Presented herein are systems, methods, and apparatus related to relocatable tower technologies that facilitate on-site deployment and provide improved stiffness in order to minimize motion at a tower top in a manner that existing approaches, which focus on survivability, do not contemplate. In particular, relocatable tower technologies described herein can be deployed rapidly and at low cost, at outdoor sites, to, e.g., provide a vertical mast upon which equipment can be mounted. In certain embodiments, features of relocatable towers described herein allow the vertical mast to survive and remain rigid while being exposed to outdoor elements, such as wind gusts (e.g., up to 110 Mph). Advantages of relocatable tower technologies described herein are particularly well suited where (e.g., scanning based) imaging and/or detection equipment is mounted at a top of the tower, and/or where towers are deployed at sensitive sites such as hydrocarbon production, storage and processing facilities.
Presented herein are systems, methods, and apparatus related to relocatable tower technologies that facilitate on-site deployment and provide improved stiffness in order to minimize motion at a tower top in a manner that existing approaches, which focus on survivability, do not contemplate. In particular, relocatable tower technologies described herein can be deployed rapidly and at low cost, at outdoor sites, to, e.g., provide a vertical mast upon which equipment can be mounted. In certain embodiments, features of relocatable towers described herein allow the vertical mast to survive and remain rigid while being exposed to outdoor elements, such as wind gusts (e.g., up to 110 Mph). Advantages of relocatable tower technologies described herein are particularly well suited where (e.g., scanning based) imaging and/or detection equipment is mounted at a top of the tower, and/or where towers are deployed at sensitive sites such as hydrocarbon production, storage and processing facilities.
Presented herein are systems and methods directed to a multispectral absorption-based imaging approach offering improved detection, localization, and quantification of gas emission. The imaging technology described herein utilizes an optical sensor and broadband illumination in combination with specialized reflector installments mounted about the site. The optical sensor detects light (e.g., reflected) from locations along the reflector installment. Lines-of-sight from the optical sensor to locations along the reflector installment sweep out an “optical curtain” partially enclosing and/or forming a boundary near various assets to be monitored. Optical absorption signatures from leaking gas crossing the optical curtain can be used to detect, localize, and obtain quantitative measures characterizing the leak. Measurements from reflector installments can be combined with measurements obtained via reflection of ambient light from background materials in a hybrid approach that expands monitoring capabilities and offers improvements in detection.
G01N 21/359 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
G01N 21/3504 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
4.
Systems and methods for leak monitoring via measurement of optical absorption using tailored reflector installments
Presented herein are systems and methods directed to a multispectral absorption-based imaging approach that provides for rapid and accurate detection, localization, and quantification of gas emission from within a site to be monitored. The imaging technology described herein utilizes an optical sensor and broadband illumination in combination with specialized reflector installments mounted about the site. The optical sensor detects light (e.g., reflected) from a plurality of sampled locations along the reflector installment, for example by imaging multiple sampled locations at a time and/or scanning an instantaneous field of view (ifov) of the optical sensor. Lines-of-sight from the optical sensor to sampled locations along the reflector installment sweep out an “optical curtain” partially enclosing and/or forming a boundary near various assets to be monitored. Optical absorption signatures from leaking gas crossing the optical curtain can be used to detect, localize, and obtain quantitative measures characterizing the leak.
G01N 21/359 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
G01N 21/3504 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
09 - Scientific and electric apparatus and instruments
35 - Advertising and business services
42 - Scientific, technological and industrial services, research and design
Goods & Services
Gas leak and hydrocarbon spill detection systems, namely,
infrared cameras, sensors, hardware, and embedded software,
for detecting, quantifying, and visualizing gas leaks and
oil spills, storing images of the monitored areas,
triggering alarms and sending alerts regarding gas leaks and
oil spills, and documenting the absence of gas leaks and oil
spills. Preparing customized business reports based on data
collected from gas leak and hydrocarbon spill detection
system. Software as a service (SaaS) services featuring software for
configuring and controlling the components of gas leak and
hydrocarbon spill detection systems, for accessing,
monitoring, visualizing, and analyzing data from systems
that detect, quantify, and visualize gas leaks and oil
spills, for sending and receiving alerts regarding gas leaks
and oil spills, for documenting the absence of gas leaks and
oil spills, and for producing, receiving, and accessing
reports regarding gas leaks and oil spills or the lack
thereof; providing information through computer technology
available on an interactive website featuring technology
that enables users to configure and control the components
of gas leak and hydrocarbon spill detection systems, to
access, monitor, visualize, and analyze data from systems
that detect, quantify, and visualize gas leaks and oil
spills, to send and receive alerts regarding gas leaks and
oil spills, to document the absence of gas leaks and oil
spills, and to produce, receive, and access reports
regarding gas leaks and oil spills or the lack thereof;
providing scientific information in the nature of, preparing
customized technical reports based on data collected from
gas leak and hydrocarbon spill detection systems.
09 - Scientific and electric apparatus and instruments
35 - Advertising and business services
42 - Scientific, technological and industrial services, research and design
Goods & Services
(1) Gas leak and hydrocarbon spill detection systems, namely, infrared cameras, sensors, hardware, and embedded software, for detecting, quantifying, and visualizing gas leaks and oil spills, storing images of the monitored areas, triggering alarms and sending alerts regarding gas leaks and oil spills, and documenting the absence of gas leaks and oil spills. (1) Preparing customized business reports based on data collected from gas leak and hydrocarbon spill detection system.
(2) Software as a service (SaaS) services featuring software for configuring and controlling the components of gas leak and hydrocarbon spill detection systems, for accessing, monitoring, visualizing, and analyzing data from systems that detect, quantify, and visualize gas leaks and oil spills, for sending and receiving alerts regarding gas leaks and oil spills, for documenting the absence of gas leaks and oil spills, and for producing, receiving, and accessing reports regarding gas leaks and oil spills or the lack thereof; providing information through computer technology available on an interactive website featuring technology that enables users to configure and control the components of gas leak and hydrocarbon spill detection systems, to access, monitor, visualize, and analyze data from systems that detect, quantify, and visualize gas leaks and oil spills, to send and receive alerts regarding gas leaks and oil spills, to document the absence of gas leaks and oil spills, and to produce, receive, and access reports regarding gas leaks and oil spills or the lack thereof; providing scientific information in the nature of, preparing customized technical reports based on data collected from gas leak and hydrocarbon spill detection systems.
09 - Scientific and electric apparatus and instruments
35 - Advertising and business services
42 - Scientific, technological and industrial services, research and design
Goods & Services
Gas leak and hydrocarbon spill detection systems, namely, infrared cameras, sensors, hardware, and embedded software, for detecting, quantifying, and visualizing gas leaks and oil spills, storing images of the monitored areas, triggering alarms and sending alerts regarding gas leaks and oil spills, and documenting the absence of gas leaks and oil spills Preparing customized business reports based on data collected from gas leak and hydrocarbon spill detection system Software as a Service (SaaS) services featuring software for configuring and controlling the components of gas leak and hydrocarbon spill detection systems, for accessing, monitoring, visualizing, and analyzing data from systems that detect, quantify, and visualize gas leaks and oil spills, for sending and receiving alerts regarding gas leaks and oil spills, for documenting the absence of gas leaks and oil spills, and for producing, receiving, and accessing reports regarding gas leaks and oil spills or the lack thereof; Providing an interactive website featuring technology that enables users to configure and control the components of gas leak and hydrocarbon spill detection systems, to access, monitor, visualize, and analyze data from systems that detect, quantify, and visualize gas leaks and oil spills, to send and receive alerts regarding gas leaks and oil spills, to document the absence of gas leaks and oil spills, and to produce, receive, and access reports regarding gas leaks and oil spills or the lack thereof; Providing scientific information in the nature of, preparing customized technical reports based on data collected from gas leak and hydrocarbon spill detection systems
8.
SYSTEMS AND METHODS FOR LEAK MONITORING VIA MEASUREMENT OF OPTICAL ABSORPTION USING TAILORED REFLECTOR INSTALLMENTS
Presented herein are systems and methods directed to a multispectral absorption-based imaging approach offering improved detection, localization, and quantification of gas emission. The imaging technology described herein utilizes an optical sensor and broadband illumination in combination with specialized reflector installments mounted about the site. The optical sensor detects light (e.g., reflected) from locations along the reflector installment. Lines-of-sight from the optical sensor to locations along the reflector installment sweep out an "optical curtain" partially enclosing and/or forming a boundary near various assets to be monitored. Optical absorption signatures from leaking gas crossing the optical curtain can be used to detect, localize, and obtain quantitative measures characterizing the leak. Measurements from reflector installments can be combined with measurements obtained via reflection of ambient light from background materials in a hybrid approach that expands monitoring capabilities and offers improvements in detection.
G01M 3/20 - Investigating fluid tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
G01N 21/3504 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
G01M 3/38 - Investigating fluid tightness of structures by using light
G01N 33/00 - Investigating or analysing materials by specific methods not covered by groups
9.
SYSTEMS AND METHODS FOR LEAK MONITORING VIA MEASUREMENT OF OPTICAL ABSORPTION USING TAILORED REFLECTOR INSTALLMENTS
Presented herein are systems and methods directed to a multispectral absorption-based imaging approach offering improved detection, localization, and quantification of gas emission. The imaging technology described herein utilizes an optical sensor and broadband illumination in combination with specialized reflector installments mounted about the site. The optical sensor detects light (e.g., reflected) from locations along the reflector installment. Lines-of-sight from the optical sensor to locations along the reflector installment sweep out an "optical curtain" partially enclosing and/or forming a boundary near various assets to be monitored. Optical absorption signatures from leaking gas crossing the optical curtain can be used to detect, localize, and obtain quantitative measures characterizing the leak. Measurements from reflector installments can be combined with measurements obtained via reflection of ambient light from background materials in a hybrid approach that expands monitoring capabilities and offers improvements in detection.
G01M 3/20 - Investigating fluid tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
G01M 3/38 - Investigating fluid tightness of structures by using light
G01N 21/3504 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
G01N 33/00 - Investigating or analysing materials by specific methods not covered by groups
10.
Systems and methods for leak monitoring via measurement of optical absorption using tailored reflector installments
Presented herein are systems and methods directed to a multispectral absorption-based imaging approach that provides for rapid and accurate detection, localization, and quantification of gas emission from within a site to be monitored. The imaging technology described herein utilizes an optical sensor and broadband illumination in combination with specialized reflector installments mounted about the site. The optical sensor detects light (e.g., reflected) from a plurality of sampled locations along the reflector installment, for example by imaging multiple sampled locations at a time and/or scanning an instantaneous field of view (ifov) of the optical sensor. Lines-of-sight from the optical sensor to sampled locations along the reflector installment sweep out an “optical curtain” partially enclosing and/or forming a boundary near various assets to be monitored. Optical absorption signatures from leaking gas crossing the optical curtain can be used to detect, localize, and obtain quantitative measures characterizing the leak.
G01N 21/359 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
G01N 21/3504 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
11.
Systems and methods for multispectral imaging and gas detection using a scanning illuminator and optical sensor
Presented herein are systems and methods directed to a multispectral absorption-based imaging approach that provides for rapid and accurate detection, localization, and quantification of gas leaks. The imaging technology described herein utilizes a scanning optical sensor in combination with structured and scannable illumination to detect and image spectral signatures produced by absorption of light by leaking gas in a quantitative manner over wide areas, at distance, and in the presence of background such as ambient gas and vapor. Moreover, the specifically structured and scannable illumination source of the systems and methods described herein provides a consistent source of illumination for the scanning optical sensor, allowing imaging to be performed even in the absence of sufficient natural light, such as sunlight. The imaging approaches described herein can, accordingly, be used for a variety of gas leak detection, emissions monitoring, and safety applications.
G01N 21/3504 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
G01F 1/66 - Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
G01M 3/20 - Investigating fluid tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
G01M 3/38 - Investigating fluid tightness of structures by using light
G01N 33/00 - Investigating or analysing materials by specific methods not covered by groups
G01N 21/359 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
E21B 41/00 - Equipment or details not covered by groups
This invention consists of sensors and algorithms to image, detect, and quantify the presence of hydrocarbon gas (for example from leaks) using a short-wave infrared radiation detector array with multiple spectral filters under natural sunlight or artificial illumination, in combination with the hydrodynamics of turbulent gas jets and buoyant plumes. Multiple embodiments are recited and address detection and quantification of methane gas leaks. Quantification includes gas column densities, gas concentration estimates, total mass, hole size estimates, and estimated emission flux (leak rate) of gas from holes and cracks in pressurized vessels, pipes, components, and general gas infrastructure, and from surface patches (for example due to gas leaks in underground pipes) under the action of buoyancy and wind. These and similar embodiments are applicable more generally to natural gas and other hydrocarbon gases, liquids, emulsions, solids, and particulates, and to emissions monitoring of greenhouse gases methane and carbon dioxide.
G01M 3/38 - Investigating fluid tightness of structures by using light
G01N 21/3504 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
G01N 21/359 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
G01N 21/31 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
G01N 21/85 - Investigating moving fluids or granular solids
G01N 33/00 - Investigating or analysing materials by specific methods not covered by groups
G01F 1/66 - Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
13.
SYSTEMS AND METHODS FOR MULTISPECTRAL IMAGING AND GAS DETECTION USING A SCANNING ILLUMINATOR AND OPTICAL SENSOR
Presented herein are systems and methods directed to a multispectral absorption-based imaging approach that provides for rapid and accurate detection, localization, and quantification of gas leaks. The imaging technology described herein utilizes a scanning optical sensor in combination with structured and scannable illumination to detect and image spectral signatures produced by absorption of light by leaking gas in a quantitative manner over wide areas, at distance, and in the presence of background such as ambient gas and vapor. Moreover, the specifically structured and scannable illumination source of the systems and methods described herein provides a consistent source of illumination for the scanning optical sensor, allowing imaging to be performed even in the absence of sufficient natural light, such as sunlight. The imaging approaches described herein can, accordingly, be used for a variety of gas leak detection, emissions monitoring, and safety applications.
G01M 3/20 - Investigating fluid tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
G01M 3/38 - Investigating fluid tightness of structures by using light
E21B 47/10 - Locating fluid leaks, intrusions or movements
G01N 21/3504 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
G01F 1/66 - Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
G01N 33/00 - Investigating or analysing materials by specific methods not covered by groups
G01N 21/359 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
Presented herein are systems and methods directed to a multispectral absorption-based imaging approach that provides for rapid and accurate detection, localization, and quantification of gas leaks. The imaging technology described herein utilizes a scanning optical sensor in combination with structured and scannable illumination to detect and image spectral signatures produced by absorption of light by leaking gas in a quantitative manner over wide areas, at distance, and in the presence of background such as ambient gas and vapor. Moreover, the specifically structured and scannable illumination source of the systems and methods described herein provides a consistent source of illumination for the scanning optical sensor, allowing imaging to be performed even in the absence of sufficient natural light, such as sunlight. The imaging approaches described herein can, accordingly, be used for a variety of gas leak detection, emissions monitoring, and safety applications.
G01M 3/20 - Investigating fluid tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
G01N 21/3504 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
G01N 21/359 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
E21B 47/10 - Locating fluid leaks, intrusions or movements
G01M 3/38 - Investigating fluid tightness of structures by using light
G01N 33/00 - Investigating or analysing materials by specific methods not covered by groups
Presented herein are systems and methods directed to a multispectral absorption-based imaging approach that provides for rapid and accurate detection, localization, and quantification of gas leaks. The imaging technology described herein utilizes a scanning optical sensor in combination with structured and scannable illumination to detect and image spectral signatures produced by absorption of light by leaking gas in a quantitative manner over wide areas, at distance, and in the presence of background such as ambient gas and vapor. Moreover, the specifically structured and scannable illumination source of the systems and methods described herein provides a consistent source of illumination for the scanning optical sensor, allowing imaging to be performed even in the absence of sufficient natural light, such as sunlight. The imaging approaches described herein can, accordingly, be used for a variety of gas leak detection, emissions monitoring, and safety applications.
G01N 21/3504 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
G01N 21/359 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
16.
Scanning IR sensor for gas safety and emissions monitoring
Apparatus and methods for rapidly detecting, localizing, imaging, and quantifying leaks of natural gas and other hydrocarbon and greenhouse gases. Scanning sensors, scan patterns, and data processing algorithms enable monitoring a site to rapidly detect, localize, image, and quantify amounts and rates of hydrocarbon leaks. Multispectral short-wave infrared detectors sense non-thermal infrared radiation from natural solar or artificial illumination sources by differential absorption spectroscopy. A multispectral sensor is scanned to envelop an area of interest, detect the presence and location of a leak, and raster scan the area around the leak to create an image of the leak. The resulting absorption image related to differential spectral optical depth is color mapped to render the degree of gas absorption across the scene. Analysis of this optical depth image, with factors including known inline pressures and/or surface wind speed measurements, enable estimation of the leak rate, i.e., emission mass flux of gas.
G01J 5/00 - Radiation pyrometry, e.g. infrared or optical thermometry
G01N 21/3504 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
G01N 21/31 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
17.
Scanning IR sensor for gas safety and emissions monitoring
Apparatus and methods for rapidly detecting, localizing, imaging, and quantifying leaks of natural gas and other hydrocarbon and greenhouse gases. Scanning sensors, scan patterns, and data processing algorithms enable monitoring a site to rapidly detect, localize, image, and quantify amounts and rates of hydrocarbon leaks. Multispectral short-wave infrared detectors sense non-thermal infrared radiation from natural solar or artificial illumination sources by differential absorption spectroscopy. A multispectral sensor is scanned to envelop an area of interest, detect the presence and location of a leak, and raster scan the area around the leak to create an image of the leak. The resulting absorption image related to differential spectral optical depth is color mapped to render the degree of gas absorption across the scene. Analysis of this optical depth image, with factors including known inline pressures and/or surface wind speed measurements, enable estimation of the leak rate, i.e., emission mass flux of gas.
G01N 21/35 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
G01N 21/3518 - Devices using gas filter correlation techniquesDevices using gas pressure modulation techniques
G01F 1/76 - Devices for measuring mass flow of a fluid or a fluent solid material
G01N 21/3504 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
G01M 3/38 - Investigating fluid tightness of structures by using light
18.
SCANNING IR SENSOR FOR GAS SAFETY AND EMISSIONS MONITORING
Apparatus and methods for rapidly detecting, localizing, imaging, and quantifying leaks of natural gas and other hydrocarbon and greenhouse gases. Scanning sensors, scan patterns, and data processing algorithms enable monitoring a site to rapidly detect, localize, image, and quantify amounts and rates of hydrocarbon leaks. Multispectral short-wave infrared detectors sense non-thermal infrared radiation from natural solar or artificial illumination sources by differential absorption spectroscopy. A multispectral sensor is scanned to envelop an area of interest, detect the presence and location of a leak, and raster scan the area around the leak to create an image of the leak. The resulting absorption image related to differential spectral optical depth is color mapped to render the degree of gas absorption across the scene. Analysis of this optical depth image, with factors including known inline pressures and/or surface wind speed measurements, enable estimation of the leak rate, i.e., emission mass flux of gas.
G01N 21/35 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
G01N 21/3504 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
19.
SCANNING IR SENSOR FOR GAS SAFETY AND EMISSIONS MONITORING
Apparatus and methods for rapidly detecting, localizing, imaging, and quantifying leaks of natural gas and other hydrocarbon and greenhouse gases. Scanning sensors, scan patterns, and data processing algorithms enable monitoring a site to rapidly detect, localize, image, and quantify amounts and rates of hydrocarbon leaks. Multispectral short-wave infrared detectors sense non-thermal infrared radiation from natural solar or artificial illumination sources by differential absorption spectroscopy. A multispectral sensor is scanned to envelop an area of interest, detect the presence and location of a leak, and raster scan the area around the leak to create an image of the leak. The resulting absorption image related to differential spectral optical depth is color mapped to render the degree of gas absorption across the scene. Analysis of this optical depth image, with factors including known inline pressures and/or surface wind speed measurements, enable estimation of the leak rate, i.e., emission mass flux of gas.
E21B 47/10 - Locating fluid leaks, intrusions or movements
G01N 21/3504 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
G01N 21/35 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
20.
HYDROCARBON LEAK IMAGING AND QUANTIFICATION SENSOR
This invention consists of sensors and algorithms to image, detect, and quantify the presence of hydrocarbon gas (for example from leaks) using a short-wave infrared radiation detector array with multiple spectral filters under natural sunlight or artificial illumination, in combination with the hydrodynamics of turbulent gas jets and buoyant plumes. Multiple embodiments are recited and address detection and quantification of methane gas leaks. Quantification includes gas column densities, gas concentration estimates, total mass, hole size estimates, and estimated emission flux (leak rate) of gas from holes and cracks in pressurized vessels, pipes, components, and general gas infrastructure, and from surface patches (for example due to gas leaks in underground pipes) under the action of buoyancy and wind. These and similar embodiments are applicable more generally to natural gas and other hydrocarbon gases, liquids, emulsions, solids, and particulates, and to emissions monitoring of greenhouse gases methane and carbon dioxide.
G01N 21/35 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
E21B 47/10 - Locating fluid leaks, intrusions or movements
G01N 21/3504 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
21.
HYDROCARBON LEAK IMAGING AND QUANTIFICATION SENSOR
This invention consists of sensors and algorithms to image, detect, and quantify the presence of hydrocarbon gas (for example from leaks) using a short-wave infrared radiation detector array with multiple spectral filters under natural sunlight or artificial illumination, in combination with the hydrodynamics of turbulent gas jets and buoyant plumes. Multiple embodiments are recited and address detection and quantification of methane gas leaks. Quantification includes gas column densities, gas concentration estimates, total mass, hole size estimates, and estimated emission flux (leak rate) of gas from holes and cracks in pressurized vessels, pipes, components, and general gas infrastructure, and from surface patches (for example due to gas leaks in underground pipes) under the action of buoyancy and wind. These and similar embodiments are applicable more generally to natural gas and other hydrocarbon gases, liquids, emulsions, solids, and particulates, and to emissions monitoring of greenhouse gases methane and carbon dioxide.
G01N 21/35 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
G01N 21/3504 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
E21B 47/10 - Locating fluid leaks, intrusions or movements
22.
Hydrocarbon leak imaging and quantification sensor
This invention consists of sensors and algorithms to image, detect, and quantify the presence of hydrocarbon gas (for example from leaks) using a short-wave infrared radiation detector array with multiple spectral filters under natural sunlight or artificial illumination, in combination with the hydrodynamics of turbulent gas jets and buoyant plumes. Multiple embodiments are recited and address detection and quantification of methane gas leaks. Quantification includes gas column densities, gas concentration estimates, total mass, hole size estimates, and estimated emission flux (leak rate) of gas from holes and cracks in pressurized vessels, pipes, components, and general gas infrastructure, and from surface patches (for example due to gas leaks in underground pipes) under the action of buoyancy and wind. These and similar embodiments are applicable more generally to natural gas and other hydrocarbon gases, liquids, emulsions, solids, and particulates, and to emissions monitoring of greenhouse gases methane and carbon dioxide.
G01M 3/38 - Investigating fluid tightness of structures by using light
G01N 21/31 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
G01N 21/85 - Investigating moving fluids or granular solids
G01N 33/00 - Investigating or analysing materials by specific methods not covered by groups
G01N 21/3504 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
G01N 21/359 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
G01F 1/66 - Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters