A DC bus is connected to a PV array, a battery or both, to power a grid connected inverter load on the bus. A system and method is described for controlling current flow on a DC bus regardless of the type of inverter. A converter receives a DC battery voltage. A switching module controls current flow through the converter. A current generator generates a reference current in response to a reference voltage. A comparator connected at the output of the current generator compares the reference current with a battery current and outputs a signal to a controller. The controller generates a reference value. A PWM generator modulates the switch module to control current flow and energy flow between the DC bus and the battery. The current from the DC bus to the inverter is controlled to allow proper grid-connected operation regardless of inverter type.
An electrode-less and membrane-less battery includes: a cathode current collector; an anode current collector; a liquid or solid polymerized catholyte including dissolved active ions in contact with the cathode; a liquid or solid polymerized anolyte including dissolved active ions in contact with the anode; and a ceramic or solid polymerized buffer including active and working ions disposed between the catholyte and the anolyte.
A high voltage metal-free battery comprising a cathode comprising a cathode electroactive material, wherein the cathode electroactive material comprises at least one of an organic compound, an oxide, a hydroxide, an oxyhydroxide, a sulfide, and combinations thereof; an anode comprising an anode electroactive material, wherein the anode electroactive material comprises at least one of an organic compound, an oxide, a hydroxide, an oxyhydroxide, a sulfide, and combinations thereof; a catholyte in contact with the cathode, wherein the catholyte is not in contact with the anode; and an anolyte in contact with the anode, wherein the anolyte is not in contact with the cathode. The catholyte has a pH of less than 4, and the anolyte has a pH of greater than 10. The battery comprises a separator, wherein the separator has ion-selective properties.
H01M 10/26 - Selection of materials as electrolytes
H01M 4/50 - Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
H01M 4/62 - Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
H01M 50/489 - Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
An ion selective layer includes a water-soluble organic polymer, a cross-linker, a water-soluble inorganic salt or hydroxide, and water. A method of making the ion selective layer includes dissolving a water-soluble organic polymer in water, dissolving a water-soluble inorganic salt or hydroxide in water, dissolving a cross-linker in water, cross-linking the water-soluble polymer, forming a layer by casting onto a substrate, and drying the water solution to form a film. Another method of making the ion selective layer includes dissolving a water-soluble organic monomer in water, dissolving a water-soluble inorganic salt or hydroxide in water, dissolving a cross-linker in water, dissolving an initiator in water, polymerizing and cross-linking the water-soluble monomer, forming a layer by casting onto a substrate, and drying the water solution to form a film.
H01M 50/489 - Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
A high voltage zinc (Zn)-anode battery comprising a cathode comprising a cathode electroactive material; an anode comprising a Zn electroactive material; a catholyte in contact with the cathode, wherein the catholyte is not in contact with the anode; an anolyte in contact with the anode, wherein the anolyte is not in contact with the cathode; and a separator disposed between the anolyte and the catholyte. The catholyte has a pH of less than 4, and the anolyte has a pH of greater than 10. The separator has ion-selective properties.
A primary or rechargeable battery comprising a battery housing; a cathode comprising a cathode electroactive material a conductive carbon, and a binder; an anode comprising an anode electroactive material; an electrolyte; and a conductive interlayer; and wherein the cathode, the anode, the electrolyte, and the conductive interlayer are disposed within the battery housing. The cathode electroactive material comprises manganese dioxide, any polymorphs thereof, or combinations thereof. The cathode is configured to access 20-100% of 1st electron capacity of the cathode electroactive material. The conductive interlayer contacts the cathode. The conductive interlayer comprises (i) a binder and (ii) a conductive carbon, a metal hydroxide, a metal oxide, or combinations thereof.
A dual electrolyte battery comprises a cathode, an anode, a catholyte in contact with the cathode, and an anolyte in contact with the anode. The catholyte comprises a first gelled electrolyte solution, and the anolyte comprises a second gelled electrolyte solution. A concentration of an electrolyte in the anolyte is higher than a concentration of the electrolyte in the catholyte.
A solid state high voltage battery includes a cathode; an anode; a catholyte solution in contact with the cathode; an anolyte solution in contact with the anode, and a separator disposed between the cathode and the anode. At least one of the catholyte or the anolyte is gelled, and at least one of the catholyte or the anolyte comprises an organic electrolyte, an ionic liquid electrolyte, or water in salt electrolyte.
A battery comprises an anode, a cathode, and a polymer electrolyte disposed between the anode and the cathode. The polymer electrolyte can include an inert hydrophilic polymer matrix impregnated with an aqueous electrolyte. The hydrophilic polymer matrix can include a polar vinyl monomer, an initiator, and a cross-linker. A gassing inhibitor can be included in the polymer electrolyte to help avoid issues with overcharging of the electrodes.
An electrode-less and membrane-less battery includes: a cathode current collector; an anode current collector; a liquid or solid polymerized catholyte including dissolved active ions in contact with the cathode; a liquid or solid polymerized anolyte including dissolved active ions in contact with the anode; and a ceramic or solid polymerized buffer including active and working ions disposed between the catholyte and the anolyte.
An electrode includes an electrode material, a polymer substrate, and a current collector. The electrode material comprises an electroactive material, and the electrode material forms an electrode material sheet. The electrode material sheet is disposed on the polymer substrate, and a current collector in electrical contact with the electrode material.
A membraneless battery comprising a cathode comprising a cathode electroactive material; an anode comprising an anode electroactive material; a catholyte in contact with the cathode, wherein the catholyte is not in contact with the anode; an anolyte in contact with the anode, wherein the anolyte is not in contact with the cathode; and one or more buffer interlayers disposed between the anolyte and the catholyte. The catholyte has a pH of less than 4, and the anolyte has a pH of greater than 10. The one or more buffer interlayers regulate a pH in the battery. The anode electroactive material comprises a Zn electroactive material. At least one of the one or more buffer interlayers comprises a weak acid and its conjugate base; and/or at least one of the one or more buffer interlayers comprises a weak base and its conjugate acid.
H01M 4/505 - Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
H01M 4/62 - Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
An alkaline battery comprises an anode, a cathode, a separator disposed between the anode and the cathode, a barrier layer disposed between the anode and the cathode, and an electrolyte in fluid communication with the anode, the cathode, and the separator. The barrier layer is at least one of: an organic polymer film or a porous inorganic layer or combinations thereof.
In some embodiments, a battery comprises an anode, a cathode, a separator disposed between the anode and the cathode, and an electrolyte in fluid communication with the anode, the cathode, and the separator. The anode can be a porous metallic zinc anode. The porous metallic zinc anode comprises pure zinc electrode, a substrate coated with zinc, a zinc substrate with a coating layer, or combinations thereof.
A high voltage zinc (Zn)-anode battery comprising a cathode comprising a cathode electroactive material; an anode comprising a Zn electroactive material; a catholyte in contact with the cathode, wherein the catholyte is not in contact with the anode; an anolyte in contact with the anode, wherein the anolyte is not in contact with the cathode; and a separator disposed between the anolyte and the catholyte. The catholyte has a pH of less than 4, and the anolyte has a pH of greater than 10. The separator has ion-selective properties.
A high voltage metal-free battery comprising a cathode comprising a cathode electroactive material, wherein the cathode electroactive material comprises at least one of an organic compound, an oxide, a hydroxide, an oxyhydroxide, a sulfide, and combinations thereof; an anode comprising an anode electroactive material, wherein the anode electroactive material comprises at least one of an organic compound, an oxide, a hydroxide, an oxyhydroxide, a sulfide, and combinations thereof; a catholyte in contact with the cathode, wherein the catholyte is not in contact with the anode; and an anolyte in contact with the anode, wherein the anolyte is not in contact with the cathode. The catholyte has a pH of less than 4, and the anolyte has a pH of greater than 10. The battery comprises a separator, wherein the separator has ion-selective properties.
H01M 4/131 - Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
H01M 4/36 - Selection of substances as active materials, active masses, active liquids
H01M 4/48 - Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
H01M 4/505 - Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
H01M 4/58 - Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFySelection of substances as active materials, active masses, active liquids of polyanionic structures, e.g. phosphates, silicates or borates
H01M 4/60 - Selection of substances as active materials, active masses, active liquids of organic compounds
H01M 6/24 - Cells comprising two different electrolytes
18.
IMPROVING ZINC-MANGANESE DIOXIDE BATTERY PERFORMANCE THROUGH INTERLAYERS
A primary or rechargeable battery comprising a battery housing; a cathode comprising a cathode electroactive material a conductive carbon, and a binder; an anode comprising an anode electroactive material; an electrolyte; and a conductive interlayer; and wherein the cathode, the anode, the electrolyte, and the conductive interlayer are disposed within the battery housing. The cathode electroactive material comprises manganese dioxide, any polymorphs thereof, or combinations thereof. The cathode is configured to access 20-100% of 1st electron capacity of the cathode electroactive material. The conductive interlayer contacts the cathode. The conductive interlayer comprises (i) a binder and (ii) a conductive carbon, a metal hydroxide, a metal oxide, or combinations thereof.
A dual electrolyte battery comprises a cathode, an anode, a catholyte in contact with the cathode, and an anolyte in contact with the anode. The catholyte comprises a first gelled electrolyte solution, and the anolyte comprises a second gelled electrolyte solution. A concentration of an electrolyte in the anolyte is higher than a concentration of the electrolyte in the catholyte.
H01M 10/0587 - Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
A solid state high voltage battery includes a cathode; an anode; a catholyte solution in contact with the cathode; an anolyte solution in contact with the anode, and a separator disposed between the cathode and the anode. At least one of the catholyte or the anolyte is gelled, and at least one of the catholyte or the anolyte comprises an organic electrolyte, an ionic liquid electrolyte, or water in salt electrolyte.
A battery comprises an anode, a cathode, and a polymer electrolyte disposed between the anode and the cathode. The polymer electrolyte can include an inert hydrophilic polymer matrix impregnated with an aqueous electrolyte. The hydrophilic polymer matrix can include a polar vinyl monomer, an initiator, and a cross-linker. A gassing inhibitor can be included in the polymer electrolyte to help avoid issues with overcharging of the electrodes.
A charger for a plurality of cells comprises a plurality of cells, a plurality of DC power sources, a common DC source in electrical communication with each of the plurality of DC power sources, and a CPU configured to selectively control the connection between each DC power source and the corresponding cell. Each DC power source of the plurality of DC power sources is selectively connectable to a corresponding cell of the plurality of cells.
An electrode includes an electrode material, a polymer substrate, and a current collector. The electrode material comprises an electroactive material, and the electrode material forms an electrode material sheet. The electrode material sheet is disposed on the polymer substrate, and a current collector in electrical contact with the electrode material.
An alkaline battery comprises an anode, a cathode, a separator disposed between the anode and the cathode, a barrier layer disposed between the anode and the cathode, and an electrolyte in fluid communication with the anode, the cathode, and the separator. The barrier layer is at least one of: an organic polymer film or a porous inorganic layer or combinations thereof.
In some embodiments, a battery comprises an anode, a cathode, a separator disposed between the anode and the cathode, and an electrolyte in fluid communication with the anode, the cathode, and the separator. The anode can be a porous metallic zinc anode. The porous metallic zinc anode comprises pure zinc electrode, a substrate coated with zinc, a zinc substrate with a coating layer, or combinations thereof.
A secondary zinc-manganese dioxide secondary cell is disclosed. The cell includes a zinc gel anode, high manganese content cathode in either prismatic or jelly roll form. An aqueous based continuous reel to reel process for formulation and fabrication of the anode and cathode is provided. The cell is contained in a box assembly.
A charger for a plurality of cells comprises a plurality of cells, a plurality of DC power sources, a common DC source in electrical communication with each of the plurality of DC power sources, and a CPU configured to selectively control the connection between each DC power source and the corresponding cell. Each DC power source of the plurality of DC power sources is selectively connectable to a corresponding cell of the plurality of cells.
A secondary zinc-manganese dioxide secondary cell is disclosed. The cell includes a zinc gel anode, high manganese content cathode in either prismatic or jelly roll form. An aqueous based continuous reel to reel process for formulation and fabrication of the anode and cathode is provided. The cell is contained in a box assembly.
A secondary zinc - manganese dioxide secondary cell is disclosed. The cell includes a zinc gel anode, high manganese content cathode in either prismatic or jelly roll form. An aqueous based continuous reel to reel process for formulation and fabrication of the anode and cathode is provided. The cell is contained in a box assembly.