from transmission of an analog signal to transmission of a digital signal. The system uses clock synchronization during transmission of the digital signal, but the clock synchronization may be lost when switching to transmission of an analog signal. A digital clock synchronization is embedded in the analog signal so that the clock synchronization between the transmitter and the receiver may be reestablished upon switching to a digital signal without any delay in transmission of the digital signal.
A method for equalizing a wireless communication channel includes transmitting a data signal over a primary channel. During transmission of the data signal, a corresponding data signal is sent over a secondary channel. The information received from the secondary channel is compared to the information received from the primary channel and differences between the information received from each of the channels are observed. These differences are used as inputs to an equalizer algorithm that may be used to reduce distortion of the data signal sent over the primary channel.
A wireless communication system includes a first wireless communication node for transmitting a data signal that is sent to a second wireless communication node by skywave propagation over at least two different data transmission paths. The first data transmission path includes at least one reflection point where the data signal is reflected by the atmosphere and the second data transmission path includes more reflection points than the first data transmission path. The data signal that travelled along the first data transmission path is decoded before the data signal that travelled along the second data transmission path.
A communication system transmits data signals between communication nodes. A first data signal is transmitted as an electromagnetic wave along a first data transmission path to a receiver using skywave propagation. A second data signal, identical to the first data signal, is transmitted to the receiver along a second data transmission path. The two data signals are compared at the receiver to determine any distortion caused by the skywave propagation. Data regarding the distortion is sent back to the transmitter so that subsequent transmitted data signals may be preconditioned when sent by skywave propagation.
Wireless communication is provided over an extended distance using a line or a series of drones traveling along a transmission path between a transmitter and a receiver. The transmitter sends a data signal to a first drone that is within range of the transmitter. The first drone sends the data signal to an adjacent drone in the line of drones which retransmits the data signal to the next drone in line. The data signal is transmitted between drones until it reaches a final drone within range of the receiver. The final drone transmits the data signal to the receiver. As the drones travel along the transmission path, new drones are launched from a location within range of the transmitter to replace drones that land after transmitting a data signal to the receiver.
A communication system transmits a data signal between a transmitter and a receiver. A service provider operates the communication system for a client. When the data signal is received at the receiver, the data signal is decoded and the service provider decides whether the decoded data signal is accurate or whether the decoded data signal should be rejected. The service provider transmits the decoded data signal and its determination as to its accuracy to the client. Metadata including information about the transmission of the data signal is also provided to the client so that the client can make its own determination regarding whether to accept or reject the decoded data signal.
A communication system uses skywave propagation to transmit data between communication nodes over a data transmission path. An atmospheric sensor is configured to collect atmospheric data at the reflection point of the data transmission path where the transmission path is redirected from the atmosphere toward the surface of the Earth. Data collected by the atmospheric sensor may be used to predict future ionospheric conditions and determine optimum working frequencies for transmission of data between the communication nodes.
A method and communication system has been developed to increase the number of messages sent over a bandwidth limited channel and/or under noisy conditions by using a variable message length encoding and decoding scheme. With this technique, the messages having a higher probability of being sent are shorter as compared to the messages that are less likely to be sent under the current conditions. With this technique, a higher number of transactions per unit of time can be communicated and/or executed over a given bandwidth limited channel. When the transmitted message is received, the receiver does not know the message length, but the receiver deduces the length by using information from various error detection and correction techniques, such as forward error correction (FEC) and cyclic redundancy check (CRC) techniques.
An equalization method has been developed for low latency, low bandwidth wireless communication channel environments. With this method, an exact copy, nearly exact copy, or some facsimile of a message (or associated information), which was transmitted via a low latency, low bandwidth wireless communication channel, is also sent via a backend communication channel such as a fiber optic network. Equalization is generally performed by comparing the originally received message to the copy sent via the backend channel. The original message can incorporate an added channel delay to compensate for the time delay between the primary wireless channel and the backend channel.
A communication method is configured to increase speed of messages reception over a bandwidth limited channel such as high frequency (HF) radio. User data arriving from a high-speed network is transformed into a format suitable for transmission over the radio channel. Message packets that will take longer to reach a destination via the radio channel as compared to alternative channels, such as a fiber optic network, are rejected for radio transmission. When the packet is received, the receiver deduces message length by using information from various error handling techniques, such as forward error correction (FEC) and cyclic redundancy check (CRC) techniques. Fill data is transmitted between message packets when no data is available. The FEC and CRC information for the fill data is modified so that the fill data will fail FEC and CRC checks at the receiving station.
A communication system transmits data between communication nodes over a data transmission path. The system collects data from at least two different sources to create a fused data stream that is used as the input to a model for determining a frequency at which to transmit the data by skywave propagation. The data is transmitted between the communication nodes at the frequency determined by the model.
A method for equalizing a wireless communication channel includes transmitting a data signal over a primary channel. During transmission of the data signal, a corresponding data signal is sent over a secondary channel. The information received from the secondary channel is compared to the information received from the primary channel and differences between the information received from each of the channels are observed. These differences are used as inputs to an equalizer algorithm that may be used to reduce distortion of the data signal sent over the primary channel.
A gear shifting technique has been developed in which modulation and equalization are shifted to achieve optional performance. In one form, two or more equalizers, each associated with a demodulator and message decoder, determine if the modulation being used can be increased in complexity in order to increase the channel throughput or determine if the modulation method should be reduced in complexity in order to improve the receiver error performance. The quality metrics can based on which equalizer-demodulator-decoder is set to first detect a valid message. Other factors can be considered with this technique such as a packet-error ratio and a signal-to-noise ratio. In a financial trading system, message erasures can be favored over errored messages by limiting the number of bit or symbol corrections permitted per message to less than the maximum possible for the selected decoding schemes.
A communication system uses multiple communications links, preferably links that use different communications media. The multiple communications links may include a high latency/high bandwidth link using a fiber-optic cable configured to carry large volumes of data but having a high latency. The communications links may also include a low latency/low bandwidth link implemented using skywave propagation of radio waves and configured to carry smaller volumes of triggering data with a lower latency across a substantial portion of the earth's surface. The triggering data may be sent in a data stream as data frames without headers, security information, or error checking codes. The two communications links may be used together to coordinate various activities such as the buying and selling of financial instruments.
A communication system allows for clock synchronization between a transmitter and a receiver when switching from transmission of an analog signal to transmission of a digital signal. The system uses clock synchronization during transmission of the digital signal, but the clock synchronization may be lost when switching to transmission of an analog signal. A digital clock synchronization is embedded in the analog signal so that the clock synchronization between the transmitter and the receiver may be reestablished upon switching to a digital signal without any delay in transmission of the digital signal.
A wireless communication system includes a first wireless communication node for transmitting a data signal that is sent to a second wireless communication node by skywave propagation over at least two different data transmission paths. The first data transmission path includes at least one reflection point where the data signal is reflected by the atmosphere and the second data transmission path includes more reflection points than the first data transmission path. The data signal that travelled along the first data transmission path is decoded before the data signal that travelled along the second data transmission path.
H04B 7/06 - Diversity systemsMulti-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
A communication system transmits data signals between communication nodes. A first data signal is transmitted as an electromagnetic wave along a first data transmission path to a receiver using skywave propagation. A second data signal, identical to the first data signal, is transmitted to the receiver along a second data transmission path. The two data signals are compared at the receiver to determine any distortion caused by the skywave propagation. Data regarding the distortion is sent back to the transmitter so that subsequent transmitted data signals may be preconditioned when sent by skywave propagation.
A communication system uses multiple communications links, preferably links that use different communications media. The multiple communications links may include a high latency/high bandwidth link using a fiber-optic cable configured to carry large volumes of data but having a high latency. The communications links may also include a low latency/low bandwidth link implemented using skywave propagation of radio waves and configured to carry smaller volumes of data with a lower latency across a substantial portion of the earth's surface. The two communications links may be used together to coordinate various activities such as the buying and selling of financial instruments.
A communication system uses multiple communications links, preferably links that use different communications media. The multiple communications links may include a high latency/high bandwidth link using a fiber-optic cable configured to carry large volumes of data but having a high latency. The communications links may also include a low latency/low bandwidth link implemented using skywave propagation of radio waves and configured to carry smaller volumes of triggering data with a lower latency across a substantial portion of the earth's surface. The triggering data may be sent in a data stream as data frames without headers, security information, or error checking codes. The two communications links may be used together to coordinate various activities such as the buying and selling of financial instruments.
A communication system transmits data between communication nodes over a data transmission path. The system collects data from at least two different sources to create a fused data stream that is used as the input to a model for determining a frequency at which to transmit the data by skywave propagation. The data is transmitted between the communication nodes at the frequency determined by the model.
A communication system transmits a data signal between a transmitter and a receiver. A service provider operates the communication system for a client. When the data signal is received at the receiver, the data signal is decoded and the service provider decides whether the decoded data signal is accurate or whether the decoded data signal should be rejected. The service provider transmits the decoded data signal and its determination as to its accuracy to the client. Metadata including information about the transmission of the data signal is also provided to the client so that the client can make its own determination regarding whether to accept or reject the decoded data signal.
A method for equalizing a wireless communication channel includes transmitting a data signal over a primary channel. During transmission of the data signal, a corresponding data signal is sent over a secondary channel. The information received from the secondary channel is compared to the information received from the primary channel and differences between the information received from each of the channels are observed. These differences are used as inputs to an equalizer algorithm that may be used to reduce distortion of the data signal sent over the primary channel.
A communication system allows for clock synchronization between a transmitter and a receiver when switching from transmission of an analog signal to transmission of a digital signal. The system uses clock synchronization during transmission of the digital signal, but the clock synchronization may be lost when switching to transmission of an analog signal. A digital clock synchronization is embedded in the analog signal so that the clock synchronization between the transmitter and the receiver may be reestablished upon switching to a digital signal without any delay in transmission of the digital signal.
Wireless communication is provided over an extended distance using a line or a series of drones traveling along a transmission path between a transmitter and a receiver. The transmitter sends a data signal to a first drone that is within range of the transmitter. The first drone sends the data signal to an adjacent drone in the line of drones which retransmits the data signal to the next drone in line. The data signal is transmitted between drones until it reaches a final drone within range of the receiver. The final drone transmits the data signal to the receiver. As the drones travel along the transmission path, new drones are launched from a location within range of the transmitter to replace drones that land after transmitting a data signal to the receiver.
A communication system uses skywave propagation to transmit data between communication nodes over a data transmission path. An atmospheric sensor is configured to collect atmospheric data at the reflection point of the data transmission path where the transmission path is redirected from the atmosphere toward the surface of the Earth. Data collected by the atmospheric sensor may be used to predict future ionospheric conditions and determine optimum working frequencies for transmission of data between the communication nodes.
A wireless communication system includes a first wireless communication node for transmitting a data signal that is sent to a second wireless communication node by skywave propagation over at least two different data transmission paths. The first data transmission path includes at least one reflection point where the data signal is reflected by the atmosphere and the second data transmission path includes more reflection points than the first data transmission path. The data signal that travelled along the first data transmission path is decoded before the data signal that travelled along the second data transmission path.
A communication system uses multiple communications links that may include a high latency/high bandwidth link using a fiber-optic cable configured to carry large volumes of data but having a high latency. The communications links may include a low latency/low bandwidth link using skywave propagation of radio waves and configured to carry smaller volumes of data with a lower latency. The low latency/low bandwidth link employs a transmitting antenna system where aspects such as antenna height, type of ground, and typography of the surrounding area at the transmitting site are adjusted to optimize the direction and angle of propagation. Controlling these and other aspects increases the predictability and reliability of the wireless link by managing the number of hops and skip distance between the transmitting and receiving antennas. The two communications links may be used together to coordinate various activities such as the buying and selling of financial instruments.
H04W 40/06 - Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources based on characteristics of available antennas
H04W 40/12 - Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
H04W 40/22 - Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
A method and communication system has been developed to increase the number of messages sent over a bandwidth limited channel and/or under noisy conditions by using a variable message length encoding and decoding scheme. With this technique, the messages having a higher probability of being sent are shorter as compared to the messages that are less likely to be sent under the current conditions. With this technique, a higher number of transactions per unit of time can be communicated and/or executed over a given bandwidth limited channel. When the transmitted message is received, the receiver does not know the message length, but the receiver deduces the length by using information from various error detection and correction techniques, such as forward error correction (FEC) and cyclic redundancy check (CRC) techniques.
An equalization method has been developed for low latency, low bandwidth wireless communication channel environments. With this method, an exact copy, nearly exact copy, or some facsimile of a message (or associated information), which was transmitted via a low latency, low bandwidth wireless communication channel, is also sent via a backend communication channel such as a fiber optic network. Equalization is generally performed by comparing the originally received message to the copy sent via the backend channel. The original message can incorporate an added channel delay to compensate for the time delay between the primary wireless channel and the backend channel.
A gear shifting technique has been developed in which modulation and equalization are shifted to achieve optional performance. In one form, two or more equalizers, each associated with a demodulator and message decoder, determine if the modulation being used can be increased in complexity in order to increase the channel throughput or determine if the modulation method should be reduced in complexity in order to improve the receiver error performance. The quality metrics can based on which equalizer-demodulator-decoder is set to first detect a valid message. Other factors can be considered with this technique such as a packet-error ratio and a signal-to-noise ratio. In a financial trading system, message erasures can be favored over errored messages by limiting the number of bit or symbol corrections permitted per message to less than the maximum possible for the selected decoding schemes.
A communication method is configured to increase speed of messages reception over a bandwidth limited channel such as high frequency (HF) radio. User data arriving from a high-speed network is transformed into a format suitable for transmission over the radio channel. Message packets that will take longer to reach a destination via the radio channel as compared to alternative channels, such as a fiber optic network, are rejected for radio transmission. When the packet is received, the receiver deduces message length by using information from various error handling techniques, such as forward error correction (FEC) and cyclic redundancy check (CRC) techniques. Fill data is transmitted between message packets when no data is available. The FEC and CRC information for the fill data is modified so that the fill data will fail FEC and CRC checks at the receiving station.
A communication system transmits data signals between communication nodes. A first data signal is transmitted as an electromagnetic wave along a first data transmission path to a receiver using skywave propagation. A second data signal, identical to the first data signal, is transmitted to the receiver along a second data transmission path. The two data signals are compared at the receiver to determine any distortion caused by the skywave propagation. Data regarding the distortion is sent back to the transmitter so that subsequent transmitted data signals may be preconditioned when sent by skywave propagation.
A method and communication system has been developed to increase the number of messages sent over a bandwidth limited channel and/or under noisy conditions by using a variable message length encoding and decoding scheme. With this technique, the messages having a higher probability of being sent are shorter as compared to the messages that are less likely to be sent under the current conditions. With this technique, a higher number of transactions per unit of time can be communicated and/or executed over a given bandwidth limited channel. When the transmitted message is received, the receiver does not know the message length, but the receiver deduces the length by using information from various error detection and correction techniques, such as forward error correction (FEC) and cyclic redundancy check (CRC) techniques.
An equalization method has been developed for low latency, low bandwidth wireless communication channel environments. With this method, an exact copy, nearly exact copy, or some facsimile of a message (or associated information), which was transmitted via a low latency, low bandwidth wireless communication channel, is also sent via a backend communication channel such as a fiber optic network. Equalization is generally performed by comparing the originally received message to the copy sent via the backend channel. The original message can incorporate an added channel delay to compensate for the time delay between the primary wireless channel and the backend channel.
A gear shifting technique has been developed in which modulation and equalization are shifted to achieve optional performance. In one form, two or more equalizers, each associated with a demodulator and message decoder, determine if the modulation being used can be increased in complexity in order to increase the channel throughput or determine if the modulation method should be reduced in complexity in order to improve the receiver error performance. The quality metrics can based on which equalizer-demodulator-decoder is set to first detect a valid message. Other factors can be considered with this technique such as a packet-error ratio and a signal-to-noise ratio. In a financial trading system, message erasures can be favored over errored messages by limiting the number of bit or symbol corrections permitted per message to less than the maximum possible for the selected decoding schemes.
A communication method is configured to increase speed of messages reception over a bandwidth limited channel such as high frequency (HF) radio. User data arriving from a high-speed network is transformed into a format suitable for transmission over the radio channel. Message packets that will take longer to reach a destination via the radio channel as compared to alternative channels, such as a fiber optic network, are rejected for radio transmission. When the packet is received, the receiver deduces message length by using information from various error handling techniques, such as forward error correction (FEC) and cyclic redundancy check (CRC) techniques. Fill data is transmitted between message packets when no data is available. The FEC and CRC information for the fill data is modified so that the fill data will fail FEC and CRC checks at the receiving station.
A communication system uses multiple communications links, preferably links that use different communications media. The multiple communications links may include a high latency/high bandwidth link using a fiber-optic cable configured to carry large volumes of data but having a high latency. The communications links may also include a low latency/low bandwidth link implemented using skywave propagation of radio waves and configured to carry smaller volumes of triggering data with a lower latency across a substantial portion of the earth's surface. The triggering data may be sent in a data stream as data frames without headers, security information, or error checking codes. The two communications links may be used together to coordinate various activities such as the buying and selling of financial instruments.
46.
CLOCK SYNCHRONIZATION WHEN SWITCHING BETWEEN BROADCAST AND DATA TRANSMISSION MODES
A communication system allows for clock synchronization between a transmitter and a receiver when switching from transmission of an analog signal to transmission of a digital signal. The system uses clock synchronization during transmission of the digital signal, but the clock synchronization may be lost when switching to transmission of an analog signal. A digital clock synchronization is embedded in the analog signal so that the clock synchronization between the transmitter and the receiver may be reestablished upon switching to a digital signal without any delay in transmission of the digital signal.
H04L 7/027 - Speed or phase control by the received code signals, the signals containing no special synchronisation information extracting the synchronising or clock signal from the received signal spectrum, e.g. by using a resonant or bandpass circuit
H04L 7/00 - Arrangements for synchronising receiver with transmitter
Wireless communication is provided over an extended distance using a line or a series of drones travelling along a transmission path between a transmitter and a receiver. The transmitter sends a data signal to a first drone that is within range of the transmitter. The first drone sends the data signal to an adjacent drone in the line of drones which retransmits the data signal to the next drone in line. The data signal is transmitted between drones until it reaches a final drone within range of the receiver. The final drone transmits the data signal to the receiver. As the drones travel along the transmission path, new drones are launched from a location within range of the transmitter to replace drones that land after transmitting a data signal to the receiver.
H04B 7/24 - Radio transmission systems, i.e. using radiation field for communication between two or more posts
H01Q 3/00 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
A communication system transmits a data signal between a transmitter and a receiver. A service provider operates the communication system for a client. When the data signal is received at the receiver, the data signal is decoded and the service provider decides whether the decoded data signal is accurate or whether the decoded data signal should be rejected. The service provider transmits the decoded data signal and its determination as to its accuracy to the client. Metadata including information about the transmission of the data signal is also provided to the client so that the client can make its own determination regarding whether to accept or reject the decoded data signal.
A method for equalizing a wireless communication channel includes transmitting a data signal over a primary channel. During transmission of the data signal, a corresponding data signal is sent over a secondary channel. The information received from the secondary channel is compared to the information received from the primary channel and differences between the information received from each of the channels are observed. These differences are used as inputs to an equalizer algorithm that may be used to reduce distortion of the data signal sent over the primary channel.
A communication system transmits data between communication nodes over a data transmission path. The system collects data from at least two different sources to create a fused data stream that is used as the input to a model for determining a frequency at which to transmit the data by skywave propagation. The data is transmitted between the communication nodes at the frequency determined by the model.
A communication system uses multiple communications links, preferably links that use different communications media. The multiple communications links may include a high latency/high bandwidth link using a fiber-optic cable configured to carry large volumes of data but having a high latency. The communications links may also include a low latency/low bandwidth link implemented using skywave propagation of radio waves and configured to carry smaller volumes of data with a lower latency across a substantial portion of the earth's surface. The low latency/low bandwidth link employs a transmitting antenna system where aspects such as antenna height, type of ground, and typography of the surrounding area at the transmitting site are adjusted to optimize the direction and angle of propagation. Controlling these and other aspects increases the predictability and reliability of the wireless link by managing the number of hops and the skip distance for each hop between the transmitting and receiving antennas. The two communications links may be used together to coordinate various activities such as the buying and selling of financial instruments.
Skywave propagation may be an effective communication method for providing low- latency data transmission between a transmitter and a receiver that are separated by a large distance. Although skywave propagation may reduce transmission times compared to other methods of communication such as fiber optic cables and satellite networks, distortion caused by ionospheric and other atmospheric conditions may cause a delay in processing the data signal as the data signal is unscrambled. In some instances, these delays may prove to be costly. For example, orders to buy and sell securities or other financial instruments in world markets, or even news pertinent to trading strategies, typically rely on communications links that carry data and instructions and delays of even a few milliseconds can cost millions of dollars. Therefore, it may be beneficial to have a communication system that that can reduce the effect of distortion caused by ionospheric conditions on skywave propagation.
A communication system uses skywave propagation to transmit data between communication nodes over a data transmission path. An atmospheric sensor is configured to collect atmospheric data at the reflection point of the data transmission path where the transmission path is redirected from the atmosphere toward the surface of the Earth. Data collected by the atmospheric sensor may be used to predict future ionospheric conditions and determine optimum working frequencies for transmission of data between the communication nodes.
54.
HANDLING SIGNALS RECEIVED ON PATHS WITH DIFFERING NUMBERS OF HOPS
A wireless communication system includes a first wireless communication node for transmitting a data signal that is sent to a second wireless communication node by skywave propagation over at least two different data transmission paths. The first data transmission path includes at least one reflection point where the data signal is reflected by the atmosphere and the second data transmission path includes more reflection points than the first data transmission path. The data signal that travelled along the first data transmission path is decoded before the data signal that travelled along the second data transmission path.
A communication system uses multiple communications links, preferably links that use different communications media. The multiple communications links may include a high latency/high bandwidth link using a fiber-optic cable configured to carry large volumes of data but having a high latency. The communications links may also include a low latency/low bandwidth link implemented using skywave propagation of radio waves and configured to carry smaller volumes of data with a lower latency across a substantial portion of the earth's surface. The two communications links may be used together to coordinate various activities such as the buying and selling of financial instruments.
A communication system uses multiple communications links, preferably links that use different communications media. The multiple communications links may include a high latency/high bandwidth link using a fiber-optic cable configured to carry large volumes of data but having a high latency. The communications links may also include a low latency/low bandwidth link implemented using skywave propagation of radio waves and configured to carry smaller volumes of data with a lower latency across a substantial portion of the earth's surface. The two communications links may be used together to coordinate various activities such as the buying and selling of financial instruments.
A communication system uses multiple communications links, preferably links that use different communications media. The multiple communications links may include a high latency/high bandwidth link using a fiber-optic cable configured to carry large volumes of data but having a high latency. The communications links may also include a low latency/low bandwidth link implemented using skywave propagation of radio waves and configured to carry smaller volumes of data with a lower latency across a substantial portion of the earth' s surface. The two communications links may be used together to coordinate various activities such as the buying and selling of financial instruments.
A communication system uses multiple communications links, preferably links that use different communications media. The multiple communications links may include a high latency/high bandwidth link using a fiber-optic cable configured to carry large volumes of data but having a high latency. The communications links may also include a low latency/low bandwidth link implemented using skywave propagation of radio waves and configured to carry smaller volumes of data with a lower latency across a substantial portion of the earth's surface. The two communications links may be used together to coordinate various activities such as the buying and selling of financial instruments.
H04B 10/11 - Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
H04B 7/06 - Diversity systemsMulti-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
H04W 40/26 - Connectivity information management, e.g. connectivity discovery or connectivity update for hybrid routing by combining proactive and reactive routing
H04B 7/08 - Diversity systemsMulti-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
59.
COMMUNICATION METHOD AND SYSTEM THAT USES LOW LATENCY/LOW DATA BANDWIDTH AND HIGH LATENCY/HIGH DATA BANDWIDTH PATHWAYS
A communication system uses multiple communications links, preferably links that use different communications media. The multiple communications links may include a high latency/high bandwidth link using a fiber-optic cable configured to carry large volumes of data but having a high latency. The communications links may also include a low latency/low bandwidth link implemented using skywave propagation of radio waves and configured to carry smaller volumes of data with a lower latency across a substantial portion of the earth' s surface. The two communications links may be used together to coordinate various activities such as the buying and selling of financial instruments.
A communication system uses multiple communications links, preferably links that use different communications media. The multiple communications links may include a high latency/high bandwidth link using a fiber-optic cable configured to carry large volumes of data but having a high latency. The communications links may also include a low latency/low bandwidth link implemented using skywave propagation of radio waves and configured to carry smaller volumes of data with a lower latency across a substantial portion of the earth's surface. The low latency/low bandwidth link employs a transmitting antenna system where aspects such as antenna height, type of ground, and typography of the surrounding area at the transmitting site are adjusted to optimize the direction and angle of propagation. Controlling these and other aspects increases the predictability and reliability of the wireless link by managing the number of hops and the skip distance for each hop between the transmitting and receiving antennas. The two communications links may be used together to coordinate various activities such as the buying and selling of financial instruments.
A communication system uses skywave propagation to transmit data between communication nodes over a data transmission path. An atmospheric sensor is configured to collect atmospheric data at the reflection point of the data transmission path where the transmission path is redirected from the atmosphere toward the surface of the Earth. Data collected by the atmospheric sensor may be used to predict future ionospheric conditions and determine optimum working frequencies for transmission of data between the communication nodes.
Skywave propagation may be an effective communication method for providing low- latency data transmission between a transmitter and a receiver that are separated by a large distance. Although skywave propagation may reduce transmission times compared to other methods of communication such as fiber optic cables and satellite networks, distortion caused by ionospheric and other atmospheric conditions may cause a delay in processing the data signal as the data signal is unscrambled. In some instances, these delays may prove to be costly. For example, orders to buy and sell securities or other financial instruments in world markets, or even news pertinent to trading strategies, typically rely on communications links that carry data and instructions and delays of even a few milliseconds can cost millions of dollars. Therefore, it may be beneficial to have a communication system that that can reduce the effect of distortion caused by ionospheric conditions on skywave propagation.
A wireless communication system includes a first wireless communication node for transmitting a data signal that is sent to a second wireless communication node by skywave propagation over at least two different data transmission paths. The first data transmission path includes at least one reflection point where the data signal is reflected by the atmosphere and the second data transmission path includes more reflection points than the first data transmission path. The data signal that travelled along the first data transmission path is decoded before the data signal that travelled along the second data transmission path.
A communication system transmits data between communication nodes over a data transmission path. The system collects data from at least two different sources to create a fused data stream that is used as the input to a model for determining a frequency at which to transmit the data by skywave propagation. The data is transmitted between the communication nodes at the frequency determined by the model.
An equalization method has been developed for low latency, low bandwidth wireless communication channel environments. With this method, an exact copy, nearly exact copy, or some facsimile of a message (or associated information), which was transmitted via a low latency, low bandwidth wireless communication channel, is also sent via a backend communication channel such as a fiber optic network. Equalization is generally performed by comparing the originally received message to the copy sent via the backend channel. The original message can incorporate an added channel delay to compensate for the time delay between the primary wireless channel and the backend channel.
A communication method is configured to increase speed of messages reception over a bandwidth limited channel such as high frequency (HF) radio. User data arriving from a high-speed network is transformed into a format suitable for transmission over the radio channel. Message packets that will take longer to reach a destination via the radio channel as compared to alternative channels, such as a fiber optic network, are rejected for radio transmission. When the packet is received, the receiver deduces message length by using information from various error handling techniques, such as forward error correction (FEC) and cyclic redundancy check (CRC) techniques. Fill data is transmitted between message packets when no data is available. The FEC and CRC information for the fill data is modified so that the fill data will fail FEC and CRC checks at the receiving station.
A method for equalizing a wireless communication channel includes transmitting a data signal over a primary channel. During transmission of the data signal, a corresponding data signal is sent over a secondary channel. The information received from the secondary channel is compared to the information received from the primary channel and differences between the information received from each of the channels are observed. These differences are used as inputs to an equalizer algorithm that may be used to reduce distortion of the data signal sent over the primary channel.
A communication system transmits a data signal between a transmitter and a receiver. A service provider operates the communication system for a client. When the data signal is received at the receiver, the data signal is decoded and the service provider decides whether the decoded data signal is accurate or whether the decoded data signal should be rejected. The service provider transmits the decoded data signal and its determination as to its accuracy to the client. Metadata including information about the transmission of the data signal is also provided to the client so that the client can make its own determination regarding whether to accept or reject the decoded data signal.
A communication system uses multiple communications links, preferably links that use different communications media. The multiple communications links may include a high latency/high bandwidth link using a fiber-optic cable configured to carry large volumes of data but having a high latency. The communications links may also include a low latency/low bandwidth link implemented using skywave propagation of radio waves and configured to carry smaller volumes of triggering data with a lower latency across a substantial portion of the earth's surface. The triggering data may be sent in a data stream as data frames without headers, security information, or error checking codes. The two communications links may be used together to coordinate various activities such as the buying and selling of financial instruments.
H04L 1/00 - Arrangements for detecting or preventing errors in the information received
H04L 9/06 - Arrangements for secret or secure communicationsNetwork security protocols the encryption apparatus using shift registers or memories for blockwise coding, e.g. D.E.S. systems
70.
COMMUNICATION SYSTEM AND METHOD OF USING VARIABLE-LENGTH MESSAGES
A method and communication system has been developed to increase the number of messages sent over a bandwidth limited channel and/or under noisy conditions by using a variable message length encoding and decoding scheme. With this technique, the messages having a higher probability of being sent are shorter as compared to the messages that are less likely to be sent under the current conditions. With this technique, a higher number of transactions per unit of time can be communicated and/or executed over a given bandwidth limited channel. When the transmitted message is received, the receiver does not know the message length, but the receiver deduces the length by using information from various error detection and correction techniques, such as forward error correction (FEC) and cyclic redundancy check (CRC) techniques.
A gear shifting technique has been developed in which modulation and equalization are shifted to achieve optional performance. In one form, two or more equalizers, each associated with a demodulator and message decoder, determine if the modulation being used can be increased in complexity in order to increase the channel throughput or determine if the modulation method should be reduced in complexity in order to improve the receiver error performance. The quality metrics can based on which equalizer-demodulator-decoder is set to first detect a valid message. Other factors can be considered with this technique such as a packet-error ratio and a signal-to-noise ratio. In a financial trading system, message erasures can be favored over errored messages by limiting the number of bit or symbol corrections permitted per message to less than the maximum possible for the selected decoding schemes.