A method that can detect targets is described. The method includes setting an integration time for each of a plurality of readout circuits based on a speed of the target. The readout circuits are configured to read pixels in an image detector. The pixels have a pitch of less than ten micrometers. The integration time is not more than five hundred microseconds and corresponds to a subframe of a fast frame image. The method also includes performing integrations of each readout circuit based on the integration time. Thus, a plurality of subframes are provided. A number of the subframes are averaged to provide the fast frame image.
H04N 25/533 - Control of the integration time by using differing integration times for different sensor regions
H04N 25/587 - Control of the dynamic range involving two or more exposures acquired sequentially, e.g. using the combination of odd and even image fields
H04N 25/75 - Circuitry for providing, modifying or processing image signals from the pixel array
Techniques for tracing back a projectile to the projectile origin are described. A method includes detecting projectile track(s) in image(s). Each projectile track crosses multiple pixels in each image. The projectile track(s) correspond to projectile(s). The projectile track(s) in the image(s) are translated to traceback path(s). The traceback path includes a known location and a projectile origin (e.g. the location at which the projectile originated, also termed the shooter's location).
A method that can detect targets is described. The method includes setting an integration time for each of a plurality of readout circuits based on a speed of the target. The readout circuits are configured to read pixels in an image detector. The pixels have a pitch of less than ten micrometers. The integration time is not more than five hundred microseconds and corresponds to a subframe of a fast frame image. The method also includes performing integrations of each readout circuit based on the integration time. Thus, a plurality of subframes are provided. A number of the subframes are averaged to provide the fast frame image.
A method is described, which includes receiving oversampled infrared data provided from an infrared pixel array. The method also includes performing at least one of selective median filtering, spatial-temporal filtering, or resolution enhancement for the oversampled infrared data. In some embodiments, the selective median filtering is performed before the spatial-temporal filtering and the spatial-temporal filtering is performed before the resolution enhancement.
H04N 5/347 - Extracting pixel data from an image sensor by controlling scanning circuits, e.g. by modifying the number of pixels having been sampled or to be sampled by combining or binning pixels in SSIS
A method is described. The method includes receiving oversampled infrared data provided from an infrared pixel array. The method also includes performing at least one of selective median filtering, spatial-temporal filtering, or resolution enhancement for the oversampled infrared data.
A mechanism for radiation detection is disclosed. An integrated circuit usable in detecting radiation includes a plurality of readout circuits is described. A readout circuit of the plurality of readout circuits includes an integration capacitor and an averaging capacitor. The integration capacitor is coupled with a pixel of a photodetector pixel array. The pixel has a pixel area. An available area less than the pixel area is usable for layout of the integration capacitor. The integration capacitor has a capacitor area less than the available area. The averaging capacitor has an averaging capacitance greater than the integration capacitance of the integration capacitor. In some aspects, the integrated circuit further includes at least one cascaded averaging circuit coupled with the averaging capacitor.
G06V 10/94 - Hardware or software architectures specially adapted for image or video understanding
G06V 10/75 - Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video featuresCoarse-fine approaches, e.g. multi-scale approachesImage or video pattern matchingProximity measures in feature spaces using context analysisSelection of dictionaries
G06V 10/143 - Sensing or illuminating at different wavelengths
H04N 25/40 - Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
Techniques for tracing back a projectile to the projectile origin are described. A method includes detecting projectile track(s) in image(s). Each projectile track crosses multiple pixels in each image. The projectile track(s) correspond to projectile(s). The projectile track(s) in the image(s) are translated to traceback path(s). The traceback path includes a known location and a projectile origin (e.g. the location at which the projectile originated, also termed the shooter's location).
A mechanism for radiation detection is disclosed. An integrated circuit usable in detecting radiation includes a plurality of readout circuits is described. A readout circuit of the plurality of readout circuits includes an integration capacitor and an averaging capacitor. The integration capacitor is coupled with a pixel of a photodetector pixel array. The pixel has a pixel area. An available area less than the pixel area is usable for layout of the integration capacitor. The integration capacitor has a capacitor area less than the available area. The averaging capacitor has an averaging capacitance greater than the integration capacitance of the integration capacitor. In some aspects, the integrated circuit further includes at least one cascaded averaging circuit coupled with the averaging capacitor.
G06V 10/94 - Hardware or software architectures specially adapted for image or video understanding
G06V 10/75 - Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video featuresCoarse-fine approaches, e.g. multi-scale approachesImage or video pattern matchingProximity measures in feature spaces using context analysisSelection of dictionaries
H04N 5/341 - Extracting pixel data from an image sensor by controlling scanning circuits, e.g. by modifying the number of pixels having been sampled or to be sampled
11.
FAST FRAMING MOVING TARGET IMAGING SYSTEM AND METHOD
A method that can detect targets is described. The method includes setting an integration time for each of a plurality of readout circuits based on a speed of the target. The readout circuits are configured to read pixels in an image detector. The pixels have a pitch of less than ten micrometers. The integration time is not more than five hundred microseconds and corresponds to a subframe of a fast frame image. The method also includes performing integrations of each readout circuit based on the integration time. Thus, a plurality of subframes are provided. A number of the subframes are averaged to provide the fast frame image.
H04N 5/378 - Readout circuits, e.g. correlated double sampling [CDS] circuits, output amplifiers or A/D converters
H04N 19/159 - Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
H04N 19/196 - Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding being specially adapted for the computation of encoding parameters, e.g. by averaging previously computed encoding parameters
H04N 19/132 - Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
12.
Imaging detecting with automated sensing of an object or characteristic of that object
Detection of a target object or a characteristic of that object, e.g. temperature or movement in an image of a scene at a focal plane of the image and with processing of signals representative of the image occurring at that focal plane with a sensor and an integrated circuit processor on an imaging circuit chip used to record the scene. Moreover, processing of the signals representative of the image and the object or characteristic of the object can all be processed in parallel. This arrangement allows for filtering of objects with the ability to distinguish the object generating signals from background clutter. The incorporation of the entire circuit in this integrated circuit chip increases the compactness and efficiency. Moreover, all signal processing will occur at the focal plane eliminates the need for external processing electronics thereby increasing compactness and efficiency while reducing spatial noise.