C07K 5/037 - Peptides having up to four amino acids in a fully defined sequence; Derivatives thereof containing at least one abnormal peptide link the abnormal link being formed by the side chain of an alpha-amino acid, e.g. gamma-Glu, epsilon-Lys, glutathione
A61P 1/16 - Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
2.
Use of trientine to deliver copper to ischemic tissue
Methods of ischemic tissue repair and regeneration through promoting tissue redistribution and reuse of copper by administering a composition comprising a copper chelating tetramine, such as trientine. Methods and compositions for increasing intracellular copper lever and/or inducing repair of an ischemic tissue in an individual. Increased copper level in an ischemic tissue may promote copper-dependent HIF-1 transcriptional activities and tissue repair.
A61K 31/132 - Amines, e.g. amantadine having two or more amino groups, e.g. spermidine, putrescine
A61P 9/00 - Drugs for disorders of the cardiovascular system
A61P 9/10 - Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
Disclosed in the present application is a use of a composition in treating atherosclerosis. Specifically, the present application relates to a use of a composition comprising microbubbles and copper ions in treating atherosclerosis.
A61K 47/64 - Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
A61P 9/10 - Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
4.
Use of trientine to deliver copper to ischemic tissue
Methods of ischemic tissue repair and regeneration through promoting tissue redistribution and reuse of copper by administering a composition comprising a copper chelating tetramine, such as trientine. Methods and compositions for increasing intracellular copper lever and/or inducing repair of an ischemic tissue in an individual. Increased copper level in an ischemic tissue may promote copper-dependent HIF-1 transcriptional activities and tissue repair.
A61K 31/132 - Amines, e.g. amantadine having two or more amino groups, e.g. spermidine, putrescine
A61P 9/10 - Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
A61P 9/00 - Drugs for disorders of the cardiovascular system
The disclosure provides local delivery of a trace element to a site of tissue injury, which triggers the body' inherent tissue repair mechanism. Local delivery of copper to the site of injury induces migration (i.e., homing) of stem cells to the site of injury, triggers differentiation of stem cells at the site of injury, induces tissue regeneration at the site of injury, induces signaling molecules that trigger tissue regeneration, reverses damage at the site of injury, and/or reconstructs the microenvironment of neurofibril cells and neurosecretory cells at the site of injury. In another aspect, delivering a trace element (for example, copper) directly to the site of injury and associated methods are disclosed.
Methods of ischemic tissue repair and regeneration through promoting tissue redistribution and reuse of copper by administering a composition comprising a copper chelating tetramine, such as trientine. Methods and compositions for increasing intracellular copper lever and/or inducing repair of an ischemic tissue in an individual. Increased copper level in an ischemic tissue may promote copper-dependent HIF-1 transcriptional activities and tissue repair.
A61P 9/10 - Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
7.
USE OF TRIENTINE TO DELIVER COPPER TO ISCHEMIC TISSUE
Methods of ischemic tissue repair and regeneration through promoting tissue redistribution and reuse of copper by administering a composition comprising a copper chelating tetramine, such as trientine. Methods and compositions for increasing intracellular copper lever and/or inducing repair of an ischemic tissue in an individual. Increased copper level in an ischemic tissue may promote copper-dependent HIF-1 transcriptional activities and tissue repair.
A61P 9/10 - Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
8.
A PHARMACEUTICAL COMPOSITION COMPRISING A COPPER CHELATING TETRAMINE AND THE USE THEREOF
A pharmaceutical composition for increasing intracellular copper level and inducing repair of an ischemic tissue in an individual comprises a copper chelating tetramine and a copper ion.
A61P 9/10 - Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
A61P 9/10 - Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
The disclosure provides local delivery of a trace element to a site of tissue injury, which triggers the body' inherent tissue repair mechanism. Local delivery of copper to the site of injury induces migration (i.e., homing) of stem cells to the site of injury, triggers differentiation of stem cells at the site of injury, induces tissue regeneration at the site of injury, induces signaling molecules that trigger tissue regeneration, reverses damage at the site of injury, and/or reconstructs the microenvironment of neurofibril cells and neurosecretory cells at the site of injury. In another aspect, delivering a trace element (for example, copper) directly to the site of injury and associated methods are disclosed.
The disclosure provides local delivery of a trace element to a site of tissue injury, which triggers the body' inherent tissue repair mechanism. Local delivery of copper to the site of injury induces migration (i.e., homing) of stem cells to the site of injury, triggers differentiation of stem cells at the site of injury, induces tissue regeneration at the site of injury, induces signaling molecules that trigger tissue regeneration, reverses damage at the site of injury, and/or reconstructs the microenvironment of neurofibril cells and neurosecretory cells at the site of injury. In another aspect, delivering a trace element (for example, copper) directly to the site of injury and associated methods are disclosed.