A pump comprises a drive mechanism, a tube coupled to the drive mechanism, a filament coupled to the tube and extendable into the tube by the drive mechanism and at least one check valve coupled to the tube. As the filament is forced by the drive mechanism into the tube, fluid contained in the tube is forced by the filament through the at least one check valve and out of the tube.
A self-energizing valve includes a valve body defining an inner chamber having an inlet and an outlet. A valve head within the inner chamber is moveable between a first position and a second position. A valve seal in fluid communication with the inlet has a sealing surface with a sealing member between the valve head and the valve seal. The sealing member is movable between a closed position where the sealing member engages with the sealing surface and an open position where the sealing member disengages from the sealing surface to allow flow through the inlet into the inner chamber. A cam is coupled to the valve head. Rotation of the cam causes movement of the valve head between the first position and the second position to move the valve head to the first position to hold the sealing member in the closed position.
F16K 31/524 - Mechanical actuating means with crank, eccentric, or cam with a cam
F04B 7/00 - Piston machines or pumps characterised by having positively-driven valving
F04B 7/04 - Piston machines or pumps characterised by having positively-driven valving in which the valving is performed by pistons and cylinders coacting to open and close intake or outlet ports
F04B 9/04 - Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means being cams, eccentrics or pin-and-slot mechanisms
An apparatus for roasting coffee beans comprises a roasting chamber for containing coffee beans. The roasting chamber is positioned within a resonant cavity of a waveguide. A microwave emitter produces microwave energy within the waveguide with one or more stable high intensity microwave regions within the roasting chamber to heat the coffee beans in the roasting chamber to a temperature sufficient to roast the coffee beans. A device configured to move the coffee beans within the one or more high intensity microwave regions is coupled to the roasting chamber.
A pump comprises a drive mechanism, a tube coupled to the drive mechanism, a filament coupled to the tube and extendable into the tube by the drive mechanism and at least one check valve coupled to the tube. As the filament is forced by the drive mechanism into the tube, fluid contained in the tube is forced by the filament through the at least one check valve and out of the tube.
A pump includes a pair of valves, coupled to a camshaft that selectively opens and closes the valves such that when one valve opens the other valve closes. The valves are in fluid communication with a piston chamber. A crankshaft operates a piston in a piston cylinder with the opening and closing of the valves such that as the piston is drawn from the piston chamber, the inlet valve is open and the outlet valve is closed and when the piston is forced into the chamber, the outlet valve is open and the inlet valve is closed. The camshaft and crankshaft are coupled together to cause synchronous operation of the valves and piston.
F04B 7/00 - Piston machines or pumps characterised by having positively-driven valving
F16K 31/524 - Mechanical actuating means with crank, eccentric, or cam with a cam
F04B 9/04 - Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means being cams, eccentrics or pin-and-slot mechanisms
F04B 7/04 - Piston machines or pumps characterised by having positively-driven valving in which the valving is performed by pistons and cylinders coacting to open and close intake or outlet ports
A digital hydraulic system includes linear extending and retracting actuators. Each actuator has an actuator arm coupled to a body in parallel to the other actuators. Each actuator includes a high pressure valve having an inlet coupled to a high pressure reservoir and an outlet in fluid communication with a piston cylinder above a piston of the actuator and a low pressure valve having an inlet in fluid communication with the piston cylinder above the piston and an outlet coupled to a fluid reservoir. The valves include a bi-directional sealing member positioned between a valve head and a valve seal and a cam whereby rotation of the cam causes movement of the valve head between the first position and the second position and whereby movement of the valve head to the first position holds the bi-directional sealing member in the first closed position.
F04B 1/04 - Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
F04B 1/053 - Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement with actuating or actuated elements at the inner ends of the cylinders
F04B 1/07 - Control by varying the relative eccentricity between two members, e.g. a cam and a drive shaft
A pump includes a pair of valves, coupled to a camshaft that selectively opens and closes the valves such that when one valve opens the other valve closes. The valves are in fluid communication with a piston chamber. A crankshaft operates a piston in a piston cylinder with the opening and closing of the valves such that as the piston is drawn from the piston chamber, the inlet valve is open and the outlet valve is closed and when the piston is forced into the chamber, the outlet valve is open and the inlet valve is closed. The camshaft and crankshaft are coupled together to cause synchronous operation of the valves and piston.
F04B 7/04 - Piston machines or pumps characterised by having positively-driven valving in which the valving is performed by pistons and cylinders coacting to open and close intake or outlet ports
F04B 7/00 - Piston machines or pumps characterised by having positively-driven valving
F04C 15/06 - Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
F04C 29/12 - Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
F16D 31/02 - Fluid couplings or clutches with pumping sets of the volumetric type, i.e. in the case of liquid passing a predetermined volume per revolution using pumps with pistons or plungers working in cylinders
F16D 31/06 - Fluid couplings or clutches with pumping sets of the volumetric type, i.e. in the case of liquid passing a predetermined volume per revolution using pumps of types differing from those before-mentioned
A self-energizing valve includes a valve body defining an inner chamber having an inlet and an outlet. A valve head within the inner chamber is moveable between a first position and a second position. A valve seal in fluid communication with the inlet has a sealing surface with a sealing member between the valve head and the valve seal. The sealing member is movable between a closed position where the sealing member engages with the sealing surface and an open position where the sealing member disengages from the sealing surface to allow flow through the inlet into the inner chamber. A cam is coupled to the valve head. Rotation of the cam causes movement of the valve head between the first position and the second position to move the valve head to the first position to hold the sealing member in the closed position.
F16K 7/16 - Diaphragm cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage with flat, dished, or bowl-shaped diaphragm arranged to be deformed against a flat seat the diaphragm being mechanically actuated, e.g. by screw-spindle or cam
F16K 7/00 - Diaphragm cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage
F16K 7/12 - Diaphragm cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage with flat, dished, or bowl-shaped diaphragm
F16K 7/14 - Diaphragm cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage with flat, dished, or bowl-shaped diaphragm arranged to be deformed against a flat seat
F16K 7/17 - Diaphragm cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage with flat, dished, or bowl-shaped diaphragm arranged to be deformed against a flat seat the diaphragm being actuated by fluid pressure
F16K 21/04 - Self-closing valves, i.e. closing automatically after operation
F16K 31/383 - Operating meansReleasing devices actuated by fluid in which fluid from the conduit is constantly supplied to the fluid motor in which the fluid works directly on both sides of the fluid motor, one side being connected by means of a restricted passage and the motor being actuated by operating a discharge from that side the fluid acting on a piston
An apparatus for roasting coffee beans comprises a roasting chamber for containing coffee beans. The roasting chamber is positioned within a resonant cavity of a waveguide. A microwave emitter produces microwave energy within the waveguide with one or more stable high intensity microwave regions within the roasting chamber to heat the coffee beans in the roasting chamber to a temperature sufficient to roast the coffee beans. A device configured to move the coffee beans within the one or more high intensity microwave regions is coupled to the roasting chamber.
An apparatus for roasting coffee beans comprises a roasting chamber for containing coffee beans. The roasting chamber is positioned within a resonant cavity of a waveguide. A microwave emitter produces microwave energy within the waveguide with one or more stable high intensity microwave regions within the roasting chamber to heat the coffee beans in the roasting chamber to a temperature sufficient to roast the coffee beans. A device configured to move the coffee beans within the one or more high intensity microwave regions is coupled to the roasting chamber.
The present invention relates to improved devices and methods for popping popcorn, comprising moving popcorn kernels within a heating chamber with airflow and subjecting the popcorn kernels to focused microwave energy sufficient to cause the popcorn kernels to pop. In some embodiments, the devices and methods utilize a single-mode resonant microwave applicator to generate a standing microwave energy field comprising an array of one or more anti-node high intensity microwave regions and subjecting popcorn kernels to the microwave energy in the one or more high intensity microwave regions.
The present invention relates to an apparatus for popping kernels, comprising a heating chamber for containing kernels, a microwave emitter configured to produce microwave energy within the heating chamber and heat the kernels, a single-mode resonant microwave applicator configured to generate a standing microwave energy field comprising an array of one or more high intensity microwave regions, and a device configured to move kernels within the high intensity microwave regions.
The present invention relates to a popcorn vending machine, comprising a kernel holding chamber configured to store and dispense kernels, a heating chamber comprising an inlet configured to receive kernels from the kernel holding chamber, a microwave emitter configured to produce microwave energy within the heating chamber and heat the kernels, a single-mode resonant microwave applicator configured to generate a stable focused high intensity microwave region within the heating chamber, at least one air blower disposed in communication with the heating chamber, wherein the air blower is configured to blow air into the heating chamber, thereby moving kernels within the heating chamber and selectively removing popped flakes from the high intensity microwave region when popped, and a heating chamber outlet connected to the heating chamber for receiving popped flakes from the heating chamber and dispensing the popped flakes into a container.
The present invention relates to an apparatus for popping kernels, comprising a heating chamber configured to contain kernels, a microwave emitter configured to produce microwave energy within the heating chamber and heat the kernels, a single-mode resonant microwave applicator configured to generate a stable focused high intensity microwave region within the heating chamber, and an air blower configured to create airflow within the heating chamber sufficient to move the kernels within the heating chamber.