In embodiments of the present invention, a method and system is provided for commissioning improved intelligent, LED-based lighting systems. The LED based lighting systems may include fixtures with one or more LED light bars, integrated sensors, onboard intelligence to send and receive signals and control the LED light bars, and network connectivity to other fixtures.
H05B 47/11 - Controlling the light source in response to determined parameters by determining the brightness or colour temperature of ambient light
H05B 47/12 - Controlling the light source in response to determined parameters by determining the presence or movement of objects or living beings by detecting audible sound
H05B 47/19 - Controlling the light source by remote control via wireless transmission
H05B 47/105 - Controlling the light source in response to determined parameters
H05B 47/155 - Coordinated control of two or more light sources
F21S 2/00 - Systems of lighting devices, not provided for in main groups or , e.g. of modular construction
F21V 21/00 - Supporting, suspending, or attaching arrangements for lighting devicesHand grips
F21V 29/56 - Cooling arrangements using liquid coolants
F21V 29/76 - Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section
F21S 4/28 - Lighting devices or systems using a string or strip of light sources with light sources held by or within elongate supports rigid, e.g. LED bars
F21S 9/02 - Lighting devices with a built-in power supplySystems employing lighting devices with a built-in power supply the power supply being a battery or accumulator
F21V 15/01 - Housings, e.g. material or assembling of housing parts
F21S 9/04 - Lighting devices with a built-in power supplySystems employing lighting devices with a built-in power supply the power supply being a generator
A flyback converter with indirect estimation of primary-side voltage at the secondary-side. The converter includes a primary voltage sensing circuit coupled to the second winding of the converter and being configured to establish an output voltage when a switch of the converter is in the first state and a first diode of the converter is reversed biased, the output voltage being representative of a voltage across the primary winding.
H02M 3/335 - Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
H02M 3/22 - Conversion of DC power input into DC power output with intermediate conversion into AC
H02M 3/24 - Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
H02M 3/28 - Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
3.
RESONANT CONVERTER WITH RECONFIGURABLE RESONANT TANK CIRCUIT
A resonant tank converter including a reconfigurable resonant tank circuit including a switch configured to switch a resonant tank configuration of the reconfigurable resonant tank circuit to a first or second configuration in response to feedback signals representative of the output to a load. In some embodiments, the first configuration is an LLC resonant tank configuration, and the second configuration is an LCC resonant tank configuration.
H02M 3/335 - Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
H02M 3/337 - Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
G05F 1/00 - Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
H02M 3/24 - Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
H02M 3/00 - Conversion of DC power input into DC power output
A vehicle lamp capsule 32 having a base 34 having a spring 5 which, when lamp capsule 32 is installed, biases an inner surface of a vehicle lamp reflector 12. Spring 5 is monolithically formed with base 34 along with at least one reflector-locating structure on the base such as circumferentially extending exterior locating surface 44 and/or retaining keys 42. Base 34 and spring 5 may be molded of a plastics material. In other embodiments base 34 and spring 5 are made in one piece of sheet metal. The spring 5 formed unitary with the lamp base 34 meets regulatory requirements and avoids a risk of dislodgement of a conventional separate piece-part metal spring which could cause an electrical short when the lamp is installed in the field. The lamp capsule 32 is suitably an H13-style lamp.
Techniques and architecture are disclosed for mobile transport systems configured to determine vehicle positions within an area using light-based communication signals. The system includes a plurality of luminaires located in an area and configured to transmit luminaire position data recognizable by a sensor disposed on a vehicle. The sensor receives an image of a luminaire including a light-based communication signal encoded with luminaire position data. Luminaire position data can be combined with luminaire layout information to determine a known location of the luminaire. A vehicle position relative to the known luminaire location can be determined based on mathematical relationships. Vehicle orientation relative to the area can be determined based an asymmetric fiducial pattern or multiple known luminaire locations. The system can combine a vehicle position relative to a known luminaire location with vehicle orientation relative to the area to determine a vehicle position relative to the area.
First adapter (10) and second adapter (40) are each separately securable to a respective automotive light bar (200, 201) at mutually facing lateral light bar end caps (206). The adapters (10, 40) interfit, such as first adapter (10) having one or more tenons (14; 18) received in shape-conforming recess or mortise (44) of second adapter (40). The coupling assembly formed from interfit first and second adapters (10, 40) sufficiently supports a midspan region of conjoined light bars (200, 201) to permit omission of mounting L-brackets (208) conventionally required at the mutually facing light bar ends (206), thus allowing fewer holes to be drilled in vehicle roof or bumper (212) and resulting in an aesthetically cleaner presentation of the overall lengthened light bar assembly.
F21K 9/20 - Light sources comprising attachment means
F21S 4/28 - Lighting devices or systems using a string or strip of light sources with light sources held by or within elongate supports rigid, e.g. LED bars
F21V 21/005 - Supporting, suspending, or attaching arrangements for lighting devicesHand grips for several lighting devices in an end-to-end arrangement, i.e. light tracks
F21V 19/00 - Fastening of light sources or lamp holders
F21V 17/10 - Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening
F21V 15/015 - Devices for covering joints between adjacent lighting devicesEnd coverings
B62D 65/16 - Joining sub-units or components to, or positioning sub-units or components with respect to, body shell or other sub-units or components the sub-units or components being exterior fittings, e.g. bumpers, lights, wipers
F21W 102/00 - Exterior vehicle lighting devices for illuminating purposes
F21W 107/10 - Use or application of lighting devices on or in particular types of vehicles for land vehicles
B60Q 1/18 - Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights being additional front lights
F21Y 103/00 - Elongate light sources, e.g. fluorescent tubes
First adapter (10) and second adapter (40) are each separately securable to a respective automotive light bar (200, 201) at mutually facing lateral light bar end caps (206). The adapters (10, 40) interfit, such as first adapter (10) having one or more tenons (14; 18) received in shape-conforming recess or mortise (44) of second adapter (40). The coupling assembly formed from interfit first and second adapters (10, 40) sufficiently supports a midspan region of conjoined light bars (200, 201) to permit omission of mounting L-brackets (208) conventionally required at the mutually facing light bar ends (206), thus allowing fewer holes to be drilled in vehicle roof or bumper (212) and resulting in an aesthetically cleaner presentation of the overall lengthened light bar assembly.
F21V 19/00 - Fastening of light sources or lamp holders
F21V 17/10 - Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening
B62D 65/16 - Joining sub-units or components to, or positioning sub-units or components with respect to, body shell or other sub-units or components the sub-units or components being exterior fittings, e.g. bumpers, lights, wipers
F21W 107/10 - Use or application of lighting devices on or in particular types of vehicles for land vehicles
F21K 9/20 - Light sources comprising attachment means
F21S 4/28 - Lighting devices or systems using a string or strip of light sources with light sources held by or within elongate supports rigid, e.g. LED bars
F21V 21/005 - Supporting, suspending, or attaching arrangements for lighting devicesHand grips for several lighting devices in an end-to-end arrangement, i.e. light tracks
F21V 15/015 - Devices for covering joints between adjacent lighting devicesEnd coverings
F21W 102/00 - Exterior vehicle lighting devices for illuminating purposes
B60Q 1/18 - Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights being additional front lights
F21Y 103/00 - Elongate light sources, e.g. fluorescent tubes
The present disclosure relates to different techniques of controlling an agricultural system, as for example a controlled agricultural system, an agricultural light fixture and a method for agricultural management. Furthermore, the disclosure relates to an agricultural system, which comprises a plurality of processing lines for growing plants of a given plant type, wherein a first processing line in the plurality of processing lines is configured to move a first plurality of plants through the agricultural system along a route; and apply a first growth condition to the first plurality of plants to satisfy a first active agent parameter for the first plurality of plants.
G06F 17/30 - Information retrieval; Database structures therefor
G06F 7/00 - Methods or arrangements for processing data by operating upon the order or content of the data handled
G06F 9/44 - Arrangements for executing specific programs
G06F 15/16 - Combinations of two or more digital computers each having at least an arithmetic unit, a program unit and a register, e.g. for a simultaneous processing of several programs
H04L 29/06 - Communication control; Communication processing characterised by a protocol
22.
Methods, apparatus and systems for providing occupancy-based variable lighting
A presence or an absence of an occupant is detected, and an occupancy sensor signal is generated representative of an active state in which the presence of the occupant is detected, and an inactive state in which the absence of the occupant is detected. An ambient light sensor detects the ambient light level and generates an ambient light sensor signal representative of the ambient light level. Dimmable illumination is generated at a first dimming level, based on the ambient light level, corresponding to the active state and a second dimming level corresponding to the inactive state. A transition delay time between an onset of the inactive state and a transition between the first dimming level and the second dimming level may be controlled. The first dimming level, the second dimming level, and/or the transition delay time may be variably set or controlled locally or via a remote device.
F21S 9/04 - Lighting devices with a built-in power supplySystems employing lighting devices with a built-in power supply the power supply being a generator
F21V 19/00 - Fastening of light sources or lamp holders
F21V 23/04 - Arrangement of electric circuit elements in or on lighting devices the elements being switches
F21S 8/08 - Lighting devices intended for fixed installation with a standard
F21V 29/76 - Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section
F21Y 103/10 - Elongate light sources, e.g. fluorescent tubes comprising a linear array of point-like light-generating elements
The systems and method disclosed herein include a LCom-enabled luminaire configured to transmit a maintenance trigger encoded in an LCom signal in response to detecting an error or maintenance condition in the LCom-enabled luminaire, receive an access request, transmit maintenance information in response to the access request, and receive correction information to correct the error or maintenance condition. The systems and methods further include a receiver device configured to receive the maintenance trigger, generate the access request based on the maintenance trigger, transmit the access request to the LCom-enabled luminaire, receive maintenance information in response to the access request, and transmit control commands based on the maintenance information.
H05B 47/20 - Responsive to malfunctions or to light source lifeCircuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant for protection
G01S 1/04 - Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmittersReceivers co-operating therewith using radio waves Details
Techniques are disclosed for decoding light based communication (LBC) messages transmitted between a transmitter device and a receiver device. The receiver device includes a processor that executes a process to decode a received LBC message. The processor determines a moving average and removes the moving average to provide a second digital message (with the moving average removed), to account for any noises or interferences. The moving average may be determined using a length-preserving moving average. The peak location in the second digital message is identified and used as a start position for synchronization when the peak location is above the threshold. Sampling points are derived, and logical maximum and minimum values (1's and 0's) are assigned to one or more of the sampling points. The logical values are decoded to generate a decoded sequence of data representative of the received LBC message.
In embodiments of the present invention, a method and system is provided for commissioning improved intelligent, LED-based lighting systems. The LED based lighting systems may include fixtures with one or more LED light bars, integrated sensors, onboard intelligence to send and receive signals and control the LED light bars, and network connectivity to other fixtures.
H05B 47/11 - Controlling the light source in response to determined parameters by determining the brightness or colour temperature of ambient light
H05B 47/12 - Controlling the light source in response to determined parameters by determining the presence or movement of objects or living beings by detecting audible sound
H05B 47/19 - Controlling the light source by remote control via wireless transmission
H05B 47/105 - Controlling the light source in response to determined parameters
H05B 47/155 - Coordinated control of two or more light sources
F21S 2/00 - Systems of lighting devices, not provided for in main groups or , e.g. of modular construction
F21V 21/00 - Supporting, suspending, or attaching arrangements for lighting devicesHand grips
F21V 29/56 - Cooling arrangements using liquid coolants
F21V 29/76 - Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section
F21S 4/28 - Lighting devices or systems using a string or strip of light sources with light sources held by or within elongate supports rigid, e.g. LED bars
F21S 9/02 - Lighting devices with a built-in power supplySystems employing lighting devices with a built-in power supply the power supply being a battery or accumulator
F21V 15/01 - Housings, e.g. material or assembling of housing parts
F21S 9/04 - Lighting devices with a built-in power supplySystems employing lighting devices with a built-in power supply the power supply being a generator
Various embodiments include a voltage adjusting block (VAB) coupled to a light emitting diode (LED) string. The VAB includes a first switch having a first lead connected to a voltage input, and having a second lead, the first switch having a controllable duty cycle, a first diode having a cathode connected to the second lead of the first switch, and having an anode, a first inductor having a first lead connected to the cathode of the first diode, and having a second lead, and a first capacitor having a first lead connected to the anode of the first diode and having a second lead connected to the second lead of the first inductor. The VAB may provide a variable voltage across the anode of the first diode and the second lead of the first capacitor dependent upon a number of LEDs in the LED string being turned on.
H05B 45/48 - Details of LED load circuits with an active control inside an LED matrix having LEDs organised in strings and incorporating parallel shunting devices
B60Q 1/14 - Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights having dimming means
38.
Baffled tri-region optic for an AFS vehicle headlamp
An automotive lighting system (41) includes an automotive lamp having an LED array (14) and a lens (34). The lens (34) images a square field of illumination (101) into rectangular field of illumination (48) to support adaptive front lighting in an automotive environment (28). The lens (34) includes light-transmissive first, second, and third regions (64, 66, 68), and a baffle (70) adapted to obstruct light from spreading between the light-transmissive first, second, and third regions (64, 66, 68). The baffle (70) is disposed between the LED array (14) and light receiving surfaces (98, 104, 110) of the light-transmissive first, second, and third regions (64, 66, 68). The lens (34) enables imaging of an approximately rectangular field of illumination (48) from a single chip (12), reducing cost and cooling needs of adaptive front lighting systems.
F21S 41/265 - Composite lensesLenses with a patch-like shape
F21S 41/43 - Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by screens, non-reflecting members, light-shielding members or fixed shades characterised by the shape thereof
G02B 3/04 - Simple or compound lenses with non-spherical faces with continuous faces that are rotationally symmetrical but deviate from a true sphere
F21S 41/143 - Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device
B60Q 1/08 - Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically
A tunable lighting system for controlling the intensity and/or correlated color temperature (CCT) of light output from a tunable light source. In some embodiments, the system includes one or more switch modules for sending user commands for a desired intensity and/or CCT. A driver of the tunable light source drives one or more channels of a tunable lighting module using an adjustable constant current, a DC-DC converter with an adjustable output voltage and short circuit protection. In some embodiments, calculation of drive current for the light source is performed in real-time using parameters of the tunable lighting module. In some embodiments, a network collision avoidance process avoids network collisions by assigning any one of a plurality of switch modules on a network as a master.
09 - Scientific and electric apparatus and instruments
11 - Environmental control apparatus
Goods & Services
Light emitting diodes (LEDs) LED (light emitting diode) lighting systems, namely, LED modules including LED light engines; and LED light assemblies for commercial lighting
A method for controlling a chromaticity of total light provided by a lighting system includes detecting the total light by a sensor system, determining a component of the total light that is attributable to uncontrolled light, and selecting a calibration for a sensor based on the uncontrolled light, and using the calibration to adjust the output of the sensor system. The calibration tables may be based on spectral responsivity of the sensors in the sensor system and calibration functions rather than physical light sources. Relative intensities of controllable light sources having different xy values are then adjusted to cause the total light provided by the lighting system to approximate a target chromaticity. A daylighting system implementing this method includes controllable light sources with different xy values. The intensities of the controllable light sources are adjusted to augment sunlight to control the chromaticity of total light provided by the daylighting system.
Techniques for determining an actual position of a portable device are disclosed. In an embodiment, a two-tier triangulation and wireless beacon-enabled luminaire detection approach is implemented. An estimated position of a device is determined using wireless (e.g., wireless beacon) triangulation based on a signal parameter of a signal received from a wireless access point. The field of view of the portable device may be used to estimate positions of luminaires proximate the portable device. The actual position of the luminaires may be determined from the estimated position by querying a database. A second triangulation may be performed using the known position of the luminaires to determine the position of the portable device with respect to the actual position of the luminaire.
G01S 5/02 - Position-fixing by co-ordinating two or more direction or position-line determinationsPosition-fixing by co-ordinating two or more distance determinations using radio waves
G01S 5/16 - Position-fixing by co-ordinating two or more direction or position-line determinationsPosition-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves
G06T 7/73 - Determining position or orientation of objects or cameras using feature-based methods
G06F 16/9537 - Spatial or temporal dependent retrieval, e.g. spatiotemporal queries
Aspects of the present disclosure include simplified user interfaces configured to display one or more symbols for image capture by an image capture device. A computing device with image processing software may be used to process the image to detect the symbol and determine a control function associated with the symbol for controlling one or more building system components. Other aspects include software applications for allowing a user to customize a set of symbols and associated control functions.
An orientation-aware luminaire and a method of operating an orientation-aware luminaire are disclosed herein. The luminaire includes a light source, at least one orientation sensor configured to provide orientation output representative of the position of the luminaire relative to a subject, and a controller communicatively coupled the light source. The controller provides control signals to provide a light output for illuminating the subject in response to the orientation output of the orientation sensor. The color or intensity of the light output may be determined from a lighting scene.
A method for controlling a chromaticity of total light provided by a lighting system includes detecting the total light by a sensor system, determining a component of the total light that is attributable to uncontrolled light, and selecting a calibration for a sensor based on the uncontrolled light, and using the calibration to adjust the output of the sensor system. The calibration tables may be based on spectral responsivity of the sensors in the sensor system and calibration functions rather than physical light sources. Relative intensities of controllable light sources having different xy values are then adjusted to cause the total light provided by the lighting system to approximate a target chromaticity. A daylighting system implementing this method includes controllable light sources with different xy values. The intensities of the controllable light sources are adjusted to augment sunlight to control the chromaticity of total light provided by the daylighting system.
A luminaire having an electronically adjustable light beam distribution to provide upward illumination creating color gradients on a ceiling. The color gradients may be in patterns that mimic color gradients of a sky, including, for example, color gradients that mimic sunrise, sunset, sun at different times of day, a rainy day, clouds, the sun, moon, etc. The color gradients may change over time and/or may include one or more objects, e.g. clouds, the sun, moon, etc. and/or may move and/or change over time to create a dynamic sky on the ceiling. Multiple luminaires may be controlled by a system controller to produce coordinated color gradients across the light distribution areas of the multiple luminaires.
F21S 41/663 - Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources by switching light sources
F21V 23/06 - Arrangement of electric circuit elements in or on lighting devices the elements being coupling devices
H05B 33/08 - Circuit arrangements for operating electroluminescent light sources
B60Q 1/06 - Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle
B60Q 1/14 - Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights having dimming means
An automotive adaptive driving beam (ADB) headlamp (20) includes a housing (22), a digital camera (32), an ADB controller (28), a segmented lighting array (24), and an ADB driver (30), wherein the digital camera (32) is integral with the ADB headlamp (20). The housing (22) includes an attachment structure (34) for attachment to a vehicle headlamp cavity (15). The digital camera (32) captures an image preceding the vehicle (2) and the ADB controller (28) detects an object (48) in the image and generates a control signal based, at least in part, on a position of the object (48). The segmented lighting array (24) is disposed within the housing (22) and includes a plurality of solid-state light sources (40a-n) arranged to emit a light in a light distribution pattern (26). The ADB driver (30) selectively drives the solid-state light sources (40a-n) based on the control signal from the ADB controller (28).
B60Q 1/00 - Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
B60Q 1/14 - Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights having dimming means
B60R 11/04 - Mounting of cameras operative during driveArrangement of controls thereof relative to the vehicle
B60R 1/00 - Optical viewing arrangementsReal-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
F21S 41/143 - Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device
F21S 41/151 - Light emitting diodes [LED] arranged in one or more lines
F21S 41/663 - Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources by switching light sources
F21S 45/47 - Passive cooling, e.g. using fins, thermal conductive elements or openings
G01M 11/06 - Testing the alignment of vehicle headlight devices
Various implementations disclosed herein include a method for aiding disinfection of a room. The method may include collecting, by one or more sensors (104) in a disinfection system, activity data in the room. A computing device or output device may identify one or more hot spots (102) from the activity data, in which the one or more hot spots indicate areas in the room for cleaning, and generate a contamination map containing the one or more hot spots. The output device (302) may output the contamination map to an output device for viewing by a user.
G16H 40/20 - ICT specially adapted for the management or administration of healthcare resources or facilitiesICT specially adapted for the management or operation of medical equipment or devices for the management or administration of healthcare resources or facilities, e.g. managing hospital staff or surgery rooms
Various implementations disclosed herein include a method for aiding disinfection of a room. The method may include collecting, by one or more sensors in a disinfection system, activity data in the room. A computing device or output device may identify one or more hot spots from the activity data, in which the one or more hot spots indicate areas in the room for cleaning, and generate a contamination map containing the one or more hot spots. The output device may output the contamination map to an output device for viewing by a user.
G16H 40/20 - ICT specially adapted for the management or administration of healthcare resources or facilitiesICT specially adapted for the management or operation of medical equipment or devices for the management or administration of healthcare resources or facilities, e.g. managing hospital staff or surgery rooms
G16H 40/63 - ICT specially adapted for the management or administration of healthcare resources or facilitiesICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
Various embodiments disclosed herein include a light-based communication system. The system includes a plurality of luminaires, in which each of the plurality of luminaires is configured to transmit light-based communication (LCom) signals, and a server communicatively coupled to the plurality of luminaires. The server is configured to assign an identifier to each of the plurality of luminaires, transmit the assigned identifier to each of the plurality of luminaires, in which each of the plurality of luminaires transmits the assigned identifier via LCom signals, rotate, in response to receiving a trigger signal, the assigned identifier for each of the plurality of luminaires, and transmit the rotated identifier to each of the plurality of luminaires, in which each of the plurality of luminaires transmits the rotated identifier via LCom signals.
In general, one embodiment of the present disclosure includes a horticulture lighting device having a plurality of LED light channels that may be selectively energized to produce a predefined light pattern. Each of the LED light channels may emit one or more wavelengths and may be pulsed at a rate that may be imperceivable to a human eye, e.g., at 120 Hz to 720 Hz. Plants may respond biochemically to light patterns that include a period of delay between pulses of light, e.g., from 500 microseconds to 5 milliseconds. The biochemical response has been shown to significantly increase plant growth, e.g., up to 100%, relative to plants grown with lighting systems that use continuous, non-pulsing light sources. Thus, aspects and embodiments disclosed herein include a horticulture device capable of emitting light patterns which introduce a predefined delay period between energizing/pulsing of LED light channels to aid photosynthesis.
Techniques and architecture are disclosed for horticultural lighting systems and devices, such as a light module assembly (50). The assembly includes a housing with a first and second light module attached thereto. The first and second light modules include a mounting block (130 to be received in the housing. The mounting block includes a plurality of light sources to generate light to stimulate growth of a plant. The first light module includes a first removable lens (150) to focus light from the light sources to a first portion of the plant and in a first direction relative to the plant. The second light module includes an optical conduit (154A) attached thereto. The conduit is to focus light from the light sources to a second portion of the plant and in a second direction different from the first direction. The assembly transmits light to an upper portion and a lower portion of the plant.
Techniques are disclosed for decoding light based communication (LBC) messages transmitted between a transmitter device and a receiver device. The receiver device includes a processor that executes a process to decode a received LBC message. The processor determines a moving average and removes the moving average to provide a second digital message (with the moving average removed), to account for any noises or interferences. The moving average may be determined using a length-preserving moving average. The peak location in the second digital message is identified and used as a start position for synchronization when the peak location is above the threshold. Sampling points are derived, and logical maximum and minimum values (1's and 0's) are assigned to one or more of the sampling points. The logical values are decoded to generate a decoded sequence of data representative of the received LBC message.
Methods and systems are described for sampling an LCom message and accurately decoding the entire LCom message using a light receiver (e.g., digital camera) of a typical mobile computing device, such as a smartphone, tablet, or other mobile computing device. In one embodiment, a curvature method is disclosed to determine LCom signal bit values from a curvature value of a running average calculation of light sensor data. In another embodiment, a signal reconstruction method is disclosed to determine LCom signal bit values from a comparison of modeled data buffers to light sensor data.
A motor vehicle lamp (100), comprising a lamp housing (110) defining an interior compartment (116) and an exterior region (102); a solid-state light source (120) disposed on a first heat sink (150) in thermal communication therewith, the first heat sink (150) being disposed within the interior compartment (116); a second heat sink (170) having an heat-transferring exterior section (178) disposed in the exterior region (102) of the lamp housing (110) and further having a heat-transferring receiver section (176) disposed at least partially within the interior compartment (116); and the first heat sink (150) being in thermal communication with the second heat sink (170) and coupled in displaceable relationship to the second heat sink (170), whereby a position of said solid-state light source (120) is adjustable relative the lamp housing (110).
F21S 41/143 - Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device
F21S 41/657 - Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources by moving light sources
60.
DYNAMIC COLOR RENDERING METHODS AND SYSTEMS PROVIDING JUST-NOTICEABLE COLOR ACCENTUATION AND QUASI-ANIMATION EFFECTS
Lighting methods and systems to enhance the browsing behaviors of shoppers in a manner intended to be primarily subconscious include illumination of a targeted area, such as a typical retail display, with a tunable spectrum lamp that slowly cycles through different illumination spectra such that color rendering of illuminated target is deliberately varied for subtle arousal of the visual senses. The illumination spectra, and the rates at which spectral conditions are changed, are both chosen as such that multi-colored objects in the targeted area change in appearance in a barely noticeable way, such that shoppers may find their visual attention redirected, seemingly at random, to a wider variety of products on display. Color spectrum changes also may be controlled in coordination with predefined packaging colors to create quasi-animation effects.
A system and method for resolving the angle of the transmitter and the angle of the receiver when determining vehicle position using light based communication (LBC) signals. Each vehicle includes an LBC system having light emitting diodes (LEDs) and receiver photodiodes capable of sending and receiving pulsed light binary messages. Each LBC system has a controller coupled to the transmitter diodes and receiver diodes. The controller includes a processor configured to resolve the angle of the transmitter and the angle of the receiver. The angle of the receiver may be determined using a single digital message received at a first receiver and a second receiver on a receiving vehicle. The angle of the transmitter may be determined using a first digital message and a second digital message received at a same receiver on the receiving vehicle.
G01S 5/16 - Position-fixing by co-ordinating two or more direction or position-line determinationsPosition-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves
G01S 3/782 - Systems for determining direction or deviation from predetermined direction
Various implementations disclosed herein includes a method for operating lighting fixtures in horticultural applications. The method may include receiving a user input of a desired irradiance for a first color channel of one or more lighting fixtures that irradiates a plant bed, in which each of the one or more lighting fixtures comprises at least one light emitting diode (LED) array, determining, for each of the one or more lighting fixtures, a PWM setting of the first color channel such that each of the one or more lighting fixtures irradiate the plant bed at the desired irradiance based on calibration data stored in each of the one or more lighting fixtures, and applying, to each of the one or more lighting fixtures, the determined PWM setting of the first color channel.
G01J 1/08 - Arrangements of light sources specially adapted for photometry
G01J 1/32 - Photometry, e.g. photographic exposure meter by comparison with reference light or electric value intensity of the measured or reference value being varied to equalise their effects at the detector, e.g. by varying incidence angle using variation of intensity or distance of source using electric radiation detectors adapted for automatic variation of the measured or reference value
A luminaire for disinfecting a target surface includes a disinfecting light source, a non-disinfecting light source, a beam angle adjustor, a motion sensor, and distance sensor. The radiance of the disinfecting light is calculated based on detected distance to a target surface and beam angle, and may be selected to achieve a predetermined irradiance of the target surface. If no motion is detected by the motion sensor then the disinfecting light source is set to ON and the non-disinfecting light source is set to OFF. If motion is detected and a beam intercept is not detected by the distance sensor then the disinfecting light source is set to DIM and the non-disinfecting light source is set to ON. If motion is detected and a beam intercept is detected then the disinfecting light source is set to OFF and the non-disinfecting light source is set to ON.
A method of Light-based Communication (LCom) using camera frame-rate based light modulation is provided. The method includes receiving light having modulated light properties that vary at a first frequency from a LCom-enabled luminaire by an image capture device using a global shutter image capture process, comparing light properties received at the image capture device over sequential image capture instances, and determining, from the compared light properties, data encoded by the modulated light.
09 - Scientific and electric apparatus and instruments
11 - Environmental control apparatus
Goods & Services
LED drivers; wireless controllers to remotely monitor and
control the function and status of other electrical,
electronic, and mechanical devices or systems, namely,
lighting. LED lighting systems, namely, LED modules, power supplies,
and wiring.
Techniques and architecture are disclosed for navigating an area with multi-panel luminaires configured to display fiducial patterns. In an embodiment, a system includes a plurality of luminaires located in an area and configured to display one or more fiducial patterns recognizable by a mobile computing device. The luminaire includes a plurality of panels, each panel associated with one or more solid-state light sources. The luminaire also includes at least one driver configured to control the light sources to transmit light through the plurality of panels at varying light intensities to display a fiducial pattern and configured to detect errors in the display of the fiducial pattern.
Techniques are disclosed for measuring an amount of flicker produced by a light source. In one embodiment, a flicker measuring device includes a photo sensor to measure the amount of light produced by the light source, a dedicated processor to receive and process data from the photo sensor, a memory bus coupled to an analog-to-digital converter (ADC) and to a first memory, and a direct memory access (DMA) bus coupled to the ADC and to a second memory. In another embodiment, a flicker measuring system uses a light sensor, an associated circuit and a portable computing device (PCD), such as a smart phone, to measure an amount of flicker produced by a light source by sending an electrical signal from the light source and associated circuit via an audio output to an audio sub-system of the PCD, so that the PCD may calculate the flicker value.
G06F 13/28 - Handling requests for interconnection or transfer for access to input/output bus using burst mode transfer, e.g. direct memory access, cycle steal
A dual mode constant output current LED driver is capable of operating with a very wide range of input direct current (DC) voltage. This provides an effective topology for a wide range of constant output current LED drivers, and allows for changing the number of connected LEDs without negatively impacting the output current. The LED driver includes a converter and a mode selection circuit that control the modes of the circuit based on the voltage. The converter and mode selection circuit operate in a buck-boost mode when the output voltage of the LED driver is less than the DC input voltage plus a first threshold amount, and in a boost mode when the output voltage of the LED driver is greater than the DC input voltage plus a second threshold amount.
Techniques are disclosed for measuring an amount of flicker produced by a light source. In one embodiment, a flicker measuring device includes a photo sensor to measure the amount of light produced by the light source, a dedicated processor to receive and process data from the photo sensor, a memory bus coupled to an analog-to-digital converter (ADC) and to a first memory, and a direct memory access (DMA) bus coupled to the ADC and to a second memory. In another embodiment, a flicker measuring system uses a light sensor, an associated circuit and a portable computing device (PCD), such as a smart phone, to measure an amount of flicker produced by a light source by sending an electrical signal from the light source and associated circuit via an audio output to an audio sub-system of the PCD, so that the PCD may calculate the flicker value.
H04N 5/235 - Circuitry for compensating for variation in the brightness of the object
G06F 13/28 - Handling requests for interconnection or transfer for access to input/output bus using burst mode transfer, e.g. direct memory access, cycle steal
G01J 1/42 - Photometry, e.g. photographic exposure meter using electric radiation detectors
70.
Light-based vehicle positioning for mobile transport systems
Techniques and architecture are disclosed for mobile transport systems configured to determine vehicle positions within an area using light-based communication signals. The system includes a plurality of luminaires located in an area and configured to transmit luminaire position data recognizable by a sensor disposed on a vehicle. The sensor receives an image of a luminaire including a light-based communication signal encoded with luminaire position data. Luminaire position data can be combined with luminaire layout information to determine a known location of the luminaire. A vehicle position relative to the known luminaire location can be determined based on mathematical relationships. Vehicle orientation relative to the area can be determined based an asymmetric fiducial pattern or multiple known luminaire locations. The system can combine a vehicle position relative to a known luminaire location with vehicle orientation relative to the area to determine a vehicle position relative to the area.
09 - Scientific and electric apparatus and instruments
11 - Environmental control apparatus
Goods & Services
Light emitting diodes (LEDs). LED (light emitting diodes) lighting fixtures for use in
display, commercial, industrial, residential, and
architectural accent lighting applications; LED light
assemblies for street lights, signs, commercial lighting,
automobiles, buildings, and other architectural uses;
Cultivation lamps and parts thereof, namely, high pressure
sodium (HPS), metal halide, plasma, and light emitting diode
(LED); Light Emitting Diode (LED) plant grow light.
A light weight lighting module and devices including the same are disclosed. The module includes a printed circuit board (104) with a first side and a second side, each including a conductive layer (208) disposed thereon. The printed circuit board (104) also includes thermal vias (212) disposed therein, in thermal contact with the conductive layers (208) on the first and second sides. One or more light sources (108) are attached to the first side of the printed circuit board (104), such as high power light emitting diodes or laser light sources. A heat sink (112) is attached to the second side of the printed circuit board (104). The light source(s) and heat sink are in thermal contact with the thermal vias of the printed circuit board so that thermal energy from the light source(s) can be transferred to the heat sink. The thermally-conductive layers and heat sink remain electrically isolated from the light source(s)..
A connected lighting fixture network system has a plurality of multi-channel lighting fixtures. Each lighting fixture (device) has a plurality of services that reside within an application layer of the device. A controller is coupled to the device and configured to send query and command message to the device and to receive reply messages from the device. One service available to the device is a lighting command and control service. The device is configured to receive a query message from the controller. The controller is configured to generate a lighting control and command message, which can include a channel illumination field (CIF) and an illumination payload. The CIF indicates the channels of the device to be commanded based on the status of the channels received in the first reply message. The illumination payload indicates the intended illumination level for the corresponding channel.
A connected lighting fixture network system has a plurality of multi- channel lighting fixtures (123, 124, 125). Each lighting fixture (device) has a plurality of services that reside within an application layer of the device (123, 124, 125). A controller (110) is coupled to the device and configured to send query and command message (111, 115, 119) to the device (123, 124, 125) and to receive reply messages (112, 116, 120) from the device. One service available to the device is a lighting command and control service. The device (123, 124, 125) is configured to receive a query message from the controller. The controller is configured to generate a lighting control and command message, which can include a channel illumination field (CIF) and an illumination payload. The CIF indicates the channels of the device to be commanded based on the status of the channels received in the first reply message. The illumination payload indicates the intended illumination level for the corresponding channel.
A lighting device for communication with a mobile terminal, comprising: a lighting means, and an electronic operating device for operating the lighting means, a data storage unit, in which a first key is stored in a memory area reserved therefor, an encryption unit configured to read out the first key from the reserved memory area and, in accordance with a specifiable encryption operation, to convert measurement value data and/or identification data intended for transfer to the mobile terminal into a message encrypted by means of the first key, and a transmitting unit configured to transmit the encrypted message to the mobile terminal.
H04L 9/32 - Arrangements for secret or secure communicationsNetwork security protocols including means for verifying the identity or authority of a user of the system
H05B 47/19 - Controlling the light source by remote control via wireless transmission
H04W 4/70 - Services for machine-to-machine communication [M2M] or machine type communication [MTC]
H04L 29/06 - Communication control; Communication processing characterised by a protocol
H04W 12/02 - Protecting privacy or anonymity, e.g. protecting personally identifiable information [PII]
Techniques are disclosed for establishing communication between light-based communication (LCom) luminaires within a navigation array of luminaires and mobile computing devices having varying components and processes using an encoding scheme received from passing mobile computing devices. The encoding scheme is a set of rules for encoding and generating a visible-light communication (VLC) signal so that the mobile computing device may recognize VLC signals broadcast by the luminaire. In accordance with some embodiments, the disclosed techniques can be used, for example, to accommodate future computing devices that may incorporate different camera technologies and different processing algorithms to process waveforms in the VLC signals.
Techniques are disclosed for establishing communication between light-based communication (LCom) luminaires within a navigation array of luminaires and mobile computing devices having varying components and processes using an encoding scheme received from passing mobile computing devices. The encoding scheme is a set of rules for encoding and generating a visible-light communication (VLC) signal so that the mobile computing device may recognize VLC signals broadcast by the luminaire. In accordance with some embodiments, the disclosed techniques can be used, for example, to accommodate future computing devices that may incorporate different camera technologies and different processing algorithms to process waveforms in the VLC signals.
Techniques are disclosed to operate a luminaire so as to reduce glare experience by an occupant within an area illuminated by a luminaire. The luminaire includes individually operated light sources. An image capture device is deployed for capturing an image of an area. Operatively coupled to the luminaire and the image capture device is a computing system. The computing is configured to reduce glare by adjusting a light intensity of a light source of the luminaire. These adjustments are based on, for example, a position of an occupant within the area and a direction in which the occupant is facing relative to the luminaire, and/or a position of an indirect glare source.
37 - Construction and mining; installation and repair services
Goods & Services
Services in the field of lighting, namely, installation and replacement of lighting systems in the nature of lighting apparatus, electronics for lighting apparatuses, and controls for lighting apparatuses
80.
METHODS AND SYSTEMS FOR AUTHENTICATING A DEVICE TO A WIRELESS NETWORK
Aspects of the present disclosure include methods and systems for commissioning and authenticating devices for joining a local network that improve the security of the network and make it more difficult for unauthorized devices to gain access to the network. In some examples, communication channels that have a more limited range and direction as compared to radio frequency communication are employed for exchanging information to join the network, such as cryptographic keys. The communication channels may include acoustic or optical channels. In some examples, techniques for deriving temporary and/or dynamic keys are disclosed.
Various embodiments disclosed herein include a light-based communication system. The system includes a plurality of luminaires, in which each of the plurality of luminaires is configured to transmit light-based communication (LCom) signals, and a server communicatively coupled to the plurality of luminaires. The server is configured to assign an identifier to each of the plurality of luminaires, transmit the assigned identifier to each of the plurality of luminaires, in which each of the plurality of luminaires transmits the assigned identifier via LCom signals, rotate, in response to receiving a trigger signal, the assigned identifier for each of the plurality of luminaires, and transmit the rotated identifier to each of the plurality of luminaires, in which each of the plurality of luminaires transmits the rotated identifier via LCom signals.
H04B 10/00 - Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
Systems, methods, and software for determining whether or not a monitored space is occupied by one or more humans and/or animals. In some embodiments, one or more radio-frequency (RF) receivers monitor(s) one or more RF frequencies for changes in received signal strength that may be due to changes in occupancy of the space being monitored. The received signal strength is analyzed using nonparametric online change-point detection analysis to determine change-points in the received signal(s). One or more statistical measures of the received signal(s), such as mean and variance, are used in conjunction with the change-point detection to determine a probability that the occupancy of the monitored space has changed. In some embodiments, additional sensors and/or machine learning can be used to enhance the performance of the disclosed occupancy-detection methodologies.
G01S 13/04 - Systems determining presence of a target
G08B 13/24 - Electrical actuation by interference with electromagnetic field distribution
G08B 25/08 - Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using communication transmission lines
G01S 13/56 - Discriminating between fixed and moving objects or between objects moving at different speeds for presence detection
F24F 11/30 - Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
A constant output current LED driver is disclosed. The driver is capable of operating with a wide range of input direct current (DC) voltage, and is configured with a full bridge inverter, an auxiliary circuit, and a voltage current converter. The full bridge inverter and auxiliary circuit collectively operate to provide a phase shift controller for the LED driver system. The LED driver operates under zero voltage switching (ZVS) for all switches in the LED driver circuit for all of the input voltage levels and for all of the output voltage levels. By maintaining ZVS in all conditions, the system can operate at very high frequency and be compact yet still achieve high power density. The resulting topology is applicable for a wide range of constant output current LED drivers. Switchable loads other than LEDs can also be driven.
H02M 7/537 - Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
H05B 33/08 - Circuit arrangements for operating electroluminescent light sources
H02M 7/5387 - Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
84.
OCCUPANCY ESTIMATION USING NONPARAMETRIC ONLINE CHANGE-POINT DETECTION, AND APPARATUSES, SYSTEMS, AND SOFTWARE FOR SAME
Systems, methods, and software for determining whether or not a monitored space is occupied by one or more humans and/or animals. In some embodiments, one or more radio-frequency (RF) receivers monitor(s) one or more RF frequencies for changes in received signal strength that may be due to changes in occupancy of the space being monitored. The received signal strength is analyzed using nonparametric online change-point detection analysis to determine change-points in the received signal(s). One or more statistical measures of the received signal(s), such as mean and variance, are used in conjunction with the change-point detection to determine a probability that the occupancy of the monitored space has changed. In some embodiments, additional sensors and/or machine learning can be used to enhance the performance of the disclosed occupancy-detection methodologies.
A projection headlamp (12) has a reflector (28) reflecting light emitted from a light engine (20); a projector lens (30) projecting reflected light from the reflector (28); and a shutter (22) disposed between light engine (20) and projector lens (30), the shutter (22) having an upper edge (44) defining a cut-off to generate a low beam pattern by obscuring a portion of the projector lens (30) from the reflected light and to selectively emit the reflected light through the projector lens (30) in a low-beam light distribution pattern. The shutter (22) further includes a partially light-transmissive shutter bump (56) extending above the upper edge (44) which attenuates light emitted from the projector lens (30) in a predefined area of the low-beam pattern. Light intensity at the 0.86D, 3.5L NHTSA test point (112) is attenuated to below maximum photometric intensity (12,000 candela), avoiding glare.
F21S 41/43 - Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by screens, non-reflecting members, light-shielding members or fixed shades characterised by the shape thereof
Techniques are disclosed for detecting changes in occupancy as well as the number of occupants within an area. Detection of one or more occupants entering or leaving the area may be accomplished using a sensor having a quantity of pixels. The pixels may be configured to receive thermal energy emitted from one or more objects present in the area, including from one or more occupants. In response to receiving the emitted thermal energy, the sensor may be configured to create thermal images of the area. These thermal images may include a plurality of thermal intensity values associated with one or more pixels of the sensor. Two or more thermal images can be compared to identify a change in thermal intensity values. A change in the occupancy of the area may be determined by based on the identified change in thermal intensity values.
Techniques are disclosed for detecting changes in occupancy as well as the number of occupants within an area. Detection of one or more occupants entering or leaving the area may be accomplished using a sensor having a quantity of pixels. The pixels may be configured to receive thermal energy emitted from one or more objects present in the area, including from one or more occupants. In response to receiving the emitted thermal energy, the sensor may be configured to create thermal images of the area. These thermal images may include a plurality of thermal intensity values associated with one or more pixels of the sensor. Two or more thermal images can be compared to identify a change in thermal intensity values. A change in the occupancy of the area may be determined by based on the identified change in thermal intensity values.
Techniques are disclosed for controlling a remotely programmable light fixture using a mobile computing device in communication with the light fixture via a network. The device is configured to receive an image of an environment that includes the light fixture. Using the received image, the device is configured to generate a graphical user interface (GUI) based on the image. The GUI is configured to define an area of the image for selecting the light fixture. The defined area is associated with the light fixture and is configured to select the light fixture in response to a user input. The GUI is further configured to receive a selection of a light setting for the selected light fixture and transmit an adjustment of the light setting to the selected light fixture via the network.
Techniques are disclosed for programming a luminaire position for light-based communication (LCom) luminaires within an array of luminaires using position information provided by passing mobile computing devices. This position information can be received as, for example, as a specific coordinate (e.g., x-y coordinates of a grid-based map) or as movement data of the mobile computing device relative to an initial known reference location. The disclosed techniques can be used, for example, to reduce the time, labor, and expense associated with programming and re-programming a luminaire with a luminaire position, and to increase the flexibility of navigation system installations. In some cases, the disclosed techniques can be used, for example, to improve the precision of a luminaire position programmed into a newly installed luminaire.
A method of setting luminance levels of a solid-state light sources of a luminaire with programmable light distribution is provided. The method includes obtaining a file describing a desired light beam distribution, converting the desired light beam distribution into luminance levels for the solid-state light sources, and applying the luminance levels to the solid-state light sources to cause the luminaire to output the desired light beam distribution.
Methods and systems are described for sampling an LCom message and accurately decoding the entire LCom message using a light receiver (e.g., digital camera) of a typical mobile computing device, such as a smartphone, tablet, or other mobile computing device. In one embodiment, a curvature method is disclosed to determine LCom signal bit values from a curvature value of a running average calculation of light sensor data. In another embodiment, a signal reconstruction method is disclosed to determine LCom signal bit values from a comparison of modeled data buffers to light sensor data.
A laser-activated remote phosphor (LARP) target with a first layer having a first index of refraction and a phosphor dispersed within the first layer. A second layer which has a second index of refraction different from the first index of refraction and adjoins the first layer at an interface. The first index of refraction is higher than the second index of refraction such that the interface is configured to at least partially reflect light emitted from the phosphor.
F21V 9/30 - Elements containing photoluminescent material distinct from or spaced from the light source
F21K 9/64 - Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
Various embodiments include a voltage adjusting block (VAB) coupled to a light emitting diode (LED) string. The VAB includes a first switch having a first lead connected to a voltage input, and having a second lead, the first switch having a controllable duty cycle, a first diode having a cathode connected to the second lead of the first switch, and having an anode, a first inductor having a first lead connected to the cathode of the first diode, and having a second lead, and a first capacitor having a first lead connected to the anode of the first diode and having a second lead connected to the second lead of the first inductor. The VAB may provide a variable voltage across the anode of the first diode and the second lead of the first capacitor dependent upon a number of LEDs in the LED string being turned on.
Techniques are disclosed for locating an occupant within an area. The system includes a first sensor including a first plurality of pixels for receiving a thermal energy input from the occupant within a first field of view (FOV) and a second sensor including a second plurality of pixels for receiving the input within a second FOV. A first distance from the occupant to the first sensor is determined based on the input received by at least one pixel of the first plurality of pixels and a first sensor location from an origin. A second distance from the occupant to the second sensor is also determined based on the input received by at least one pixel of the second plurality of pixels and a second sensor location relative to the origin. A coordinate position for the occupant relative to the origin is determined based on the determined first and second distances.
G01S 5/16 - Position-fixing by co-ordinating two or more direction or position-line determinationsPosition-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves
A reflector assembly for a solid-state luminaire is disclosed. The disclosed reflector assembly may be configured, in accordance with some embodiments, to be disposed over a given printed circuit board (PCB) of a host luminaire such that emissions of emitters populated over that PCB are reflected out of the luminaire via the reflector assembly. In some embodiments, the reflector assembly may be formed from one or more reflective members, which may be generally bar-shaped or cup-shaped, or other example configurations. In some other embodiments, the reflector assembly may be formed from a bulk body having one or more reflective cavities formed therein. The particular configuration of a given reflective member or reflective cavity, as the case may be, of the reflector assembly, as well as the particular arrangement thereof for a host luminaire, may be customized as desired for a given target application or end-use.
A laser-activated remote phosphor (LARP) target with a first layer having a first index of refraction and a phosphor dispersed within the first layer. A second layer which has a second index of refraction different from the first index of refraction and adjoins the first layer at an interface. The first index of refraction is higher than the second index of refraction such that the interface is configured to at least partially reflect light emitted from the phosphor.
G02B 27/14 - Beam splitting or combining systems operating by reflection only
F21V 29/502 - Cooling arrangements characterised by the adaptation for cooling of specific components
F21V 29/70 - Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
F21K 9/64 - Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
Techniques are disclosed for locating an occupant within an area. The system includes a first sensor including a first plurality of pixels for receiving a thermal energy input from the occupant within a first field of view (FOV) and a second sensor including a second plurality of pixels for receiving the input within a second FOV. A first distance from the occupant to the first sensor is determined based on the input received by at least one pixel of the first plurality of pixels and a first sensor location from an origin. A second distance from the occupant to the second sensor is also determined based on the input received by at least one pixel of the second plurality of pixels and a second sensor location relative to the origin. A coordinate position for the occupant relative to the origin is determined based on the determined first and second distances.
G06K 9/00 - Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
G01J 1/42 - Photometry, e.g. photographic exposure meter using electric radiation detectors
G01J 1/02 - Photometry, e.g. photographic exposure meter Details
G01S 5/16 - Position-fixing by co-ordinating two or more direction or position-line determinationsPosition-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves
98.
Dynamic color rendering methods and systems providing just-noticeable color accentuation and quasi-animation effects
Lighting methods and systems to enhance the browsing behaviors of shoppers in a manner intended to be primarily subconscious include illumination of a targeted area, such as a typical retail display, with a tunable spectrum lamp that slowly cycles through different illumination spectra such that color rendering of illuminated target is deliberately varied for subtle arousal of the visual senses. The illumination spectra, and the rates at which spectral conditions are changed, are both chosen as such that multi-colored objects in the targeted area change in appearance in a barely noticeable way, such that shoppers may find their visual attention redirected, seemingly at random, to a wider variety of products on display. Color spectrum changes also may be controlled in coordination with predefined packaging colors to create quasi-animation effects.
A system and method for determining vehicle position uses light based communication signals and a time-of-flight (TOF) pulse. Each vehicle includes a LBC system having light emitting diodes and receiver photodiodes capable of sending and receiving pulsed light binary messages. The LBC system may also include a TOF transceiver for sending and receiving TOF pulses, or the transmitter and receiver diodes may be used to send and receive TOF pulses. Each LBC system has a controller coupled to the transmitter diodes and receiver diodes (and the TOF transceiver when present). The controller includes a processor configured to determine the distance between vehicles. Optical characteristics are used to discern relative angle, a header is used to determine relative orientation, and the time-of-flight is used to determine distance, which together may be used by the processor to determine the relative location between transmitting vehicle and the receiving vehicle.
Techniques are disclosed for detecting human presence using IR sensor data. In some embodiments, any activity in a space monitored (imaged) by an IR sensor can be determined by calculating the delta between average image frames acquired by the imaging sensor. A finite value of delta implies activity/presence. In some embodiments, the delta values (i.e., changes in target area scene) are integrated over time to calculate a mask. The mask can be used to isolate a human occupant (whether stationary or moving) in the scene from the given background objects of the space, thus allowing for occupancy detection. Occupancy in known blind spots of the area can be inferred based on detected occupancy in non-blind spots neighboring the blind spot so that entering and exiting with respect to the blind spot is tracked.
G08B 13/19 - Actuation by interference with heat, light, or radiation of shorter wavelengthActuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using infrared-radiation detection systems
G08B 13/196 - Actuation by interference with heat, light, or radiation of shorter wavelengthActuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras