A mounting assembly for securing a solar panel assembly to a rotatable tube of a solar tracker includes a saddle having a first sidewall, a second sidewall, and a base wall extending between the first sidewall and the second sidewall. The solar panel assembly includes a support rail on a back side of the solar panel assembly defining a slot. The sidewalls define a gap sized to receive the support rail. A clip assembly is sized to extend around the rotatable tube and includes a clip and a cam plate. A locking device is connected to the clip assembly, is shaped to engage the first sidewall and the second sidewall, and is insertable into the slot in the support rail to connect the clip assembly to the support rail. The cam plate is shaped to receive the clip under tension and clamp the support rail to the rotatable tube.
Rail assemblies for connecting a photovoltaic panel to a tube include a rail shaped to be mounted on the tube such that, when mounted, the rail extends transversely outward of the tube between first and second ends. The rail assemblies further include a rail connector for securing the rail to the tube. The rail connector includes a first clip attached to the rail, a second clip attached to the rail, and a lock bracket defining a notch shaped to releasably receive the second clip. The first clip is attached to the lock bracket. When the rail is secured to the tube, the first clip and the second clip collectively apply tension on the lock bracket to clamp the rail to the tube.
Solar tracker systems include a torque tube, a column supporting the torque tube, a solar panel connected to the torque tube, and a damper assembly. The damper assembly includes a first end pivotably connected to the torque tube and a second end pivotably connected to the column. The damper assembly further includes an outer shell, a piston within and moveable relative to the outer shell, a first chamber wall and a second chamber wall within the outer shell at least partially defining a chamber, and a valve within the chamber. The valve includes a first axial end defining a slot and is biased to a first position within the chamber in which the first axial end is spaced from the first chamber wall. The valve is moveable within the chamber from the first position to a second position to passively change a flow resistance of the damper assembly.
F16F 9/02 - Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using gas only
F16F 9/18 - Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein
F16F 9/32 - Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium Details
F16F 9/34 - Special valve constructionsShape or construction of throttling passages
F16F 9/36 - Special sealings, including sealings or guides for piston-rods
F16F 9/50 - Special means providing automatic damping adjustment
F16M 11/10 - Means for attachment of apparatusMeans allowing adjustment of the apparatus relatively to the stand allowing pivoting around a horizontal axis
Solar tracker systems include an array of solar panels, a drive for rotating the array about a longitudinal axis, and a mounting assembly including a plurality of posts and a pivotable frame assembly supporting the array of solar panels on the posts. The frame assembly includes a first frame tube connected to the drive and extending therefrom in a direction parallel to the longitudinal axis and a second frame tube laterally offset from the first frame tube and extending parallel to the first frame tube. The first frame tube and second frame tube are sized to support at least one solar panel of the array of solar panels thereon. The frame assembly further includes a lateral beam attached to the first frame tube and the second frame tube.
Solar tracker systems include a rotatable tube defining a longitudinal axis and a rail mounted on the rotatable tube. The rail extends transversely outward of the tube between first and second opposed ends. The solar tracker system further includes a photovoltaic panel assembly attached to the rail and a rail connector securing the rail to the rotatable tube. The rail connector includes at least one clip attached to the rail and a lock bracket defining a notch receiving the clip therein such that the clip applies tension on the lock bracket.
Solar tracker systems include a rotatable tube defining a longitudinal axis and a rail mounted on the rotatable tube. The rail extends transversely outward of the tube between first and second opposed ends. The solar tracker system further includes a photovoltaic panel assembly attached to the rail and a rail connector securing the rail to the rotatable tube. The rail connector includes at least one clip attached to the rail and a lock bracket defining a notch receiving the clip therein such that the clip applies tension on the lock bracket.
Tracking systems for adjusting a photovoltaic array are disclosed. In some embodiments, the tracking system includes an actuator that moves one or more links to cause the array to rotate. The tracking system may be disposed below a torque rail of the tracking system. The actuator may be a slew drive that retracts or extends the one or more links to cause the array to rotate.
A solar tracker system includes a support tube, a solar panel assembly connected to the support tube, and an active lock connected to the support tube. The active lock includes a housing defining a chamber and a seal. The seal prevents a flow of fluid through the chamber when the active lock is in a sealed state and allows the flow of fluid through the chamber when the active lock is in an unsealed state. The active lock further includes a locking system motor connected to the seal to transition the active lock between the sealed state and the unsealed state, a battery providing power to the locking system motor, and an antenna for receiving instructions controlling the locking system motor.
H02S 20/32 - Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
G05D 3/10 - Control of position or direction without using feedback
F16F 9/32 - Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium Details
F16F 9/50 - Special means providing automatic damping adjustment
Solar tracker systems include an array of solar panels, a drive for rotating the array about a longitudinal axis, and a mounting assembly including a plurality of posts and a pivotable frame assembly supporting the array of solar panels on the posts. The frame assembly includes a first frame tube connected to the drive and extending therefrom in a direction parallel to the longitudinal axis and a second frame tube laterally offset from the first frame tube and extending parallel to the first frame tube. The first frame tube and second frame tube are sized to support at least one solar panel of the array of solar panels thereon. The frame assembly further includes a lateral beam attached to the first frame tube and the second frame tube.
Solar tracker systems include an array of solar panels, a drive for rotating the array about a longitudinal axis, and a mounting assembly including a plurality of posts and a pivotable frame assembly supporting the array of solar panels on the posts. The frame assembly includes a first frame tube connected to the drive and extending therefrom in a direction parallel to the longitudinal axis and a second frame tube laterally offset from the first frame tube and extending parallel to the first frame tube. The first frame tube and second frame tube are sized to support at least one solar panel of the array of solar panels thereon. The frame assembly further includes a lateral beam attached to the first frame tube and the second frame tube.
Solar tracker systems include an array of solar panels, a drive for rotating the array about a longitudinal axis, and a mounting assembly including a plurality of posts and a pivotable frame assembly supporting the array of solar panels on the posts. The frame assembly includes a first frame tube connected to the drive and extending therefrom in a direction parallel to the longitudinal axis and a second frame tube laterally offset from the first frame tube and extending parallel to the first frame tube. The first frame tube and second frame tube are sized to support at least one solar panel of the array of solar panels thereon. The frame assembly further includes a lateral beam attached to the first frame tube and the second frame tube.
A system and method for array level terrain based backtracking includes a tracker configured to collect solar irradiance and attached to a rotational mechanism for changing a plane of the tracker and a controller in communication with a rotational mechanism. The controller is programmed to determine a position of the sun at a first specific point in time, retrieve height information, execute a shadow model based on the retrieved height information and the position of the sun, determine a first angle for the tracker; collect an angle for each tracker in a plurality of trackers in an array; adjust the first angle based on executing the shadow model with the first angle and the plurality of angles associated with the plurality of trackers; transmit instructions to the rotational mechanism to change the plane of the tracker to the adjusted first angle.
H02S 20/32 - Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
G01J 1/42 - Photometry, e.g. photographic exposure meter using electric radiation detectors
G01S 3/786 - Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
17.
Systems and methods for terrain based backtracking for solar trackers
A system is provided. The system includes a tracker configured to collect solar irradiance and attached to a rotational mechanism for changing a plane of the tracker and a controller in communication with the rotational mechanism. The controller is programmed to store a plurality of positional information and a shadow model for determining placement of shadows based on positions of objects relative to the sun, determine a position of the sun at a first specific point in time, retrieve height information for the tracker and at least one adjacent tracker, execute the shadow model based on the retrieved height information and the position of the sun, determine a first angle for the tracker based on the executed shadow model, and transmit instructions to the rotational mechanism to change the plane of the tracker to the first angle.
G05D 3/10 - Control of position or direction without using feedback
G01S 3/786 - Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
H02S 20/32 - Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
G05D 3/12 - Control of position or direction using feedback
18.
Systems and methods for adaptive range of motion for solar trackers
A system including a tracker configured to collect solar irradiance and attached to a rotational mechanism for changing a plane of the tracker and a controller in communication with the rotational mechanism. The controller is programmed to store a plurality of positional and solar tracking information, determine a position of the sun at a first specific point in time, calculate a first angle for the tracker based on the position of the sun, detect an amount of accumulation at the first specific point in time, determine a first maximum range of motion for the tracker based on the amount of accumulation, adjust the first angle for the tracker based on the first maximum range of motion for the tracker, and transmit instructions to the rotational mechanism to change the plane of the tracker to the first adjusted angle.
H02S 20/32 - Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
G01S 3/786 - Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
19.
Locking assembly for a solar photovoltaic array tracker
Solar tracker systems include a torque tube, a column supporting the torque tube, a solar panel connected to the torque tube, and a locking assembly. The locking assembly includes a first end pivotably connected to the torque tube and a second end pivotably connected to the column. A shell defines a fluid chamber and a piston is positioned within the shell. The piston includes a seal and defines compression and extension portions of the fluid chamber. A flow path extends between the compression portion and the extension portions. A first valve assembly controls fluid flow in a first direction through the flow path and a second valve assembly controls fluid flow in a second direction through the flow path. The valve assemblies are each passively moveable from an unlocked state to a locked state in response to movement of the piston.
Solar tracker systems include a torque tube, a column supporting the torque tube, a solar panel connected to the torque tube, and a locking assembly. The locking assembly includes a first end pivotably connected to the torque tube and a second end pivotably connected to the column. A shell defines a fluid chamber and a piston is positioned within the shell. The piston includes a seal and defines compression and extension portions of the fluid chamber. A flow path extends between the compression portion and the extension portions. A first valve assembly controls fluid flow in a first direction through the flow path and a second valve assembly controls fluid flow in a second direction through the flow path. The valve assemblies are each passively moveable from an unlocked state to a locked state in response to movement of the piston.
Solar tracker systems include a torque tube, a column supporting the torque tube, a solar panel connected to the torque tube, and a damper assembly. The damper assembly includes a first end pivotably connected to the torque tube and a second end pivotably connected to the column. The damper assembly further includes an outer shell, a piston within and moveable relative to the outer shell, a first chamber wall and a second chamber wall within the outer shell at least partially defining a chamber, and a valve within the chamber. The valve includes a first axial end defining a slot and is biased to a first position within the chamber in which the first axial end is spaced from the first chamber wall. The valve is moveable within the chamber from the first position to a second position to passively change a flow resistance of the damper assembly.
H02S 20/32 - Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
F16M 11/10 - Means for attachment of apparatusMeans allowing adjustment of the apparatus relatively to the stand allowing pivoting around a horizontal axis
F16F 9/34 - Special valve constructionsShape or construction of throttling passages
F16F 9/36 - Special sealings, including sealings or guides for piston-rods
F16F 9/50 - Special means providing automatic damping adjustment
F16F 9/18 - Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein
F16F 9/02 - Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using gas only
F24S 40/00 - Safety or protection arrangements of solar heat collectorsPreventing malfunction of solar heat collectors
F24S 30/00 - Arrangements for moving or orienting solar heat collector modules
F16F 9/44 - Means on or in the damper for manual or non-automatic adjustmentSprings, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium Details such means combined with temperature correction
F16F 9/49 - Stops limiting fluid passage, e.g. hydraulic stops
F16F 9/10 - Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid onlySprings, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using a fluid of which the nature is immaterial
H02S 99/00 - Subject matter not provided for in other groups of this subclass
30.
SYSTEMS FOR DAMPING A SOLAR PHOTOVOLTAIC ARRAY TRACKER
Solar tracker systems include a torque tube, a solar panel attached to the torque tube, and a damper assembly. The damper assembly includes a housing defining first and second chambers, a first fluid passageway extending between the first and second chambers, and a second fluid passageway extending from the second chamber. A piston is moveable relative to the housing and a valve is positioned within the first chamber and moveable to passively control fluid flow. An active lock includes a shaft extending into the second chamber with a seal attached to the shaft. The shaft is selectively moveable between an unsealed position in which the seal is spaced from a chamber wall and a flow path is defined between the first fluid passageway and the second fluid passageway, and a sealed position in which the seal contacts and seals against the chamber wall to obstruct the flow path.
H02S 20/32 - Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
F16F 9/02 - Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using gas only
F16F 9/18 - Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein
F16F 9/32 - Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium Details
F16F 9/34 - Special valve constructionsShape or construction of throttling passages
F16F 9/36 - Special sealings, including sealings or guides for piston-rods
F16F 9/44 - Means on or in the damper for manual or non-automatic adjustmentSprings, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium Details such means combined with temperature correction
31.
Systems for damping a solar photovoltaic array tracker
Solar tracker systems include a torque tube, a column supporting the torque tube, a solar panel attached to the torque tube, and a damper assembly. The damper assembly includes an outer shell surrounding an inner shell. A piston is at least partially positioned within the inner shell and moveable relative thereto. An active lock of the damper assembly includes a housing positioned within the outer shell. The housing defines a cavity and a housing channel extending from the cavity to an outer fluid channel. A shaft extends into the cavity and a valve assembly is attached to the shaft. The shaft is rotatable within the cavity between an unsealed position in which the housing channel is in fluid communication with the cavity, and a sealed position in which the valve assembly is rotationally aligned with the housing channel and obstructs fluid communication between the cavity and the housing channel.
H02S 99/00 - Subject matter not provided for in other groups of this subclass
F16F 9/10 - Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid onlySprings, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using a fluid of which the nature is immaterial
32.
Systems for damping a solar photovoltaic array tracker
A solar tracker system includes a torque tube, a solar panel assembly attached to the torque tube, a housing defining a chamber and a fluid passageway extending from the chamber, and an active lock connected to a seal configured to prevent a flow path of fluid while in a sealed state and allow the flow path of fluid in an unsealed state. The system further includes a controller in communication with the torque tube and the active lock. The controller is programmed to receive a command to place the solar panel assembly in a stowed position, instruct the torque tube to rotate the panel assembly to a stowed angle corresponding to the stowed position, monitor a current angle of the panel assembly, compare the current angle to the stowed angle, and instruct the seal to transition to the sealed state when the current angle is equal to the stowed angle.
H02S 10/00 - PV power plantsCombinations of PV energy systems with other systems for the generation of electric power
H02S 20/32 - Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
F16M 11/10 - Means for attachment of apparatusMeans allowing adjustment of the apparatus relatively to the stand allowing pivoting around a horizontal axis
F16F 9/34 - Special valve constructionsShape or construction of throttling passages
F16F 9/36 - Special sealings, including sealings or guides for piston-rods
F16F 9/50 - Special means providing automatic damping adjustment
F16F 9/18 - Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein
F16F 9/02 - Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using gas only
F24S 40/00 - Safety or protection arrangements of solar heat collectorsPreventing malfunction of solar heat collectors
F24S 30/00 - Arrangements for moving or orienting solar heat collector modules
F16F 9/44 - Means on or in the damper for manual or non-automatic adjustmentSprings, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium Details such means combined with temperature correction
F16F 9/49 - Stops limiting fluid passage, e.g. hydraulic stops
F16F 9/10 - Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid onlySprings, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using a fluid of which the nature is immaterial
H02S 99/00 - Subject matter not provided for in other groups of this subclass
33.
SYSTEMS AND METHODS FOR SOLAR TRACKERS WITH DIFFUSE LIGHT TRACKING
A system includes a tracker configured to collect solar irradiance and attached to a rotational mechanism for changing a plane of the tracker and a controller. The controller is programmed to store a plurality of positional and solar tracking information and detect a first amount of DHI and a first amount of DNI at a first specific point in time. If the first amount of DHI exceeds the first amount of DNI, the controller is programmed to calculate a first angle for the tracker to maximize an amount of irradiance received by the tracker. Otherwise, the controller is programmed to calculate the first angle for the tracker based on a position of the sun associated with the first specific point in time and the plurality of positional and solar tracking information.
G05D 3/10 - Control of position or direction without using feedback
G01S 3/786 - Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
H02S 20/32 - Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
H02S 50/00 - Monitoring or testing of PV systems, e.g. load balancing or fault identification
34.
Systems and methods for solar trackers with diffuse light tracking
A system includes a tracker configured to collect solar irradiance and attached to a rotational mechanism for changing a plane of the tracker and a controller. The controller is programmed to store a plurality of positional and solar tracking information and detect a first amount of DHI and a first amount of DNI at a first specific point in time. If the first amount of SHI exceeds the first amount of DNI, the controller is programmed to calculate a first angle for the tracker to maximize an amount of irradiance received by the tracker. Otherwise, the controller is programmed to calculate the first angle for the tracker based on a position of the sun associated with the first specific point in time and the plurality of positional and solar tracking information.
G05D 3/10 - Control of position or direction without using feedback
H02S 50/00 - Monitoring or testing of PV systems, e.g. load balancing or fault identification
H02S 20/32 - Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
G01S 3/786 - Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
35.
Systems and methods for adaptive range of motion for solar trackers
A system including a tracker configured to collect solar irradiance and attached to a rotational mechanism for changing a plane of the tracker and a controller in communication with the rotational mechanism. The controller is programmed to store a plurality of positional and solar tracking information, determine a position of the sun at a first specific point in time, calculate a first angle for the tracker based on the position of the sun, detect an amount of accumulation at the first specific point in time, determine a first maximum range of motion for the tracker based on the amount of accumulation, adjust the first angle for the tracker based on the first maximum range of motion for the tracker, and transmit instructions to the rotational mechanism to change the plane of the tracker to the first adjusted angle.
H02S 20/32 - Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
G01S 3/786 - Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
36.
SYSTEMS AND METHODS FOR ADAPTIVE RANGE OF MOTION FOR SOLAR TRACKERS
A system including a tracker configured to collect solar irradiance and attached to a rotational mechanism for changing a plane of the tracker and a controller in communication with the rotational mechanism. The controller is programmed to store a plurality of positional and solar tracking information, determine a position of the sun at a first specific point in time, calculate a first angle for the tracker based on the position of the sun, detect an amount of accumulation at the first specific point in time, determine a first maximum range of motion for the tracker based on the amount of accumulation, adjust the first angle for the tracker based on the first maximum range of motion for the tracker, and transmit instructions to the rotational mechanism to change the plane of the tracker to the first adjusted angle.
G01S 3/786 - Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
H02S 20/32 - Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
37.
Systems for damping a solar photovoltaic array tracker
Solar tracker systems include a torque tube, a solar panel attached to the torque tube, and a damper assembly. The damper assembly includes an outer shell, a first chamber wall and a second chamber wall within the outer shell at least partially defining a chamber, and a piston to direct fluid through the chamber. A valve is within the chamber that includes a first axial end, a second axial end, and a seal positioned on the first axial end. The damper assembly further includes a biasing assembly that biases the valve into a first position within the chamber in which the seal is spaced from the first chamber wall. The valve is moveable within the chamber from the first position to a second position in which the seal contacts and seals against the first chamber wall to prevent the flow of fluid through the chamber.
F16F 9/49 - Stops limiting fluid passage, e.g. hydraulic stops
H02S 20/32 - Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
F16M 11/10 - Means for attachment of apparatusMeans allowing adjustment of the apparatus relatively to the stand allowing pivoting around a horizontal axis
F16F 9/18 - Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein
F16F 9/36 - Special sealings, including sealings or guides for piston-rods
F16F 9/34 - Special valve constructionsShape or construction of throttling passages
F16F 9/50 - Special means providing automatic damping adjustment
F24S 30/00 - Arrangements for moving or orienting solar heat collector modules
F16F 9/44 - Means on or in the damper for manual or non-automatic adjustmentSprings, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium Details such means combined with temperature correction
38.
Systems and methods for array level terrain based backtracking
A system and method for array level terrain based backtracking includes a tracker configured to collect solar irradiance and attached to a rotational mechanism for changing a plane of the tracker and a controller in communication with a rotational mechanism. The controller is programmed to determine a position of the sun at a first specific point in time, retrieve height information, execute a shadow model based on the retrieved height information and the position of the sun, determine a first angle for the tracker; collect an angle for each tracker in a plurality of trackers in an array; adjust the first angle based on executing the shadow model with the first angle and the plurality of angles associated with the plurality of trackers; transmit instructions to the rotational mechanism to change the plane of the tracker to the adjusted first angle.
H02S 20/32 - Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
G01J 1/42 - Photometry, e.g. photographic exposure meter using electric radiation detectors
G01S 3/786 - Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
39.
SYSTEMS AND METHODS FOR ARRAY LEVEL TERRAIN BASED BACKTRACKING
A system and method for array level terrain based backtracking includes a tracker configured to collect solar irradiance and attached to a rotational mechanism for changing a plane of the tracker and a controller in communication with a rotational mechanism. The controller is programmed to determine a position of the sun at a first specific point in time, retrieve height information, execute a shadow model based on the retrieved height information and the position of the sun, determine a first angle for the tracker; collect an angle for each tracker in a plurality of trackers in an array; adjust the first angle based on executing the shadow model with the first angle and the plurality of angles associated with the plurality of trackers; transmit instructions to the rotational mechanism to change the plane of the tracker to the adjusted first angle.
H02S 20/32 - Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
G01J 1/42 - Photometry, e.g. photographic exposure meter using electric radiation detectors
G01S 3/786 - Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
40.
Systems and methods for terrain based backtracking for solar trackers
A system is provided. The system includes a tracker configured to collect solar irradiance and attached to a rotational mechanism for changing a plane of the tracker and a controller in communication with the rotational mechanism. The controller is programmed to store a plurality of positional information and a shadow model for determining placement of shadows based on positions of objects relative to the sun, determine a position of the sun at a first specific point in time, retrieve height information for the tracker and at least one adjacent tracker, execute the shadow model based on the retrieved height information and the position of the sun, determine a first angle for the tracker based on the executed shadow model, and transmit instructions to the rotational mechanism to change the plane of the tracker to the first angle.
H02S 20/32 - Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
G01S 3/786 - Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
41.
Systems for damping a solar photovoltaic array tracker
Solar tracker systems include a torque tube, a solar panel attached to the torque tube, and a damper assembly. The damper assembly includes a housing defining first and second chambers, a first fluid passageway extending between the first and second chambers, and a second fluid passageway extending from the second chamber. A piston is moveable relative to the housing and a valve is positioned within the first chamber and moveable to passively control fluid flow. An active lock includes a shaft extending into the second chamber with a seal attached to the shaft. The shaft is selectively moveable between an unsealed position in which the seal is spaced from a chamber wall and a flow path is defined between the first fluid passageway and the second fluid passageway, and a sealed position in which the seal contacts and seals against the chamber wall to obstruct the flow path.
H02S 20/32 - Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
F16F 9/02 - Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using gas only
F24S 30/00 - Arrangements for moving or orienting solar heat collector modules
F16F 9/49 - Stops limiting fluid passage, e.g. hydraulic stops
42.
Systems and methods for terrain based backtracking for solar trackers
A system is provided. The system includes a tracker configured to collect solar irradiance and attached to a rotational mechanism for changing a plane of the tracker and a controller in communication with the rotational mechanism. The controller is programmed to store a plurality of positional information and a shadow model for determining placement of shadows based on positions of objects relative to the sun, determine a position of the sun at a first specific point in time, retrieve height information for the tracker and at least one adjacent tracker, execute the shadow model based on the retrieved height information and the position of the sun, determine a first angle for the tracker based on the executed shadow model, and transmit instructions to the rotational mechanism to change the plane of the tracker to the first angle.
H02S 20/32 - Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
G01S 3/786 - Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
43.
Systems for damping a solar photovoltaic array tracker
Solar tracker systems include a torque tube, a column supporting the torque tube, a solar panel attached to the torque tube, and a damper assembly. The damper assembly includes an outer shell surrounding an inner shell and defining an outer fluid channel. A piston is positioned within the inner shell and moveable relative thereto. A locking valve of the damper assembly includes a shaft extending into a chamber and a seal attached to the shaft. The shaft is selectively moveable axially within the chamber along an extension axis between an unsealed position in which the seal is spaced from a chamber wall and a flow path is defined that extends from within the inner shell, through the chamber, and to the outer fluid channel, and a sealed position in which the seal contacts the chamber wall and the locking valve obstructs the flow path.
H02S 20/32 - Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
F16M 11/10 - Means for attachment of apparatusMeans allowing adjustment of the apparatus relatively to the stand allowing pivoting around a horizontal axis
F16F 9/34 - Special valve constructionsShape or construction of throttling passages
F16F 9/36 - Special sealings, including sealings or guides for piston-rods
F16F 9/50 - Special means providing automatic damping adjustment
F16F 9/18 - Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein
F24S 30/00 - Arrangements for moving or orienting solar heat collector modules
F16F 9/44 - Means on or in the damper for manual or non-automatic adjustmentSprings, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium Details such means combined with temperature correction
44.
Systems and methods for array level terrain based backtracking
A system and method for array level terrain based backtracking includes a tracker configured to collect solar irradiance and attached to a rotational mechanism for changing a plane of the tracker and a controller in communication with a rotational mechanism. The controller is programmed to determine a position of the sun at a first specific point in time, retrieve height information, execute a shadow model based on the retrieved height information and the position of the sun, determine a first angle for the tracker; collect an angle for each tracker in a plurality of trackers in an array; adjust the first angle based on executing the shadow model with the first angle and the plurality of angles associated with the plurality of trackers; transmit instructions to the rotational mechanism to change the plane of the tracker to the adjusted first angle.
H02S 20/32 - Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
G01J 1/42 - Photometry, e.g. photographic exposure meter using electric radiation detectors
G01S 3/786 - Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
45.
Systems and methods for solar trackers with diffuse light tracking
A system includes a tracker configured to collect solar irradiance and attached to a rotational mechanism for changing a plane of the tracker and a controller. The controller is programmed to store a plurality of positional and solar tracking information and detect a first amount of DHI and a first amount of DNI at a first specific point in time. If the first amount of SHI exceeds the first amount of DNI, the controller is programmed to calculate a first angle for the tracker to maximize an amount of irradiance received by the tracker. Otherwise, the controller is programmed to calculate the first angle for the tracker based on a position of the sun associated with the first specific point in time and the plurality of positional and solar tracking information.
G05D 3/10 - Control of position or direction without using feedback
H02S 50/00 - Monitoring or testing of PV systems, e.g. load balancing or fault identification
H02S 20/32 - Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
G01S 3/786 - Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
Mounting systems for securing a solar array to a mounting frame and clamping systems thereof are disclosed. The clamping systems may include one or more hooks for connecting a solar panel module to mounting frame. The hooks may be disposed on one or more wings of a clamp plate that extend from a rail structure of the clamp plate. The rail structure may form a rail chamber which receives a mounting rail.
F24S 25/30 - Arrangement of stationary mountings or supports for solar heat collector modules using elongate rigid mounting elements extending substantially along the mounting surface, e.g. for covering buildings with solar heat collectors
F24S 25/60 - Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules
50.
Tracking systems for adjusting a photovoltaic array
Tracking systems for adjusting a photovoltaic array are disclosed. In some embodiments, the tracking system includes an actuator that moves one or more links to cause the array to rotate. The tracking system may be disposed below a torque rail of the tracking system. The actuator may be a slew drive that retracts or extends the one or more links to cause the array to rotate.
Pivoting members for pivoting a solar array mounted to a torque rail and tracking systems that include such pivoting members are disclosed. The pivoting member may include a liner between a rotating inner member and the outer housing of the pivoting member to reduce friction during pivoting of the solar array.
Mounting systems for securing a solar array to a mounting frame and clamping systems thereof are disclosed. The clamping systems may include one or more hooks for connecting a solar panel module to mounting frame. The hooks may be disposed on one or more wings of a clamp plate that extend from a rail structure of the clamp plate. The rail structure may form a rail chamber which receives a mounting rail.
F24S 25/30 - Arrangement of stationary mountings or supports for solar heat collector modules using elongate rigid mounting elements extending substantially along the mounting surface, e.g. for covering buildings with solar heat collectors
F24S 25/60 - Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules
An example micro-grid includes a load meter, a renewable-source power generation device, and a generator bank. The load meter is coupled between a load and a distribution bus and is configured to measure a load value representing total power delivered to the load. The renewable-source power generation device is coupled to the distribution bus and is configured to supply a first power to the load. The generator bank is coupled to the distribution bus and is controllable according to the load value to supply a second power to the load. The first power and the second power sum to the total power delivered to the load.
H02J 9/04 - Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
H02J 3/38 - Arrangements for parallelly feeding a single network by two or more generators, converters or transformers
H02J 3/46 - Controlling the sharing of output between the generators, converters, or transformers
55.
METHODS AND SYSTEMS FOR DESIGNING PHOTOVOLTAIC SYSTEMS
A method for designing a photovoltaic (PV) system is implemented by a design automation computer system. The method includes receiving a set of site data, receiving a system type selection, receiving a plurality of system component selections, receiving a plurality of PV layout preferences, determining a PV module layout by iteratively applying a first layout algorithm to the set of site data and the plurality of PV layout preferences, the PV module layout defining a placement of a plurality of PV modules of a PV system, determining a structural layout, an electrical design, and an electrical layout based on the PV module layout, determining a bill of materials based on the PV module layout, the structural layout, and the electrical layout, and designing the PV system using the structural layout, the electrical design, the electrical layout, the PV module layout, and the bill of materials.
G06F 30/13 - Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
A method for designing a photovoltaic (PV) system is implemented by a design automation computer system. The method includes receiving a set of site data, receiving a system type selection, receiving a plurality of system component selections, receiving a plurality of PV layout preferences, determining a PV module layout by iteratively applying a first layout algorithm to the set of site data and the plurality of PV layout preferences, the PV module layout defining a placement of a plurality of PV modules of a PV system, determining a structural layout, an electrical design, and an electrical layout based on the PV module layout, determining a bill of materials based on the PV module layout, the structural layout, and the electrical layout, and designing the PV system using the structural layout, the electrical design, the electrical layout, the PV module layout, and the bill of materials.
G06F 30/13 - Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
A method for designing a photovoltaic (PV) system is implemented by a design automation computer system. The method includes receiving a set of site data, receiving a system type selection, receiving a plurality of system component selections, receiving a plurality of PV layout preferences, determining a PV module layout by iteratively applying a first layout algorithm to the set of site data and the plurality of PV layout preferences, the PV module layout defining a placement of a plurality of PV modules of a PV system, determining a structural layout, an electrical design, and an electrical layout based on the PV module layout, determining a bill of materials based on the PV module layout, the structural layout, and the electrical layout, and designing the PV system using the structural layout, the electrical design, the electrical layout, the PV module layout, and the bill of materials.
G06Q 10/04 - Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
A method for designing a photovoltaic (PV) system is implemented by a design automation computer system. The method includes receiving a set of site data, receiving a system type selection, receiving a plurality of system component selections, receiving a plurality of PV layout preferences, determining a PV module layout by iteratively applying a first layout algorithm to the set of site data and the plurality of PV layout preferences, the PV module layout defining a placement of a plurality of PV modules of a PV system, determining a structural layout, an electrical design, and an electrical layout based on the PV module layout, determining a bill of materials based on the PV module layout, the structural layout, and the electrical layout, and designing the PV system using the structural layout, the electrical design, the electrical layout, the PV module layout, and the bill of materials.
G06Q 10/04 - Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
A computer-implemented method for determining boundary offsets in a photovoltaic (PV) system based on shadow simulations is implemented by a design automation computer system in communication with a memory. The method includes identifying a set of obstructions wherein the set of obstructions includes a set of obstruction elevations and a set of obstruction offsets, simulating a set of shadow effects using a first coarse shadow algorithm based on the set of obstructions, refining the set of shadow effects using a second fine shadow algorithm based on the set of obstructions and the set of shadow effects, and defining a plurality of boundary of boundary offsets based on the refined set of shadow effects.
G06Q 10/04 - Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
A computer-implemented method for determining a system layout of a photovoltaic (PV) system is implemented by a design automation computer system in communication with a memory. The method includes receiving a first selection of a system table, receiving a layout mode designation, identifying a system orientation, identifying a system spacing, receiving a layout detail designation, and applying a layout algorithm based on the first selection of a system table, the layout mode designation, the layout mode designation, the system orientation, the system spacing and the layout detail designation.
G06Q 10/04 - Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
A method for scheduling cleaning of a photovoltaic (“PV”) system is implemented by a soiling monitoring computer system. The method includes determining a soiling level and a soiling rate for a photovoltaic (PV) system, calculating a cost associated with cleaning the PV system at each of a plurality of possible cleaning times, determining an expected energy output gain associated with cleaning the PV system at each of the plurality of possible times based on the soiling level and the soiling rate, calculating an expected benefit associated with cleaning the PV system at each of the plurality of possible cleaning times based on the expected energy output gain associated with each possible cleaning time, determining a first time of the plurality of possible times when the expected benefit exceeds the cost, and scheduling a cleaning time based on at least the determined first time.
This disclosure generally relates to integrated grounding for solar modules and electrical wire management, and more specifically, to grounding clips and tabs that are integrated into solar module racking systems.
H02S 40/34 - Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
A solar power generating apparatus and a solar tracking method for the same. When a plurality of solar collector plates are arranged, the solar collector plates may be adjusted at certain rotation angles to maintain a high level of solar absorption efficiently with respect to shade, and errors caused by the installed positions (particularly, the installed directions) of the solar collector plates having solar cells can be compensated for, to accordingly calculate and determine adjustment angles in order to accurately rotate the solar cells or solar collector plates to a desired direction and to increase solar absorption efficiency.
G01C 21/02 - NavigationNavigational instruments not provided for in groups by astronomical means
F24J 2/38 - employing tracking means (F24J 2/02, F24J 2/06 take precedence;rotary supports or mountings therefor F24J 2/54;supporting structures of photovoltaic modules for generation of electric power specially adapted for solar tracking systems H02S 20/32)
G01S 3/786 - Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
H01L 31/042 - PV modules or arrays of single PV cells
H01L 31/052 - Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
The present invention relates to a solar power generation apparatus, which comprises: torque tubes which are arranged to form a plurality of columns; a plurality of solar panels which are installed along each torque tube; posts which rotatably support each torque tube; lever arms which are coupled with each torque tube; a linkage which is disposed on the lower side of the torque tubes and is connected to each lever arm; an actuator which reciprocates the linkage in the longitudinal direction of the linkage, thereby rotating the torque tubes around an axis based on the longitudinal direction of the torque tubes; and a bed frame which is installed between some of the plurality of posts, wherein the actuator is supported thereon.
A synthetic resin bearing for a photovoltaic tracking system includes first and second bearing members coupled with each other for forming a bearing assembly. Each of the first and second bearing members has a pair of side plate members facing each other. A friction member is positioned between outer peripheral portions of the pair of side plates has an arc-shaped section. A reinforcement member connects the pair of side plates and the friction member, and the first and second bearing members have a coupling protrusion and a concave portion for receiving the coupling protrusion.
A strut runner includes a member extending lengthwise in a first direction, where the member includes an underlying panel and one or more walls that extend from the panel. The member may be configured to at least partially support the panel array while being integrated or directly connected to the underlying structure. Additionally, the strut runner may include one or more peripheral extensions that extend a distance outward from the body.
E04D 1/36 - Devices for sealing the spaces or joints between roof-covering elements
E04D 3/38 - Devices for sealing spaces or joints between roof-covering elements
E04D 13/18 - Roof covering aspects of energy collecting devices, e.g. including solar panels
E04H 14/00 - Buildings for combinations of different purposes not covered by any single one of main groups of this subclass, e.g. for double purposeBuildings of the drive-in type
E04C 2/38 - Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure with attached ribs, flanges, or the like, e.g. framed panels
74.
Assembly and method for mounting solar panels to structural surfaces
An assembly for mounting solar panels to structural surfaces includes a frame member adapted to receive and retain a first end portion of a solar panel, and a mounting foot adapted for attachment to the structural surface, wherein the frame member and the mounting foot are adapted for interlocking engagement with each other to mount an end of a solar panel on the structural surface.
Method and apparatus for monitoring, measuring and recording the operating values of each of a plurality of inter-connected AC PV modules and performing a diagnostic analysis, including comparing the those operating values to each other and to operating values recorded at an earlier time to determine laminate degradation and the performance-attenuating effect of temperature, soiling, shading, and snow cover on the modules.
A mounting system is provided for an array of solar modules. The mounting system includes one or more rail assemblies that extend lengthwise in a first direction to support a plurality of solar modules that comprise the array. Each of the one or more rail assemblies may be configured to compress in order to retain an edge section of one or more of the plurality of solar modules in an operable position. A conductive element may be positioned to bond the edge section of at least one of the plurality of solar modules with at least a section of the rail assembly that retains that edge section in the operable position, so as to form a conductive path for electrical current.
H01R 4/66 - Connections with the terrestrial mass, e.g. earth plate, earth pin
H01R 4/26 - Connections in which at least one of the connecting parts has projections which bite into or engage the other connecting part in order to improve the contact
F24J 2/46 - Component parts, details or accessories of solar heat collectors
A mounting system is provided for solar modules with a compressable retention structure for solar modules. The retention structure may interleave a upper and lower rail that provides a shelf or other support structure in order to hold a solar module or panel in an operative position. The upper and lower rails may be compressed towards one another in order to cause the support structure to retain the solar modules or panels.
H02N 6/00 - Generators in which light radiation is directly converted into electrical energy (solar cells or assemblies thereof H01L 25/00, H01L 31/00)