The disclosure is directed to devices for use in radiation therapy. Various configurations of shielding materials within shielding layers, such as for use in shielding radiation from radioactive sources within implanted radioactive carriers, are discussed herein.
Medical device for treating cancer; medical device for treating tumors; implantable radiation therapy devices, namely, carriers designed to hold radioactive seeds and deliver radiation to tumors; medical device, namely, loading device for aiding in placement of radioactive seeds in implantable radiation therapy devices
A transparent loading apparatus (also referred to herein as a “loader”) may partially or entirely comprise transparent material that allows light to pass through the loader and provides the viewer (whether manual or automated) a view of a radioactive seed, a seed carrier, a loading needle, etc. within the loader. In some embodiments, carrier material (e.g., collagen and/or other biocompatible material) and radioactive seeds (e.g., including a metal shielding and radioactive isotope) may transmit light to different degrees. For example, certain carriers, such as collagen carriers, may be translucent, while seeds may be opaque (or mostly opaque) to light. The systems discussed herein allow a viewer to detect location of a seed within a loader, and even within a carrier, because of these different light transmissivity characteristics.
A dose feedback system provides real-time or near real-time intra-operative radiation dose feedback system to improve and/or ensure that a proper amount of radiation is delivered to a patient by, for example, carriers (e.g., tile carriers). The dose feedback system can be implemented during medical surgeries, operations, procedures, etc. The dose feedback system may allow a medical professional (e.g., surgeon) to more accurately achieve a prescribed radiation of a dosimetric intent or a more detailed dosimetric plan through adjustments to position, dose, quantity, etc. of carriers prior to terminating the medical procedure (e.g., cavity of tumor bed is closed and/or patient is brought out from under anesthesia) at which point adjusting the radiation dose may be difficult or impossible.
Carriers for embodying radioactive seeds, as well as a device for loading and customizing brachytherapy carriers based on the principles of optimizing a more precise and predictable dosimetry, and adaptable to the geometric challenges of a tumor bed in a real-time setting. The present disclosure relates to a specialized loading device designed to enable a medical team to create a radionuclide carrier for each patient and tumor reliably, reproducibly and efficiently.
The disclosure is directed to devices for use in radiation therapy. Various configurations of shielding materials within shielding layers, such as for use in shielding radiation from radioactive sources within implanted radioactive carriers, are discussed herein.
The disclosure is directed to devices for use in radiation therapy. Various configurations of shielding materials within shielding layers, such as for use in shielding radiation from radioactive sources within implanted radioactive carriers, are discussed herein.
An implant planning system aids delivery of radiation to tumor sites of a patient. The system allows a user to test various combinations of virtual implants, each associated with a corresponding physical implant (e.g., a carrier with an embedded radioactive seed), and to view the dosage area of the virtual implants so that adjustments to the virtual implants may be made until a prescribed dose of radiation to a treatment area is achieved. A treatment plan developed based on the virtual implants may then be used in surgical implantation of the corresponding physical implants. For example, the implant configuration of the treatment plan may be projected onto a treatment surface of a patient, such as in a surgical room, so that physical implants may be placed according to the projected image of the virtual implants.
G16H 50/20 - ICT specially adapted for medical diagnosis, medical simulation or medical data miningICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
A base dose calculation tool for determining a base dose employed in treatment planning. Prior therapy doses are considered on a voxelized basis such that subsequent treatments may be planned. The base dose output is operable with existing treatment planning systems.
A base dose calculation tool for determining a base dose employed in treatment planning. Prior therapy doses are considered on a voxelized basis such that subsequent treatments may be planned. The base dose output is operable with existing treatment planning systems.
A base dose calculation tool for determining a base dose employed in treatment planning. Base therapy information is considered on a voxelized and temporal basis such that subsequent treatments may be planned. The base dose output is operable with existing treatment planning systems.
G16H 20/40 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mechanical, radiation or invasive therapies, e.g. surgery, laser therapy, dialysis or acupuncture
12.
CUSTOMIZABLE RADIOACTIVE CARRIERS AND LOADING SYSTEM
Carriers for embodying radioactive seeds, as well as a device for loading and customizing brachytherapy carriers based on the principles of optimizing a more precise and predictable dosimetry, and adaptable to the geometric challenges of a tumor bed in a real-time setting. The present disclosure relates to a specialized loading device designed to enable a medical team to create a radionuclide carrier for each patient and tumor reliably, reproducibly and efficiently.
Brachytherapy radioisotope carrier systems and methodology for providing real-time customized brachytherapy treatment to subjects with tumors difficult to control using conventional radiation therapy techniques. The invention generally relates to devices, methods and kits for providing customized radionuclide treatments, to help cure, slow progression or regrowth, or ameliorate the symptoms associated with tumors.
Custom radioactive seed carriers are fabricated pre-operatively and/or intra-operatively to more precisely match carrier specification of a radiation treatment plan for a particular patient. One or more carrier specification component, such as a 3D printer, injection molding system, machining component, or bioprinter, may be utilized to create the custom carrier.
A carrier having one or more non-planar surfaces may be embedded with one or more radioactive seeds. A spherical carrier may be substantially radially symmetrical around an axis or a spherical carrier may include a non-spherical portion, such as a tapered portion that extends from a spherical portion.
A61K 51/12 - Preparations containing radioactive substances for use in therapy or testing in vivo characterised by a special physical form, e.g. emulsion, microcapsules, liposomes
A carrier having one or more non-planar surfaces may be embedded with one or more radioactive seeds. A spherical carrier may be substantially radially symmetrical around an axis or a spherical carrier may include a non-spherical portion, such as a tapered portion that extends from a spherical portion.
Custom radioactive seed carriers are fabricated pre-operatively and/or intraoperatively to more precisely match carrier specification of a radiation treatment plan for a particular patient. One or more carrier specification component, such as a 3D printer, injection molding system, machining component, or bioprinter, may be utilized to create the custom carrier.
A carrier having one or more non-planar surfaces may be embedded with one or more radioactive seeds. A spherical carrier may be substantially radially symmetrical around an axis or a spherical carrier may include a non-spherical portion, such as a tapered portion that extends from a spherical portion.
Custom radioactive seed carriers are fabricated pre-operatively and/or intraoperatively to more precisely match carrier specification of a radiation treatment plan for a particular patient. One or more carrier specification component, such as a 3D printer, injection molding system, machining component, or bioprinter, may be utilized to create the custom carrier.
A device for loading brachytherapy seeds and spacers into a sleeve. The device holds two or more seed or spacer cartridges of different radioactive species and dosage. The user rotates a selector for selecting a desired cartridge and, with each depression of a spring-biased plunger, pushes a seed or spacer into a channel in an inspection area. The process is repeated for the desired number and order of seeds and spacers in sequence to form a strand. The strand can be seen in the channel with the unaided eye through a transparent window. Once the strand is arranged as desired, it is pushed into a sleeve that is held in a removable sleeve holder. If desired, the end portions of the filled sleeve may be cut off using a sleeve cutter to shorten the filled sleeve. The filled sleeve is implanted into patient using a needle.
B26D 1/08 - Cutting through work characterised by the nature or movement of the cutting memberApparatus or machines thereforCutting members therefor involving a cutting member which does not travel with the work having a linearly-movable cutting member wherein the cutting member reciprocates of the guillotine type
B26D 7/26 - Means for mounting or adjusting the cutting memberMeans for adjusting the stroke of the cutting member
A loading apparatus is usable to embed radioactive seeds into carriers, while limiting exposure of the user to radioactive energy from the radioactive seeds. The loading apparatus facilitates accurate positioning of radioactive seeds within a carrier. The illustrated loaders generally comprise two components, a base and a lid, although in other embodiments the loaders may be separated into additional components.
A transparent loading apparatus (also referred to herein as a “loader”) may partially or entirely comprise transparent material that allows light to pass through the loader and provides the viewer (whether manual or automated) a view of a radioactive seed, a seed carrier, a loading needle, etc. within the loader. In some embodiments, carrier material (e.g., collagen and/or other biocompatible material) and radioactive seeds (e.g., including a metal shielding and radioactive isotope) may transmit light to different degrees. For example, certain carriers, such as collagen carriers, may be translucent, while seeds may be opaque (or mostly opaque) to light. The systems discussed herein allow a viewer to detect location of a seed within a loader, and even within a carrier, because of these different light transmissivity characteristics.
A transparent loading apparatus (also referred to herein as a “loader”) may partially or entirely comprise transparent material that allows light to pass through the loader and provides the viewer (whether manual or automated) a view of a radioactive seed, a seed carrier, a loading needle, etc. within the loader. In some embodiments, carrier material (e.g., collagen and/or other biocompatible material) and radioactive seeds (e.g., including a metal shielding and radioactive isotope) may transmit light to different degrees. For example, certain carriers, such as collagen carriers, may be translucent, while seeds may be opaque (or mostly opaque) to light. The systems discussed herein allow a viewer to detect location of a seed within a loader, and even within a carrier, because of these different light transmissivity characteristics.
A loading apparatus is usable to embed radioactive seeds into carriers, while limiting exposure of the user to radioactive energy from the radioactive seeds. The loading apparatus facilitates accurate positioning of radioactive seeds within a carrier. The illustrated loaders comprise two components, a base and a lid, although in other embodiments the loaders may be separated into additional components.
An implant planning system aids delivery of radiation to tumor sites of a patient. The system allows a user to test various combinations of virtual implants, each associated with a corresponding physical implant (e.g., a carrier with an embedded radioactive seed), and to view the dosage area of the virtual implants so that adjustments to the virtual implants may be made until a prescribed dose of radiation to a treatment area is achieved. A treatment plan developed based on the virtual implants may then be used in surgical implantation of the corresponding physical implants. For example, the implant configuration of the treatment plan may be projected onto a treatment surface of a patient, such as in a surgical room, so that physical implants may be placed according to the projected image of the virtual implants.
G16H 20/40 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mechanical, radiation or invasive therapies, e.g. surgery, laser therapy, dialysis or acupuncture
G16H 10/60 - ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
26.
Customizable radioactive carriers and loading system
Carriers for embodying radioactive seeds, as well as a device for loading and customizing brachytherapy carriers based on the principles of optimizing a more precise and predictable dosimetry, and adaptable to the geometric challenges of a tumor bed in a real-time setting. The present disclosure relates to a specialized loading device designed to enable a medical team to create a radionuclide carrier for each patient and tumor reliably, reproducibly and efficiently.
Brachytherapy radioisotope carrier systems and methodology for providing real-time customized brachytherapy treatment to subjects with tumors difficult to control using conventional radiation therapy techniques. The invention generally relates to devices, methods and kits for providing customized radionuclide treatments, to help cure, slow progression or regrowth, or ameliorate the symptoms associated with tumors.
A device for loading brachytherapy seeds and spacers into a sleeve. The device holds two or more seed or spacer cartridges of different radioactive species and dosage. The user rotates a selector for selecting a desired cartridge and, with each depression of a spring-biased plunger, pushes a seed or spacer into a channel in an inspection area. The process is repeated for the desired number and order of seeds and spacers in sequence to form a strand. The strand can be seen in the channel with the unaided eye through a transparent window. The window is part of a hinged door that can be opened and the sequence of the seeds and spacers rearranged with forceps. Once the strand is arranged as desired, it is pushed into a sleeve in a removable sleeve holder. During radiation treatment, the filled sleeve is removed from the sleeve holder and implanted into patient.
Medical device for treating cancer; medical device for treating tumors; implantable radiation therapy devices, namely, carriers designed to hold radioactive seeds and deliver radiation to tumors; medical device, namely, loading device for aiding in placement of radioactive seeds in implantable radiation therapy devices
30.
Radioactive implant planning system and placement guide system
An implant planning system aids delivery of radiation to tumor sites of a patient. The system allows a user to test various combinations of virtual implants, each associated with a corresponding physical implant (e.g., a carrier with an embedded radioactive seed), and to view the dosage area of the virtual implants so that adjustments to the virtual implants may be made until a prescribed dose of radiation to a treatment area is achieved. A treatment plan developed based on the virtual implants may then be used in surgical implantation of the corresponding physical implants. For example, the implant configuration of the treatment plan may be projected onto a treatment surface of a patient, such as in a surgical room, so that physical implants may be placed according to the projected image of the virtual implants.
G06Q 50/00 - Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
G06F 19/00 - Digital computing or data processing equipment or methods, specially adapted for specific applications (specially adapted for specific functions G06F 17/00;data processing systems or methods specially adapted for administrative, commercial, financial, managerial, supervisory or forecasting purposes G06Q;healthcare informatics G16H)
31.
Customizable radioactive carriers and loading system
Carriers for embodying radioactive seeds, as well as a device for loading and customizing brachytherapy carriers based on the principles of optimizing a more precise and predictable dosimetry, and adaptable to the geometric challenges of a tumor bed in a real-time setting. The present disclosure relates to a specialized loading device designed to enable a medical team to create a radionuclide carrier for each patient and tumor reliably, reproducibly and efficiently.
Various configurations of shielding materials within shielding layers, such as for use in shielding radiation from implanted radioactive carriers, are discussed herein.
Brachytherapy radioisotope carrier systems and methodology for providing real-time customized brachytherapy treatment to subjects with tumors difficult to control using conventional radiation therapy techniques. The invention generally relates to devices, methods and kits for providing customized radionuclide treatments, to help cure, slow progression or regrowth, or ameliorate the symptoms associated with tumors.
An apparatus and method for loading brachytherapy carriers with radioactive seeds in order to implement brachytherapy treatment protocols with more precise and predictable dosimetry. These apparatuses and methods enable a medical team to create a radionuclide carrier for each patient and tumor reliably, reproducibly and efficiently.
Various configurations of shielding materials within shielding layers, such as for use in shielding radiation from implanted radioactive carriers, are discussed herein.
An apparatus and method for loading brachytherapy carriers with radioactive seeds in order to implement brachytherapy treatment protocols with more precise and predictable dosimetry. These apparatuses and methods enable a medical team to create a radionuclide carrier for each patient and tumor reliably, reproducibly and efficiently.
Brachytherapy radioisotope carrier systems and methodology for providing real-time customized brachytherapy treatment to subjects with tumors difficult to control using conventional radiation therapy techniques. The invention generally relates to devices, methods and kits for providing customized radionuclide treatments, to help cure, slow progression or regrowth, or ameliorate the symptoms associated with tumors.
A device for loading and customizing brachytherapy carriers based on the principles of optimizing a more precise and predictable dosimetry, and adaptable to the geometric challenges of a tumor bed in a real-time setting. The present invention relates to a specialized loading device designed to enable a medical team to create a radionuclide carrier for each patient and tumor reliably, reproducibly and efficiently.
Brachytherapy radioisotope carrier systems and methodology for providing real-time customized brachytherapy treatment to subjects with tumors difficult to control using conventional radiation therapy techniques. The invention generally relates to devices, methods and kits for providing customized radionuclide treatments, to help cure, slow progression or regrowth, or ameliorate the symptoms associated with tumors.
Brachytherapy radioisotope carrier systems and methodology for providing real-time customized brachytherapy treatment to subjects with tumors difficult to control using conventional radiation therapy techniques. The invention generally relates to devices, methods and kits for providing customized radionuclide treatments, to help cure, slow progression or regrowth, or ameliorate the symptoms associated with tumors.
Brachytherapy radioisotope carrier systems and methodology for providing real-time customized brachytherapy treatment to subjects with tumors difficult to control using conventional radiation therapy techniques. The invention generally relates to devices, methods and kits for providing customized radionuclide treatments, to help cure, slow progression or regrowth, or ameliorate the symptoms associated with tumors.
A device for loading and customizing brachytherapy carriers based on the principles of optimizing a more precise and predictable dosimetry, and adaptable to the geometric challenges of a tumor bed in a real-time setting. The present invention relates to a specialized loading device designed to enable a medical team to create a radionuclide carrier for each patient and tumor reliably, reproducibly and efficiently.
Brachytherapy radioisotope carrier systems and methodology for providing real-time customized brachytherapy treatment to subjects with tumors difficult to control using conventional radiation therapy techniques. The invention generally relates to devices, methods and kits for providing customized radionuclide treatments, to help cure, slow progression or regrowth, or ameliorate the symptoms associated with tumors.
Brachytherapy radioisotope carrier systems and methodology for providing real-time customized brachytherapy treatment to subjects with tumors difficult to control using conventional radiation therapy techniques. The invention generally relates to devices, methods and kits for providing customized radionuclide treatments, to help cure, slow progression or regrowth, or ameliorate the symptoms associated with tumors.
Brachytherapy radioisotope carrier systems and methodology for providing real- time customized brachytherapy treatment to subjects with tumors difficult to control using conventional radiation therapy techniques. The invention generally relates to devices, methods and kits for providing customized radionuclide treatments, to help cure, slow progression or regrowth, or ameliorate the symptoms associated with tumors.
A device for loading and customizing brachytherapy carriers based on the principles of optimizing a more precise and predictable dosimetry, and adaptable to the geometric challenges of a tumor bed in a real-time setting. The present invention relates to a specialized loading device designed to enable a medical team to create a radionuclide carrier for each patient and tumor reliably, reproducibly and efficiently.
The present invention provides a method for improving the recovery of cesium-131 (Cs-131) from barium (Ba) carbonate. Uses of the Cs-131 purified by the method include cancer research and treatment, such as for the use in brachytherapy. Cesium-131 is particularly useful in the treatment of faster growing tumors.
The present invention provides a method of preparing Cesium-131 (Cs-131) as a dispersed radioisotope. Uses of the dispersed Cs-131 prepared by the method include cancer research and treatment, such as for the use in brachytherapy. Cs-131 is particularly useful in the treatment of faster growing tumors.
The present invention provides a method of separating and purifying Cesium-131 (Cs-131) from Barium (Ba). Uses of the Cs-131 purified by the method include cancer research and treatment, such as for the use in brachytherapy. Cs-131 is particularly useful in the treatment of faster growing tumors.
The present invention provides a method of separating and purifying Cesium-131 (Cs-131) from Barium (Ba). Uses of the Cs-131 purified by the method include cancer research and treatment, such as for the use in brachytherapy. Cs-131 is particularly useful in the treatment of faster growing tumors.
The present invention provides a method of separating and purifying Yttrium-90 (Y-90) from Strontium-90 (Sr-90). In addition, a zirconium (Zr) clean-up step for the Y-90 is provided. Uses of the Y-90 purified by the method include cancer research and treatment. Y-90 is particularly useful in cell directed therapy, e.g., where the Y-90 is attached directly or indirectly to a targeting molecule such as an antibody.
This invention includes methods of fabricating brachytherapy implant seeds, methods of fabricating brachytherapy implant seed cores, and brachytherapy implant seeds independent of method of fabrication. In one implementation, a brachytherapy implant seed includes a sealed inorganic metallic cylinder having a radioactive core received therein. The radioactive core includes an inorganic amorphous silicate glass tube having an exterior surface extending axially along the tube. An inorganic crystalline ceramic coating is received on at least a portion of the inorganic amorphous glass tube exterior surface. The coating includes a therapeutic dose of radioactive material. A radiographic marker is received within the sealed inorganic metallic cylinder. Other aspects and implementations are contemplated.