Facility layouts and configurations for an automated crop production system for controlled environment agriculture. In particular implementations, the core of the facility comprises a controlled growth environment and a central processing system. The controlled growth environment includes systems for exposing crops housed in modules, such as grow towers, to controlled environmental conditions. The central processing system may include various stations and functionality both for preparing crop-bearing modules to be inserted in the controlled growth environment, for harvesting crops from the crop-bearing modules after they have been extracted from the controlled growth environment, and for cleaning or washing crop-bearing modules for re-use. The controlled growth environment may include vertical farming structure having vertical grow towers and associated conveyance mechanisms for moving the vertical grow towers along one or more grow lines. The conveyance mechanisms may include a return transfer mechanism that creates a return or u-shaped path for each grow line.
Facility layouts and configurations for an automated crop production system for controlled environment agriculture. In particular implementations, the core of the facility comprises a controlled growth environment and a central processing system. The controlled growth environment includes systems for exposing crops housed in modules, such as grow towers, to controlled environmental conditions. The central processing system may include various stations and functionality both for preparing crop-bearing modules to be inserted in the controlled growth environment, for harvesting crops from the crop-bearing modules after they have been extracted from the controlled growth environment, and for cleaning or washing crop-bearing modules for re-use. The remaining aspects of the crop production facility—such as seeding stations, propagation facilities, packaging stations and storage facilities—are arranged to achieve one or more desired efficiencies relating to capital expenditures or operating costs associated with an automated crop production facility.
An irrigation system for a vertical farming structure having vertical grow towers and associated conveyance mechanisms for moving the vertical grow towers through a controlled environment, while being exposed to controlled conditions, such as lighting, airflow, humidity and nutritional support. The present disclosure describes a grow tower conveyance system that moves vertically-oriented grow towers to select positions along a grow line. An irrigation line having apertures at the select positions provides aqueous nutrient solution to the grow towers, while a gutter structure captures excess solution. In a closed loop system, the excess solution returns to a recirculation tank.
A plant support structure comprises segments, which each include at least one plant site. Each segment may have a first end and a second end. The first end may have a first opening, and the second end may slidably nest inside the first opening of an adjacent segment to enable an increase of distance therebetween. The first opening may be larger the second opening. Spacers or couplings between segments may be used to slide the segments apart. Each segment may include a path for a nutrient solution to flow to the at least one plant site in the segment.
A controlled environment agriculture system that operates in connection with grow towers having overlapping funnels. The use of overlapping funnels functionally de-couples irrigation processes from tower conveyance.
Embodiments of the present disclosure provide for weight measurement of grow towers and/or grow lines with grow towers disposed thereon. In various embodiments, compression type, tension type, and/or beam type load cells may be positioned at various locations within the apparatus to facilitate weight measurement. In one embodiment, a hook, which couples a grow tower to a grow line, includes a tension type load cell disposed between two portions of the hook. The load cell measures force applied thereto which can provide or be translated into a weight measurement.
A01G 31/06 - Hydroponic culture on racks or in stacked containers
G01G 19/18 - Weighing apparatus or methods adapted for special purposes not provided for in groups for weighing suspended loads having electrical weight-sensitive devices
Systems and methods for transforming a first set of first plant support structures and a second set of second plant support structures from a high density arrangement to a low density arrangement are provided. The system deinterleaves the first and second sets to thereby move from the high density arrangement, in which the first and second sets are interleaved such that at least one second plant support structure is interposed between two first plant support structures, to the low density arrangement, in which the first and second sets are not interleaved.
A plant capsule (3550) for use in a vertical arrangement of plant capsules, wherein the vertical arrangement comprises at least a first plant capsule vertically disposed above a second plant capsule, each capsule comprising: a. an opening for receiving a plant growth medium; b. one or more supply openings (3534) for receiving fluid; and c. one or more drainage openings (3542) for passing fluid.
Facility layouts and configurations for an automated crop production system for controlled environment agriculture. In particular implementations, the core of the facility comprises a controlled growth environment and a central processing system. The controlled growth environment includes systems for exposing crops housed in modules, such as grow towers, to controlled environmental conditions. The central processing system may include various stations and functionality both for preparing crop-bearing modules to be inserted in the controlled growth environment, for harvesting crops from the crop-bearing modules after they have been extracted from the controlled growth environment, and for cleaning or washing crop-bearing modules for re-use. The controlled growth environment may include vertical farming structure having vertical grow towers and associated conveyance mechanisms for moving the vertical grow towers along one or more grow lines. The conveyance mechanisms may include a return transfer mechanism that creates a return or u-shaped path for each grow line.
A controlled environment agriculture system including multiple environmental grow zones through which plants and/or lighting or other equipment that influence environmental equipment are cycled during the growth phase of farm production. In one implementation, the system includes multiple grow zones through which plants are cycled during the growth phase of farm production. The system may include a first environmentally-controlled growing chamber, a second environmentally-controlled growing chamber, and one or more interfaces to allow a conveyance mechanism to transfer grow containers between the chambers. Each growth chamber may include environmental control systems, and associated sensors, for regulating at least one environmental condition, such as air temperature, airflow speed, relative air humidity, and ambient carbon dioxide gas content.
Systems, methods, and computer-readable media are provided for controlling a ratio of carbon dioxide to oxygen in a grow space by removing O2 from the grow space, and, in some cases, adding supplemental CO2 to the grow space to achieve a desired ratio of CO2 to O2. Various approaches include filtering out oxygen or reacting O2 with a reactant to produce O2-reduced air; and removing air from the grow space, removing nitrogen from the removed air, and (a) separating out CO2 and returning the nitrogen and the CO2 to the grow space, or (b) adding supplemental CO2 and the nitrogen to the grow space. Another approach removes air from the grow space, separates out gasses including N2 and CO2, and returns the N2 or the CO2 to the grow space.
The present disclosure relates to apparatuses for plant harvesting. More specifically, apparatuses for harvesting vertically grown fruit (620), plants, or vegetables are described herein. In one embodiment a harvesting system includes a grow line (100, 102) and one or more grow towers (150) coupled to and moveable along the grow line (100, 102). A plurality of platforms (306) are disposed adjacent to the grow towers (150) and include one or more robots (302) disposed on the platforms (306). Embodiments of the disclosure also provide for harvesting tools (600), such as robot (203, 302, 508) end effectors (304) for harvesting one or more types of produce
Facility layouts and configurations for an automated crop production system for controlled environment agriculture. In particular implementations the core of the facility comprises a controlled growth environment and a central processing system. The controlled growth environment includes systems for exposing crops housed in modules, such as grow towers, to Controlled environmental conditions. The central processing system may include various stations and functionality both for preparing crop-bearing modules to be inserted in the controlled growth environment, for harvesting crops from the crop-bearing modules after they have been extracted from the controlled growth environment, and for cleaning or washing crop-hearing modules for re-use. The remaining aspects of the crop production facility—such as seeding stations, propagation facilities, packaging stations and storage facilities—are arranged to achieve one or more desired efficiencies relating to capital expenditures or operating costs associated with an automated crop production facility.
Embodiments of the present disclosure relate to apparatus and methods for mechanized pollination. Grow towers vertically disposed on a grow line are moved into a pollination chamber and mechanized pollination is performed utilizing pneumatic, acoustic, or mechanical methods to pollinate plants growing in the grow towers. In one embodiment, a plurality of rotatable brush towers are disposed on opposite sides of the grow line and bristles from the brush towers are rotated over the plants to facilitate pollination as the grow towers traverse along the grow line. In another embodiment, a plurality of conduits internal to the grow towers are coupled to one or more nozzles on a face of the grow towers. Pollen is delivered through the nozzles toward the plants utilizing pressurized gas.
Embodiments of the present disclosure relate to apparatus and methods for pollination within a controlled agricultural environment. In one example, a pollination system (300) includes a pollination chamber (322) having air curtains (302, 304) and walls (402, 404, 406) defining a volume, a grow tower conveyance system, and ultra-violet light sources (314, 318, 330, 334) for illuminating the pollination volume. Pollinators, such as bees or the like, are positioned within the volume of the pollination chamber (322) and the light sources (314, 318, 330, 334) are utilized to control and encourage pollination and pollinator movement with the pollination chamber (322).
A crop production system (100) for a controlled plant growing environment is provided. A subassembly comprises a guide portion that includes passive guides (104, 504, 904, 1004) radiating outward from a central portion (102, 502, 520, 911). Each passive guide may be separated from two adjacent passive guides by respective angles. Each passive guide has a first end proximal to the central portion and a second end distal to the central portion. Each passive guide is configured to guide plant growth modules (210). The plant growth modules are movable between the first end and the second end of each passive guide. An active guide (406, 907, 1007) causes the plant growth modules to travel in a first direction along the passive guides as the active guide is moved.
Systems, methods and computer-readable media are provided for determining optimum placement, within a grow space, of plants of different varieties. Sets of reference environmental setpoints each correspond to a desired predicted performance of a respective plant variety. Environmental condition metrics at different positions within the grow space are determined. An allocation of the plants is determined among different volumetric regions within the grow space based on predicted performance of the plant varieties as a function of position within the grow space.
G06Q 10/04 - Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
G06Q 10/0631 - Resource planning, allocation, distributing or scheduling for enterprises or organisations
18.
IRRIGATION SYSTEM FOR VERTICAL GROW TOWER CROP PRODUCTION FACILITY
Systems, methods, and computer-readable media are provided for controlling irrigation of plant media in a grow space in response to measurement of condensed water from air in the grow space. Irrigation supply volume may be set in response to a volume based on the measurement of the condensed water. The condensed water may result from evaporation and transpiration in the grow space.
Systems, methods and computer-readable media are provided for entering a fail safe mode for a controlled agricultural environment (CAE). The CAE includes movable receptacle supports for holding plants. In response to determining a fault condition in the CAE or in environmental conditioning equipment for the CAE, operation of the CAE or the environmental conditioning equipment is controlled to effect a change from a standard operating mode to a fail safe mode. The standard operating mode corresponds to desired environmental conditions in the CAE and the fail safe mode corresponds to non-ideal environmental conditions.
A plant support structure (2400) comprises segments (2402), which each include at least one plant (2408) site. Each segment (2402) may have a first end portion (2404) and a second end portion (2406). The first end may have a first opening, and the second end may slidably nest inside the first opening of an adjacent segment (2402) to enable an increase of distance therebetween. The first opening may be larger the second opening. Spacers (2450) or couplings between segments (2402) may be used to slide the segments (2402) apart. Each segment (2402) may include a path for a nutrient solution to flow to the at least one plant (2408) site in the segment (2402).
A plant support structure (2400) comprises segments (2402), which each include at least one plant (2408) site. Each segment (2402) may have a first end portion (2404) and a second end portion (2406). The first end may have a first opening, and the second end may slidably nest inside the first opening of an adjacent segment (2402) to enable an increase of distance therebetween. The first opening may be larger the second opening. Spacers (2450) or couplings between segments (2402) may be used to slide the segments (2402) apart. Each segment (2402) may include a path for a nutrient solution to flow to the at least one plant (2408) site in the segment (2402).
The present disclosure relates to apparatus for growing plants. More specifically, apparatus described herein relate to an inverted controlled irrigation grow pot (100). In one embodiment, a plant pot includes a multi-walled tube which defines a plurality of volumes therein to facilitate inverted growth of a plant while accounting for the geotropic nature of root proliferation. Embodiments of the disclosure also provide for controlled irrigation of a plant grown in an inverted orientation. Further embodiments of the disclosure provide for plant propagation systems which include multiple plant pots. In certain embodiments, load cells (802, 1002, 1101, 1102, 1202) are incorporated in to the systems to enable detection and measurement of plant pot weights.
A drive unit in a controlled agricultural environment increases a distance between an alignment element and a drive element in order to receive a plant support structure that is oriented non-vertically so that the plant support structure rests on the drive element or the alignment element. The drive unit decreases the distance between the alignment element and the drive element so that the alignment element or the drive element rests on the plant support structure. The drive element conveys the plant support structure along a direction of conveyance.
Facility layouts and configurations for an automated crop production system for controlled environment agriculture. In particular implementations, the core of the facility comprises a controlled growth environment and a central processing system. The controlled growth environment includes systems for exposing crops housed in modules, such as grow towers, to controlled environmental conditions. The central processing system may include various stations and functionality both for preparing crop-bearing modules to be inserted in the controlled growth environment, for harvesting crops from the crop-bearing modules after they have been extracted from the controlled growth environment, and for cleaning or washing crop-bearing modules for re-use. The controlled growth environment may include vertical farming structure having vertical grow towers and associated conveyance mechanisms for moving the vertical grow towers along one or more grow lines. The conveyance mechanisms may include a return transfer mechanism that creates a return or u-shaped path for each grow line.
A vertical farming structure having vertical grow towers and associated conveyance mechanisms for moving the vertical grow towers through a controlled environment, while being exposed to controlled conditions, such as lighting, airflow, humidity and nutritional support. The present disclosure describes a reciprocating cam mechanism that provides a cost-efficient mechanism for conveying vertical grow towers in the controlled environment. The reciprocating cam mechanism can be arranged to increase the spacing of the grow towers as they are conveyed through the controlled environment to index the crops growing on the towers. The present disclosure also describes a tower shuttle mechanism that provides operational flexibility by decoupling the loading and unloading operations of the grow towers from the vertical farming structure and, therefore, allowing multiple grow towers to be extracted for harvesting in a batch process before loading new grow towers into the vertical farming structure in a separate process.
A plant support tower cleaning system for cleaning a plant support tower is provided. A drive actuator propels the tower through the tower cleaning system. One or more linear or rotating first structures each have at least one projection. One or more first actuators coupled to the one or more first structures push the at least one projection of the one or more first structures against a stem side of plant material in containers in the tower as the tower is propelled through the system. A rotating second structure has at least one circumferential projection to pull plant material from a root side of the plant containers as the tower is propelled through the system. A second actuator rotates the second structure.
Mechanisms that facilitate location and alignment of grow towers for one or more processing operations. In one implementation, the alignment mechanism comprises a track including an alignment feature and one or more engagement actuators. The alignment feature is configured to engage features of a track-contacting face of a grow tower. The engagement actuators press the grow tower against the track, causing the alignment feature to engage the grow tower and align it along the track to facilitate processing operations.
Harvesting systems for an automated crop production system for controlled environment agriculture that includes vertical grow towers or other grow structures. Some implementations of the invention include a two-stage grouping mechanism that increases the amount of plants or crops harvested from a grow tower. Some implementations of the invention allow for harvesting of grow towers having grow sites on opposing faces.
Automated pickup and laydown systems for an automated crop production system for controlled environment agriculture that includes vertical grow towers. Some implementations of the invention can be used to create a horizontal-to-vertical interface between a vertical grow structure that includes vertical grow towers and associated conveyance mechanisms for moving the vertical grow towers through a controlled environment, and a central processing system that processes (for example, harvests, cleans, transplants, etc.) the grow towers.
An arrangement and method are provided for weighing plant support structures that are travel along a conveyance line. A load bar includes connections to couple the load bar to a carrier, which is moveable along the conveyance line. The load bar receives ends of plant support structure hooks, and exerts a lateral force on the hooks as the load bar travels. A load cell includes a leading portion that is lower in height than a weighing portion of the load cell. Each hook raises as it travels onto the load cell. The relationship of the height of the weighing portion and the length of the hook end are arranged such that, as the hook end is raised, it remains engaged with the load bar so that the load bar continues to exert a lateral force on the hook as the load bar moves in the direction of travel.
G01G 19/18 - Weighing apparatus or methods adapted for special purposes not provided for in groups for weighing suspended loads having electrical weight-sensitive devices
Automated transplanter assemblies and systems. For example, the disclosure sets forth a plug holder and assembly adapted to transplant plugs into tight-fitting plug holders. The disclosure also conveys a transplanter assembly useful in transplant operations where a plug holder is oriented at a non-perpendicular angle to the surface of a grow tower or other structure that contains the plug holder. The disclosure also provides a transplanter system useful in transplanting plugs into grow towers.
Systems, methods, and computer-readable media are provided for controlling a ratio of carbon dioxide to oxygen in a grow space by removing O2 from the grow space, and, in some cases, adding supplemental CO2 to the grow space to achieve a desired ratio of CO2 to O2. Various approaches include filtering out oxygen or reacting O2 with a reactant to produce O2-reduced air; and removing air from the grow space, removing nitrogen from the removed air, and (a) separating out CO2 and returning the nitrogen and the CO2 to the grow space, or (b) adding supplemental CO2 and the nitrogen to the grow space. Another approach removes air from the grow space, separates out gasses including N2 and CO2, and returns the N2 or the CO2 to the grow space.
Embodiments of the present disclosure relate to apparatus and methods for mechanized pollination. Grow towers vertically disposed on a grow line are moved into a pollination chamber and mechanized pollination is performed utilizing pneumatic, acoustic, or mechanical methods to pollinate plants growing in the grow towers. In one embodiment, a plurality of rotatable brush towers are disposed on opposite sides of the grow line and bristles from the brush towers are rotated over the plants to facilitate pollination as the grow towers traverse along the grow line. In another embodiment, a plurality of conduits internal to the grow towers are coupled to one or more nozzles on a face of the grow towers. Pollen is delivered through the nozzles toward the plants utilizing pressurized gas.
The present disclosure relates to apparatuses for plant harvesting. More specifically, apparatuses for harvesting vertically grown fruit (620), plants, or vegetables are described herein. In one embodiment a harvesting system includes a grow line (100, 102) and one or more grow towers (150) coupled to and moveable along the grow line (100, 102). A plurality of platforms (306) are disposed adjacent to the grow towers (150) and include one or more robots (302) disposed on the platforms (306). Embodiments of the disclosure also provide for harvesting tools (600), such as robot (203, 302, 508) end effectors (304) for harvesting one or more types of produce
A controlled environment agriculture system including multiple environmental grow zones through which plants and/or lighting or other equipment that influence environmental equipment are cycled during the growth phase of farm production. In one implementation, the system includes multiple grow zones through which plants are cycled during the growth phase of farm production. The system may include a first environmentally-controlled growing chamber, a second environmentally-controlled growing chamber, and one or more interfaces to allow a conveyance mechanism to transfer grow containers between the chambers. Each growth chamber may include environmental control systems, and associated sensors, for regulating at least one environmental condition, such as air temperature, airflow speed, relative air humidity, and ambient carbon dioxide gas content.
A crop production system for a controlled plant growing environment is provided. A first assembly comprises a first sub-assembly that itself comprises a first plurality of arms radiating outward from a central portion, wherein each arm is separated from two adjacent arms of the first plurality of arms by respective angles, each arm has a first end proximal to the central portion and a second end distal to the central portion, and each arm is configured to support a plurality of plant growth modules. The plurality of plant growth modules may be moved in a first direction miming from the first end to the second end of each arm of the first plurality of arms.
Systems, methods and computer-readable media are provided for fluid flow measurement in a controlled agricultural environment. A digital flow sensor comprises a flow sensor element including a first digital thermometer for providing a first output and a heating element thermally coupled to the first digital thermometer. The flow sensor may also include a second digital thermometer for providing a second output, and logic for providing a flow measurement based at least in part upon the first and second outputs. A flow sensor network may include multiple digital flow sensors, where data lines of the flow sensors are all coupled to the same network bus for communicating data.
G01F 1/684 - Structural arrangementsMounting of elements, e.g. in relation to fluid flow
G01F 1/696 - Circuits therefor, e.g. constant-current flow meters
G01F 1/688 - Structural arrangementsMounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
A01G 9/24 - Devices for heating, ventilating, regulating temperature, or watering, in greenhouses, forcing-frames, or the like
Embodiments of the present disclosure relate to apparatus and methods for pollination within a controlled agricultural environment. In one example, a pollination system (300) includes a pollination chamber (322) having air curtains (302, 304) and walls (402, 404, 406) defining a volume, a grow tower conveyance system, and ultra-violet light sources (314, 318, 330, 334) for illuminating the pollination volume. Pollinators, such as bees or the like, are positioned within the volume of the pollination chamber (322) and the light sources (314, 318, 330, 334) are utilized to control and encourage pollination and pollinator movement with the pollination chamber (322).
Facility layouts and configurations for an automated crop production system for controlled environment agriculture. In particular implementations, the core of the facility comprises a controlled growth environment and a central processing system. The controlled growth environment includes systems for exposing crops housed in modules, such as grow towers, to controlled environmental conditions. The central processing system may include various stations and functionality both for preparing crop-bearing modules to be inserted in the controlled growth environment for harvesting crops from the crop-bearing modules after they have been extracted from the controlled growth environment, and for cleaning or washing crop-hearing modules for re-use. The remaining aspects of the crop production facility—such as seeding stations, propagation facilities, packaging stations and storage facilities—are arranged to achieve one or more desired efficiencies relating to capital expenditures or operating costs associated with an automated crop production facility.
An automated crop production system for controlled environment agriculture that includes a horizontal-to-vertical grow tower interface between a vertical grow structure that includes vertical grow towers and associated conveyance mechanisms for moving the vertical grow towers through a controlled environment, and a processing system that performs one or more processing operations—such as harvesting, cleaning and/or transplanting—on the grow towers in a substantially horizontal orientation. The present disclosure also describes an automated crop production system for controlled environment agriculture that selectively routes grow towers through various processing stages of an automated crop production system.
A crop production system (100) for a controlled plant growing environment is provided. A subassembly comprises a guide portion that includes passive guides (104, 504, 904, 1004) radiating outward from a central portion (102, 502, 520, 911). Each passive guide may be separated from two adjacent passive guides by respective angles. Each passive guide has a first end proximal to the central portion and a second end distal to the central portion. Each passive guide is configured to guide plant growth modules (210). The plant growth modules are movable between the first end and the second end of each passive guide. An active guide (406, 907, 1007) causes the plant growth modules to travel in a first direction along the passive guides as the active guide is moved.
A crop production system (100) for a controlled plant growing environment is provided. A subassembly comprises a guide portion that includes passive guides (104, 504, 904, 1004) radiating outward from a central portion (102, 502, 520, 911). Each passive guide may be separated from two adjacent passive guides by respective angles. Each passive guide has a first end proximal to the central portion and a second end distal to the central portion. Each passive guide is configured to guide plant growth modules (210). The plant growth modules are movable between the first end and the second end of each passive guide. An active guide (406, 907, 1007) causes the plant growth modules to travel in a first direction along the passive guides as the active guide is moved.
Embodiments of the present disclosure relate to apparatus for measuring various characteristics of an indoor agriculture system. In one embodiment, a plug holder weight measurement system includes a plant plug holder disposed in a grow tower and one or more load cells positioned and configured to detect a weight of a plug holder. The load cells may be compression-type, tension-type, torsion-type, or beam-type load cells and each may be integrated into the grow tower.
A01G 9/02 - Receptacles, e.g. flower-pots or boxes Glasses for cultivating flowers
G01G 3/14 - Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances wherein the weighing element is in the form of a solid body stressed by pressure or tension during weighing measuring variations of electrical resistance
G01G 19/414 - Weighing apparatus or methods adapted for special purposes not provided for in groups with provisions for indicating, recording, or computing price or other quantities dependent on the weight using electromechanical or electronic computing means using electronic computing means only
G01G 19/52 - Weighing apparatus combined with other objects, e.g. with furniture
G01G 21/23 - Support or suspension of weighing platforms
Embodiments described herein relate to plant propagation weight measurement apparatus and methods. Load cells are utilized to measure one or more of seedling trays, flood tables, support systems, and combinations thereof. The load cells are integrated in weight measurement systems and configured to enable weight detection of various system components. In certain embodiments, load cells are utilized to measure stationary system components. In other embodiments, load cells are utilized to measure conveyed system components.
G01G 3/14 - Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances wherein the weighing element is in the form of a solid body stressed by pressure or tension during weighing measuring variations of electrical resistance
G01G 19/414 - Weighing apparatus or methods adapted for special purposes not provided for in groups with provisions for indicating, recording, or computing price or other quantities dependent on the weight using electromechanical or electronic computing means using electronic computing means only
G01G 19/52 - Weighing apparatus combined with other objects, e.g. with furniture
G01G 21/22 - Weigh-pans or other weighing receptaclesWeighing platforms
A01G 9/02 - Receptacles, e.g. flower-pots or boxes Glasses for cultivating flowers
A vertical farming structure having vertical grow towers and associated conveyance mechanisms for moving the vertical grow towers through a controlled environment, while being exposed to controlled lighting, airflow, humidity and nutritional support. The present disclosure describes a reciprocating cam mechanism that provides a cost-efficient mechanism for conveying vertical grow towers in the controlled environment. The reciprocating cam mechanism can be arranged to increase the spacing of the grow towers as they are conveyed through the controlled environment to index the crops growing on the towers. The present disclosure also describes an irrigation system that provides aqueous nutrient solution to the grow towers.
A vertical farming structure having vertical grow towers and associated conveyance mechanisms for moving the vertical grow towers through a controlled environment, while being exposed to controlled lighting, airflow, humidity and nutritional support. The present disclosure describes a reciprocating cam mechanism that provides a cost-efficient mechanism for conveying vertical grow towers in the controlled environment. The reciprocating cam mechanism can be arranged to increase the spacing of the grow towers as they are conveyed through the controlled environment to index the crops growing on the towers. The present disclosure also describes an irrigation system that provides aqueous nutrient solution to the grow towers.
Systems, methods and computer-readable media are provided for controlling environmental conditions to control latent and sensible loads in a plant grow chamber. The density of plant receptacles in the grow chamber is such that, when plants are held in the plurality of plant receptacles, evapotranspiration contributes to the latent load so that the latent load exceeds a sensible load, resulting in evapotranspirative cooling. This shift in the energy balance allows for greater energy savings, as compared with conventional indoor farms that focus on removing heat from the growth environment. Environmental conditions may be controlled to achieved desired conditions, such as the optimum ratio of harvest weight yield to energy consumption under given constraints.
Systems, methods and computer-readable media are provided for controlling environmental conditions to control latent and sensible loads in a plant grow chamber. The density of plant-0 receptacles in the grow chamber is such that, when plants are held in the plurality of plant receptacles, evapotranspiration contributes to the latent load so that the latent load exceeds a sensible load, resulting in evapotranspirative cooling. This shift in the energy balance allows for greater energy savings, as compared with conventional indoor farms that focus on removing heat from the growth environment. Environmental conditions may be controlled to achieved desired conditions, such as the optimum ratio of harvest weight yield to energy consumption under given constraints. Light modules for enabling plant growth suitable for controlled environment agriculture are also described.
A plant plug holding unit is provided, the plant plug holding unit including at least one plant plug holder. The plant plug holding unit, which is configured to be inserted into a cut-out in a hydroponic tower face plate, includes an edge member that encircles the unit and is sealed to the rear surface of the front tower face. Each individual plant plug holder of the plant plug holding unit includes (i) a base member configured to support a plant plug and which extends rearward from the edge member and into the hydroponic tower cavity; (ii) a top shroud member that inhibits leakage as well as plug erosion; (iii) a pair of side members that maintain the position of the plant plug within the plug holder; and (iv) a plurality of open regions configured to promote water drainage from the plant plug.
A computer implemented system for a vertical farming system comprising at least a first crop growth module and operating in an environmentally-controlled growing chamber, the control system comprising sensors for measuring environmental growing conditions in the environmentally-controlled growing chamber over time to generate environmental condition data, a device configured for measuring a crop characteristic of a crop grown in the crop growth module of the environmentally-controlled growing chamber to generate crop growth data and a processing device comprising software modules for receiving the environmental condition data and the crop growth data; applying an algorithm to the environmental condition data and the crop growth data to generate an improved environmental growing condition and generating instructions for adjustment of the environmental growing conditions in or around the growth module in the environmentally-controlled growing chamber to the improved environmental growing condition.
A hydroponic tower including a cavity defining a front tower surface and a rear inside surface, and further comprising a plant plug holder inserted within a cut-out defined in the front tower surface. The plant plug holder includes an edge member that encircles the holder's opening and which may be sealed to the front tower surface, and a base member configured to support a plant plug and which extends rearward from the edge member and into the cavity of the tower. The plug holder further includes a rear shroud top member and a pair of side members that maintain the position of the plant plug within the plug, holder such that the plant plug contacts the rear inside surface of the cavity when inserted into the plug holder.
A tower closing apparatus is provided that is configured to simplify the closing of a multi-piece, hinged hydroponic tower. The hydroponic tower closing apparatus utilizes a collection of static and continuously moving components (e.g., motor driven drive rollers, alignment rollers, tower body alignment rollers, face plate manipulation rollers, face closing rollers, etc.) to close a hydroponic tower as it passes through the apparatus. In particular, as the tower is driven through the closing apparatus, a series of face plate manipulation rollers gradually rotate the face plate(s) relative to the tower body, moving the face plate(s) from a fully open position to a partially closed position. Next a series of face closing rollers continue to rotate the face plate(s) from the partially closed position to the fully closed position, forcing the fasteners to latch the face plate(s) into position.
E05C 19/06 - Other devices specially designed for securing wings in which the securing part is formed or carried by a spring and moves only by distortion of the spring, e.g. snaps
E05D 1/04 - Pinless hingesSubstitutes for hinges with guide members shaped as circular arcs
E05D 1/06 - Pinless hingesSubstitutes for hinges consisting of two easily-separable parts
E05F 1/00 - Closers or openers for wings, not otherwise provided for in this subclass
E05F 15/60 - Power-operated mechanisms for wings using electrical actuators
The present disclosure relates to apparatus for growing plants. More specifically, apparatus described herein relate to an inverted controlled irrigation grow pot (100). In one embodiment, a plant pot includes a multi-walled tube which defines a plurality of volumes therein to facilitate inverted growth of a plant while accounting for the geotropic nature of root proliferation. Embodiments of the disclosure also provide for controlled irrigation of a plant grown in an inverted orientation. Further embodiments of the disclosure provide for plant propagation systems which include multiple plant pots. In certain embodiments, load cells (802,1002,1101,1102,1202) are incorporated in to the systems to enable detection and measurement of plant pot weights.
Systems, methods and computer-readable media are provided for entering a fail safe mode for a controlled agricultural environment (CAE). The CAE includes movable receptacle supports for holding plants. In response to determining a fault condition in the CAE or in environmental conditioning equipment for the CAE, operation of the CAE or the environmental conditioning equipment is controlled to effect a change from a standard operating mode to a fail safe mode. The standard operating mode corresponds to desired environmental conditions in the CAE and the fail safe mode corresponds to non-ideal environmental conditions.
A vertical farming structure having vertical grow towers and associated conveyance mechanisms for moving the vertical grow towers through a controlled environment, while being exposed to controlled conditions, such as lighting, airflow, humidity and nutritional support. The present disclosure describes a reciprocating cam mechanism that provides a cost-efficient mechanism for conveying vertical grow towers in the controlled environment. The reciprocating cam mechanism can be arranged to increase the spacing of the grow towers as they are conveyed through the controlled environment to index the crops growing on the towers. The present disclosure also describes a tower shuttle mechanism that provides operational flexibility by decoupling the loading and unloading operations of the grow towers from the vertical farming structure and, therefore, allowing multiple grow towers to be extracted for harvesting in a batch process before loading new grow towers into the vertical farming structure in a separate process.
An irrigation system for a vertical farming structure having vertical grow towers and associated conveyance mechanisms for moving the vertical grow towers through a controlled environment, while being exposed to controlled conditions, such as lighting, airflow, humidity and nutritional support. The present disclosure describes a grow tower conveyance system that moves vertically-oriented grow towers to select positions along a grow line. An irrigation line having apertures at the select positions provides aqueous nutrient solution to the grow towers, while a gutter structure captures excess solution. In a closed loop system, the excess solution returns to a recirculation tank. The present disclosure provides a dual pump system for effectively and efficiently removing excess nutrient solution from the gutter structure.
A tower catch mechanism that facilitates loading of vertical grow towers in a vertical farming structure having associated conveyance mechanisms for moving the vertical grow towers through a controlled environment, while being exposed to controlled conditions, such as lighting, airflow, humidity and nutritional support. The present disclosure describes a load conveyance mechanism that transfers grow towers to a loading position where grow towers are loaded onto a select grow line. Each grow line may include a grow tower conveyance system that moves vertically-oriented grow towers to select positions along a grow line. The system may include a tower catch mechanism that registers grow towers in position at the loading position for insertion into a select grow line. In some implementations, the tower catch mechanism can be integrated into other structures of the vertical farming system, such as a gutter basin corresponding to a select grow line.
A drive unit in a controlled agricultural environment increases a distance between an alignment element and a drive element in order to receive a plant support structure that is oriented non-vertically so that the plant support structure rests on the drive element or the alignment element. The drive unit decreases the distance between the alignment element and the drive element so that the alignment element or the drive element rests on the plant support structure. The drive element conveys the plant support structure along a direction of conveyance.
A drive unit in a controlled agricultural environment increases a distance between an alignment element and a drive element in order to receive a plant support structure that is oriented non-vertically so that the plant support structure rests on the drive element or the alignment element. The drive unit decreases the distance between the alignment element and the drive element so that the alignment element or the drive element rests on the plant support structure. The drive element conveys the plant support structure along a direction of conveyance.
Facility layouts and configurations for an automated crop production system for controlled environment agriculture. The core of the facility comprises a controlled growth environment and a central processing system. The controlled growth environment includes systems for exposing crops housed in modules, such as grow towers, to controlled environmental conditions. The central processing system may include various stations and functionality both for preparing crop-bearing modules to be inserted in the controlled growth environment, for harvesting crops from the crop-bearing modules after they have been extracted from the controlled growth environment, and for cleaning or washing crop-bearing modules for re-use. The controlled growth environment may include vertical farming structure having vertical grow towers and associated conveyance mechanisms for moving the vertical grow towers along one or more grow lines. The conveyance mechanisms may include a return transfer mechanism that creates a return or u-shaped path for each grow line.
A vertical farming structure having vertical grow towers and associated conveyance mechanisms for moving the vertical grow towers through a controlled environment, while being exposed to controlled conditions, such as lighting, airflow, humidity and nutritional support. The present disclosure describes a reciprocating cam mechanism that provides a cost-efficient mechanism for conveying vertical grow towers in the controlled environment. The reciprocating cam mechanism can be arranged to increase the spacing of the grow towers as they are conveyed through the controlled environment to index the crops growing on the towers. The present disclosure also describes a tower shuttle mechanism that provides operational flexibility by decoupling the loading and unloading operations of the grow towers from the vertical farming structure and, therefore, allowing multiple grow towers to be extracted for harvesting in a batch process before loading new grow towers into the vertical farming structure in a separate process.
Facility layouts and configurations for an automated crop production system for controlled environment agriculture. In particular implementations, the core of the facility comprises a controlled growth environment and a central processing system. The controlled growth environment includes systems for exposing crops housed in modules, such as grow towers, to controlled environmental conditions. The central processing system may include various stations and functionality both for preparing crop-bearing modules to be inserted in the controlled growth environment, for harvesting crops from the crop-bearing modules after they have been extracted from the controlled growth environment, and for cleaning or washing crop-bearing modules for re-use. The controlled growth environment may include vertical farming structure having vertical grow towers and associated conveyance mechanisms for moving the vertical grow towers along one or more grow lines. The conveyance mechanisms may include a return transfer mechanism that creates a return or u-shaped path for each grow line.
Systems, methods and computer-readable media are provided for entering a fail safe mode for a controlled agricultural environment (CAE). The CAE includes movable receptacle supports for holding plants. In response to determining a fault condition in the CAE or in environmental conditioning equipment for the CAE, operation of the CAE or the environmental conditioning equipment is controlled to effect a change from a standard operating mode to a fail safe mode. The standard operating mode corresponds to desired environmental conditions in the CAE and the fail safe mode corresponds to non-ideal environmental conditions.
A multi-piece hydroponic tower comprised of a tower body defining a tower cavity, where the tower cavity provides a passageway for a water/nutrient mix, and a tower face plate hingeably coupled to the tower body. The tower face plate is positionable relative to the tower body in a tower cavity closed position and a tower cavity open position. The tower face plate includes a plurality of plant container cut-outs configured to accept plant containers. A fastener temporarily latches tower face plate to the tower body when the tower face plate is in the tower cavity closed position.
A vertical farming structure having vertical grow towers and associated conveyance mechanisms for moving the vertical grow towers through a controlled environment, while being exposed to controlled lighting, airflow, humidity and nutritional support. The present disclosure describes a reciprocating cam mechanism that provides a cost-efficient mechanism for conveying vertical grow towers in the controlled environment. The reciprocating cam mechanism can be arranged to increase the spacing of the grow towers as they are conveyed through the controlled environment to index the crops growing on the towers. The present disclosure also describes an irrigation system that provides aqueous nutrient solution to the grow towers.
An irrigation system for a vertical farming structure having vertical grow towers and associated conveyance mechanisms for moving the vertical grow towers through a controlled environment, while being exposed to controlled conditions, such as lighting, airflow, humidity and nutritional support. The present disclosure describes a grow tower conveyance system that moves vertically-oriented grow towers to select positions along a grow line. An irrigation line having apertures at the select positions provides aqueous nutrient solution to the grow towers, while a gutter structure captures excess solution. In a closed loop system, the excess solution returns to a recirculation tank.
A plug gripper (2406) for a plug having a top surface area. The plug gripper (2406) comprises a base (2602); an actuator (2606) attached to the base (2602) and having a first end, the actuator (2606) operative to move the first end along a first direction from a retracted position to an extended position; first and second opposing gripper arms (2608a, 2608b) operably attached to the first end of the actuator (2606) and extending substantially parallel the first direction; and a stripper plate (2612) extending between the first and second gripper arms (2608a, 2608b) and in a perpendicular orientation relative to the first direction. The stripper plate (2612) is configured to cover substantially the top surface area of the plug.
Mechanisms that facilitate location and alignment of grow towers for one or more processing operations. In one implementation, the alignment mechanism comprises a track including an alignment feature and one or more engagement actuators. The alignment feature is configured to engage features of a track-contacting face of a grow tower. The engagement actuators press the grow tower against the track, causing the alignment feature to engage the grow tower and align it along the track to facilitate processing operations.
A plug gripper (2406) for a plug having a top surface area. The plug gripper (2406) comprises a base (2602); an actuator (2606) attached to the base (2602) and having a first end, the actuator (2606) operative to move the first end along a first direction from a retracted position to an extended position; first and second opposing gripper arms (2608a, 2608b) operably attached to the first end of the actuator (2606) and extending substantially parallel the first direction; and a stripper plate (2612) extending between the first and second gripper arms (2608a, 2608b) and in a perpendicular orientation relative to the first direction. The stripper plate (2612) is configured to cover substantially the top surface area of the plug.
Mechanisms that facilitate location and alignment of grow towers for one or more processing operations. In one implementation, the alignment mechanism comprises a track including an alignment feature and one or more engagement actuators. The alignment feature is configured to engage features of a track-contacting face of a grow tower. The engagement actuators press the grow tower against the track, causing the alignment feature to engage the grow tower and align it along the track to facilitate processing operations.
G06Q 10/04 - Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
G06Q 10/06 - Resources, workflows, human or project managementEnterprise or organisation planningEnterprise or organisation modelling
The invention concerns an apparatus (2700) for releasably grasping a growth tower (50). The apparatus (2700) comprising a beam (2704), gripper assemblies (2702a, 2702d) attached to opposite ends of the beam (2704) and an actuator mechanism (2714) for controlling the gripper assemblies (2702a, 2702d)..
A hydroponic tower cleaning and debris removal system is provided that is configured to automatically clean and remove plant and material debris from within a hinged, hydroponic tower as well as the plant containers contained within such a hydroponic tower. The hydroponic tower cleaning system utilizes a drive system to force the tower through the apparatus; an alignment system to ensure that the tower remains in proper alignment throughout the cleaning process; a brush system that initiates separation of plant debris from the tower/plant containers and ensures that the plant roots are torn apart; a plunger system to eject plant debris from within the plant containers; an air delivery system to blow away the debris; and rollers to maintain tower face alignment during the cleaning process.
Systems, methods, and computer-readable media are provided for determining treatments to apply to plants within control volumes having controlled agricultural environments. Each treatment comprises application of a set of setpoints, choosing a reproduction operation for the treatment, and selecting one or more previous sets from setpoints from one or more previously applied treatments, for use with the chosen reproduction operation.
G05B 19/4155 - Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by programme execution, i.e. part programme or machine function execution, e.g. selection of a programme
A01G 7/04 - Electric or magnetic treatment of plants for promoting growth
A01G 31/00 - Soilless cultivation, e.g. hydroponics
A01G 7/02 - Treatment of plants with carbon dioxide
74.
HARVESTER FOR GROW TOWER AGRICULTURE PRODUCTION SYSTEMS
Harvesting systems for an automated crop production system for controlled environment agriculture that includes vertical grow towers or other grow structures. Some implementations of the invention include a two-stage grouping mechanism that increases the amount of plants or crops harvested from a grow tower. Some implementations of the invention allow for harvesting of grow towers having grow sites on opposing faces.
The invention concerns an apparatus (2700) for releasably grasping a growth tower (50). The apparatus (2700) comprising a beam (2704), gripper assemblies (2702a, 2702d) attached to opposite ends of the beam (2704) and an actuator mechanism (2714) for controlling the gripper assemblies (2702a, 2702d)..
Systems, methods and computer-readable media are provided for determining optimum placement, within a grow space, of plants of different varieties. Sets of reference environmental setpoints each correspond to a desired predicted performance of a respective plant variety. Environmental condition metrics at different positions within the grow space are determined. An allocation of the plants is determined among different volumetric regions within the grow space based on predicted performance of the plant varieties as a function of position within the grow space.
G06Q 10/04 - Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
G06Q 10/0631 - Resource planning, allocation, distributing or scheduling for enterprises or organisations
A01G 9/00 - Cultivation in receptacles, forcing-frames or greenhousesEdging for beds, lawn or the like
A hydroponic plant display that allows consumers to select and harvest fresh produce while shopping at their local market. The display system maintains the health and vitality of the produce until it is selected by the end consumer for harvesting. As such, the display system includes (i) a plant display, (ii) plant growth media that provides a suitable support system for each plant's root structure, and (iii) a moisture and nutrient transport system.
A crop production system for a controlled plant growing environment is provided. A first assembly comprises a first sub-assembly that itself comprises a first plurality of arms radiating outward from a central portion, wherein each arm is separated from two adjacent arms of the first plurality of arms by respective angles, each arm has a first end proximal to the central portion and a second end distal to the central portion, and each arm is configured to support a plurality of plant growth modules. The plurality of plant growth modules may be moved in a first direction running from the first end to the second end of each arm of the first plurality of arms.
A crop production system for a controlled plant growing environment is provided. A first assembly comprises a first sub-assembly that itself comprises a first plurality of arms radiating outward from a central portion, wherein each arm is separated from two adjacent arms of the first plurality of arms by respective angles, each arm has a first end proximal to the central portion and a second end distal to the central portion, and each arm is configured to support a plurality of plant growth modules. The plurality of plant growth modules may be moved in a first direction running from the first end to the second end of each arm of the first plurality of arms.
An automated crop production system for controlled environment agriculture that includes a horizontal-to-vertical grow tower interface between a vertical grow structure that includes vertical grow towers and associated conveyance mechanisms for moving the vertical grow towers through a controlled environment, and a processing system that performs one or more processing operationssuch as harvesting, cleaning and/or transplantingon the grow towers in a substantially horizontal orientation. The present disclosure also describes an automated crop production system for controlled environment agriculture that selectively routes grow towers through various processing stages of an automated crop production system.
An automated crop production system for controlled environment agriculture that includes a horizontal-to-vertical grow tower interface between a vertical grow structure that includes vertical grow towers and associated conveyance mechanisms for moving the vertical grow towers through a controlled environment, and a processing system that performs one or more processing operations—such as harvesting, cleaning and/or transplanting—on the grow towers in a substantially horizontal orientation. The present disclosure also describes an automated crop production system for controlled environment agriculture that selectively routes grow towers through various processing stages of an automated crop production system.
Facility layouts and configurations for an automated crop production system for controlled environment agriculture. In particular implementations, the core of the facility comprises a controlled growth environment and a central processing system. The controlled growth environment includes systems for exposing crops housed in modules, such as grow towers, to controlled environmental conditions. The central processing system may include various stations and functionality both for preparing crop-bearing modules to be inserted in the controlled growth environment, for harvesting crops from the crop-bearing modules after they have been extracted from the controlled growth environment, and for cleaning or washing crop-bearing modules for re-use. The remaining aspects of the crop production facility--such as seeding stations, propagation facilities, packaging stations and storage facilities--are arranged to achieve one or more desired efficiencies relating to capital expenditures or operating costs associated with an automated crop production facility.
An automated crop production system for controlled environment agriculture that includes a horizontal-to-vertical grow tower interface between a vertical grow structure that includes vertical grow towers and associated conveyance mechanisms for moving the vertical grow towers through a controlled environment, and a processing system that perfomis one or more processing operations¨such as harvesting, cleaning and/or transplanting¨on the grow towers in a substantially horizontal orientation. The present disclosure also describes an automated crop production system for controlled environment agriculture that selectively routes grow towers through various processing stages of an automated crop production system.
Systems, methods and computer-readable media are provided for controlling environmental conditions to control latent and sensible loads in a plant grow chamber. The density of plant receptacles in the grow chamber is such that, when plants are held in the plurality of plant receptacles, evapotranspiration contributes to the latent load so that the latent load exceeds a sensible load, resulting in evapotranspirative cooling. This shift in the energy balance allows for greater energy savings, as compared with conventional indoor farms that focus on removing heat from the growth environment. Environmental conditions may be controlled to achieved desired conditions, such as the optimum ratio of harvest weight yield to energy consumption under given constraints.
A lighting system is provided that is configured for use with one or more hydroponic towers. The primary component of the lighting system is a light tube that includes one or more LED boards affixed to a central, actively cooled, mounting fixture. The LED boards may be affixed to one side or to multiple sides of the mounting fixture. A tethering system locates each light tube within the hydroponic farming facility, the tethering system configured to (i) allow for thermal expansion and contraction of the light tube, (ii) maintain the desired location of the light tube, (iii) simplify removal of the light tube, (iv) prevent accidental disengagement from the top mounting fixture while still allowing limited movement of the light tube, and (v) allow disengagement from the bottom mounting fixture when undue stress is applied to the light tube.
A tower closing apparatus is provided that is configured to simplify the closing of a multi-piece, hinged hydroponic tower. The hydroponic tower closing apparatus utilizes a collection of static and continuously moving components (e.g., motor driven drive rollers, alignment rollers, tower body alignment rollers, face plate manipulation rollers, face closing rollers, etc.) to close a hydroponic tower as it passes through the apparatus. In particular, as the tower is driven through the closing apparatus, a series of face plate manipulation rollers gradually rotate the face plate(s) relative to the tower body, moving the face plate(s) from a fully open position to a partially closed position. Next a series of face closing rollers continue to rotate the face plate(s) from the partially closed position to the fully closed position, forcing the fasteners to latch the face plate(s) into position.
A tower closing apparatus is provided that is configured to simplify the closing of a multi-piece, hinged hydroponic tower. The hydroponic tower closing apparatus utilizes a collection of static and continuously moving components (e.g., motor driven drive rollers, alignment rollers, tower body alignment rollers, face plate manipulation rollers, face closing rollers, etc.) to close a hydroponic tower as it passes through the apparatus. In particular, as the tower is driven through the closing apparatus, a series of face plate manipulation rollers gradually rotate the face plate(s) relative to the tower body, moving the face plate(s) from a fully open position to a partially closed position. Next a series of face closing rollers continue to rotate the face plate(s) from the partially closed position to the fully closed position, forcing the fasteners to latch the face plate(s) into position.
E05D 1/04 - Pinless hingesSubstitutes for hinges with guide members shaped as circular arcs
E05F 15/60 - Power-operated mechanisms for wings using electrical actuators
A01G 31/06 - Hydroponic culture on racks or in stacked containers
E05C 19/06 - Other devices specially designed for securing wings in which the securing part is formed or carried by a spring and moves only by distortion of the spring, e.g. snaps
A tower opening apparatus is provided that is configured to simplify the opening of a multi-piece, hinged, hydroponic tower. The hydroponic tower opening apparatus utilizes a collection of static and continuously moving components (e.g., motor driven drive rollers, alignment rollers, stationary wedges, longitudinal ramps, etc.) to open a hydroponic tower as it passes through the apparatus. In particular, as the tower is driven through the opening apparatus, the fastener(s) holding the face plate(s) to the tower body is released by a wedge(s). After the fastener(s) is released, the face plate(s) is partially rotated about the tower body, thereby partially opening the tower cavity(s). Next a longitudinal ramp(s) continues to rotate the face plate(s) relative to the tower body, moving the face plate(s) to a fully open position.
A tower opening apparatus is provided that is configured to simplify the opening of a multi-piece, hinged, hydroponic tower. The hydroponic tower opening apparatus utilizes a collection of static and continuously moving components (e.g., motor driven drive rollers, alignment rollers, stationary wedges, longitudinal ramps, etc.) to open a hydroponic tower as it passes through the apparatus. In particular, as the tower is driven through the opening apparatus, the fastener(s) holding the face plate(s) to the tower body is released by a wedge(s). After the fastener(s) is released, the face plate(s) is partially rotated about the tower body, thereby partially opening the tower cavity(s). Next a longitudinal ramp(s) continues to rotate the face plate(s) relative to the tower body, moving the face plate(s) to a fully open position.
E05C 19/06 - Other devices specially designed for securing wings in which the securing part is formed or carried by a spring and moves only by distortion of the spring, e.g. snaps
E05D 1/04 - Pinless hingesSubstitutes for hinges with guide members shaped as circular arcs
E05D 1/06 - Pinless hingesSubstitutes for hinges consisting of two easily-separable parts
E05F 1/00 - Closers or openers for wings, not otherwise provided for in this subclass
E05F 15/60 - Power-operated mechanisms for wings using electrical actuators
90.
CLOSING APPARATUS FOR USE WITH A MULTI-PIECE, HINGED, HYDROPONIC TOWER
A tower closing apparatus is provided that is configured to simplify the closing of a multi-piece, hinged hydroponic tower. The hydroponic tower closing apparatus utilizes a collection of static and continuously moving components (e.g., motor driven drive rollers, alignment rollers, tower body alignment rollers, face plate manipulation rollers, face closing rollers, etc.) to close a hydroponic tower as it passes through the apparatus. In particular, as the tower is driven through the closing apparatus, a series of face plate manipulation rollers gradually rotate the face plate(s) relative to the tower body, moving the face plate(s) from a fully open position to a partially closed position. Next a series of face closing rollers continue to rotate the face plate(s) from the partially closed position to the fully closed position, forcing the fasteners to latch the face plate(s) into position.
A hinged hydroponic tower utilizing an integrated, single-piece hinge member, thereby allowing the tower face plate to move relative to the tower body. In addition to the hinge, the tower utilizes an integrated fastener to hold the face plate in the closed position. A V-shaped groove may be included on either side of the tower, the grooves increasing the efficiency of delivering water and nutrients to the plants via the narrowed rear cavity wall. The V-shaped grooves may also be used as an alignment aid when coupling planters, harvesters, or other equipment to the tower.
A plant plug holding unit is provided, the plant plug holding unit including at least one plant plug holder. The plant plug holding unit, which is configured to be inserted into a cut-out in a hydroponic tower face plate, includes an edge member that encircles the unit and is sealed to the rear surface of the front tower face. Each individual plant plug holder of the plant plug holding unit includes (i) a base member configured to support a plant plug and which extends rearward from the edge member and into the hydroponic tower cavity; (ii) a top shroud member that inhibits leakage as well as plug erosion; (iii) a pair of side members that maintain the position of the plant plug within the plug holder; and (iv) a plurality of open regions configured to promote water drainage from the plant plug.
A plant harvesting system for use with a vertical hydroponic tower, the hydroponic tower containing a plurality of vertically aligned plants. The harvesting system includes a payload transport system and a harvester. The payload transport system, which is configured to be positioned at a location adjacent to the hydroponic tower, includes a base and a lift tower, the lift tower including a motorized lift system configured to move the harvester upward and downward. In addition to cutting plant stalks while moving upwards along the face of the hydroponic tower, the harvester also groups and collects the plant leafs.
A01D 46/20 - Platforms with lifting and lowering devices
A01D 46/24 - Devices for picking apples or like fruit
A01D 34/835 - MowersMowing apparatus of harvesters specially adapted for particular purposes
A01G 31/06 - Hydroponic culture on racks or in stacked containers
A01D 57/01 - Devices for leading crops to the mowing apparatus
A01D 43/00 - Mowers combined with apparatus performing additional operations while mowing
A01D 43/063 - Mowers combined with apparatus performing additional operations while mowing with means for collecting, gathering or loading mown material in or into a container carried by the mowerContainers therefor
94.
Vertical hydroponic tower plant container handling system
A planting system for use with a vertical hydroponic tower. The planting system includes a payload transport system and a planter. The payload transport system, which is configured to be positioned at a location adjacent to the hydroponic tower, includes a base and a lift tower, the lift tower including a motorized lift system configured to move the planter upward and downward. The planter is configured to insert plant containers containing seedlings into the hydroponic tower as the motorized payload lift system moves the planter upwards along the face of the tower.
Planting and plant harvesting systems are provided for use with a vertical hydroponic tower. The planting and plant harvesting systems utilize a payload transport system that is configured to be positioned at a location adjacent to the hydroponic tower and which includes a base and a lift tower. The lift tower includes a motorized lift system that is configured to move the planting and plant harvesting systems upward and downward. The planter is configured to insert plant containers containing seedlings into the hydroponic tower as the motorized payload lift system moves the planter upwards along the face of the tower. The harvester, which cuts plant stalks while moving upwards along the face of the hydroponic tower, is configured to group and collect the plant leafs.
A gutter assembly is provided that is configured to collect water passing through a plurality of vertical hydroponic towers, the assembly minimizing leakage while simplifying gutter maintenance. The gutter assembly includes a gutter pipe from which an upper portion has been removed to form a pair of mounting ledges. The gutter assembly also includes a gutter cap that is attached to the gutter pipe via the mounting ledges using a snap fit system.
A vertical farming structure having vertical grow towers and associated conveyance mechanisms for moving the vertical grow towers through a controlled environment, while being exposed to controlled lighting, airflow, humidity and nutritional support. The present disclosure describes a reciprocating cam mechanism that provides a cost-efficient mechanism for conveying vertical grow towers in the controlled environment. The reciprocating cam mechanism can be arranged to increase the spacing of the grow towers as they are conveyed through the controlled environment to index the crops growing on the towers. The present disclosure also describes an irrigation system that provides aqueous nutrient solution to the grow towers.
A plant container is provided which is designed to be inserted within a cut-out in a hydroponic tower. The plant container includes (i) a plant cup configured to hold a plant's root structure along with a small portion of plant growth media; (ii) a pair of side wings extending from the sides of the plant cup, the side wings helping to direct water and nutrients to the plant roots contained within the plant cup; (iii) at least one handling rail that aids plant container insertion and removal, and which may include an alignment surface that insures that the plant container is fully inserted and aligned during the insertion procedure; and (iv) a fastener configured to hold the plant container within the tower cut-out.
A multi-piece hydroponic tower is provided which utilizes separate body and face components coupled together using either permanent or temporary fasteners, where the tower face includes a plurality of plant container compatible cut-outs. By utilizing separate body and face components, the end user is able to easily switch tower face plates in order to adapt the tower to different plant container configurations. The multi-piece tower design also simplifies tower construction as well as tower maintenance between planting cycles.
A multi-piece hydroponic tower is provided which utilizes separate tower body and face plate components that are hingeably coupled together, thereby simplifying tower construction as well as tower maintenance. In addition to the hinge, the tower face plate(s) is held in place with a latch, e.g., a snap-fit fastener. A V-shaped groove may be included on either side of the tower, the grooves increasing the efficiency of delivering water and nutrients to the plants via the narrowed rear cavity wall(s). The V-shaped grooves may also be used as an alignment aid when coupling planters, harvesters, or other equipment to the tower.