The present invention provides certain additional improvements for such mechanical-type multi-axis machine tools. These improvements include: (1) permitting the spindles to be rotated about their respective axes relative to the member independently of one another, (2) providing a low-cost, and yet highly-effective, sensor apparatus for determining the angular position of the member relative to the frame without the use of an expensive encoder or the like, (3) mounting the rotatable member more precisely relative to the frame, and (4) providing a zero-backlash tool slide on the frame for imparting an action to a workpiece.
Devices (10) for burnishing a surface (111, 112) on an object (108) includes a body (11) having a passageway (25), an accumulator piston (65) mounted on the body for sealed sliding movement within the passageway, a coarse adjustment screw (13) mounted on the body, a resilient member (14) acting between the coarse adjustment screw and the accumulator piston, a lever (12) mounted on the body, a chamber (32) communicating with the accumulator piston, an actuator piston (78) mounted on the body for sealed sliding movement within a cylindrical opening (41) toward and away from the rearward portion (48) of the lever, and a roll (15) rotatably mounted on the forward portion (49) of the lever. The devices are adapted to be mounted on a machine tool (105) and moved toward the object to burnish the surface with controllable force along the required length of the surface.
B24B 39/02 - Burnishing machines or devices, i.e. requiring pressure members for compacting the surface zoneAccessories therefor designed for working internal surfaces of revolution
B24B 47/14 - Drives or gearings for grinding machines or devicesEquipment therefor for rotating or reciprocating working-spindles carrying grinding wheels or workpieces by liquid or gas pressure
The present invention provides certain additional improvements for such mechanical-type multi-axis machine tools. These improvements include: (1) permitting the spindles to be rotated about their respective axes relative to the member independently of one another, (2) providing a low-cost, and yet highly-effective, sensor apparatus for determining the angular position of the member relative to the frame without the use of an expensive encoder or the like, (3) mounting the rotatable member more precisely relative to the frame, and (4) providing a zero-backlash tool slide on the frame for imparting an action to a workpiece.
The present invention provides certain additional improvements for such mechanical-type multi-axis machine tools. These improvements include: (1) permitting the spindles to be rotated about their respective axes relative to the member independently of one another, (2) providing a low-cost, and yet highly-effective, sensor apparatus for determining the angular position of the member relative to the frame without the use of an expensive encoder or the like, (3) mounting the rotatable member more precisely relative to the frame, and (4) providing a zero-backlash tool slide on the frame for imparting an action to a workpiece.
The present invention provides certain additional improvements for such mechanical-type multi-axis machine tools. These improvements include: (1) permitting the spindles to be rotated about their respective axes relative to the member independently of one another, (2) providing a low-cost, and yet highly-effective, sensor apparatus for determining the angular position of the member relative to the frame without the use of an expensive encoder or the like, (3) mounting the rotatable member more precisely relative to the frame, and (4) providing a zero-backlash tool slide on the frame for imparting an action to a workpiece.
An improved spindle assembly for a Davenport multi-axis screw machine is adapted to adequately hold one-inch round bar-stock in a collet against movement relative thereto attributable to machining operations performed on a cantilevered length of bar-stock held in and extending beyond the collet. The spindle assembly may permit the use of the screw machine on materials thought heretofore to be too difficult to machine on a screw machine. Cam surfaces on the inner spindle and col- let may be coated with a low-friction material. A stress-relieving connection between the inner spindle and collet is provided.
B23Q 3/12 - Devices holding, supporting, or positioning, work or tools, of a kind normally removable from the machine for securing to a spindle in general
8.
Large-capacity spindle assemblies and collets for use in davenport multi-spindle screw machines
An improved spindle assembly for a Davenport® multi-axis screw machine is adapted to adequately hold one-inch round bar-stock in a collet against movement relative thereto attributable to machining operations performed on a cantilevered length of bar-stock held in and extending beyond the collet. The spindle assembly may permit the use of the screw machine on materials thought heretofore to be too difficult to machine on a screw machine. Cam surfaces on the inner spindle and collet may be coated with a low-friction material. A stress-relieving connection between the inner spindle and collet is provided.
B23B 9/00 - Automatic or semi-automatic turning-machines with a plurality of working-spindles, e.g. automatic multiple-spindle machines with spindles arranged in a drum carrier able to be moved into pre-determined positionsEquipment therefor
B23B 5/08 - Turning-machines or devices specially adapted for particular workAccessories specially adapted therefor for turning axles, bars, rods, tubes, rolls, i.e. shaft-turning lathes, roll lathesCentreless turning
B23B 13/04 - Arrangements for automatically conveying, chucking or guiding stock for turning machines for turning-machines with a plurality of working-spindles
B23B 31/20 - Longitudinally-split sleeves, e.g. collet chucks
An improved knurling device (20) includes a body (21) having an axis of elongation (x-x), and has a first part (22) and a second part (23). The body first part has axially-spaced front and center plates (24, 25, respectively). The body second part is mounted on the center plate, and is selectively rotatable about the axis relative to the center plate. A plurality of knurl rolls (26, 26, 26) are mounted on the body first part between the front and center plates. An arbor (28) is axially mounted on the body second part, and is biased to move toward the front plate. The end of a rotating workpiece (W) is adapted to be axially inserted through the front plate and moved toward the body second part between the knurl rolls to roll a knurl pattern on the workpiece. The angular relationship between the knurl rolls is continuously maintained at all times.
F16B 19/02 - Bolts or sleeves for positioning of machine parts, e.g. notched taper pins, fitting pins, sleeves, eccentric positioning rings
F16H 1/08 - Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with parallel axes the members having helical, herring-bone, or like teeth
A device (20) for root-rolling a thread (T) on an object (O) includes: a body (21), an accumulator piston (24) mounted for sealed sliding movement within a body passageway (22), a coarse adjustment screw (25) threaded onto the body, a Belleville spring stack (26) compressed between the coarse adjustment screw and the accumulator piston, an actuator piston (28A or 28B) mounted for sealed sliding movement within a cylindrical opening (23) in the body, and a thread roll (32) rotatably mounted on the actuator piston. A fine adjustment screw is threaded (33) into a first opening (34) on the body, and communicates with a fluid chamber between the accumulator and actuator pistons. The positions of the coarse and fine adjustment screws may be selectively adjusted to controllably vary the fluid pressure within the chamber. The device may be mounted on a machine tool (35) and selectively moved toward the object to root-roll a thread on the object when the object and device are rotated relative to one another.
A device (20) for root-rolling a thread (T) on an object (O) includes: a body (21), an accumulator piston (24) mounted for sealed sliding movement within a body passageway (22), a coarse adjustment screw (25) threaded onto the body, a Belleville spring stack (26) compressed between the coarse adjustment screw and the accumulator piston, an actuator piston (28A or 28B) mounted for sealed sliding movement within a cylindrical opening (23) in the body, and a thread roll (32) rotatably mounted on the actuator piston. A fine adjustment screw is threaded (33) into a first opening (34) on the body, and communicates with a fluid chamber between the accumulator and actuator pistons. The positions of the coarse and fine adjustment screws may be selectively adjusted to controllably vary the fluid pressure within the chamber. The device may be mounted on a machine tool (35) and selectively moved toward the object to root-roll a thread on the object when the object and device are rotated relative to one another.
A device (20) for root-rolling a thread (T) on an object (O) includes: a body (21), an accumulator piston (24) mounted for sealed sliding movement within a body passageway (22), a coarse adjustment screw (25) threaded onto the body, a Belleville spring stack (26) compressed between the coarse adjustment screw and the accumulator piston, an actuator piston (28A or 28B) mounted for sealed sliding movement within a cylindrical opening (23) in the body, and a thread roll (32) rotatably mounted on the actuator piston. A fine adjustment screw is threaded (33) into a first opening (34) on the body, and communicates with a fluid chamber between the accumulator and actuator pistons. The positions of the coarse and fine adjustment screws may be selectively adjusted to controllably vary the fluid pressure within the chamber. The device may be mounted on a machine tool (35) and selectively moved toward the object to root-roll a thread on the object when the object and device are rotated relative to one another.
The present invention provides an improvement for use in a machine tool having a spindle (51) mounted in a body opening (30) for axial and rotative movement relative to a body (31). The improvement includes a bearing assembly (25) that permits spindles (Sl , S2, S3, ...) to be quickly exchanged while obviating the need to recenter a replacement spindle with respect to the opening after the original spindle has been initially center therein. The improved bearing assembly (25) broadly includes: a ferrous tubular sleeve (29) mounted in the body opening, the sleeve having an outer surface (40) arranged to face toward a portion (31 ) of the body that surrounds the opening and having an inner surface (36, 39) arranged to face toward a penetrant portion of the spindle; and a tubular bearing (46) arranged within the sleeve, the tubular bearing having an outer surface (51 ) arranged to face the sleeve inner surface and having an inner surface (50) arranged to face the spindle penetrant portion.
The present invention provides an improvement for use in a machine tool having a spindle (51) mounted in a body opening (30) for axial and rotative movement relative to a body (31). The improvement includes a bearing assembly (25) that permits spindles (Sl , S2, S3, ...) to be quickly exchanged while obviating the need to recenter a replacement spindle with respect to the opening after the original spindle has been initially center therein. The improved bearing assembly (25) broadly includes: a ferrous tubular sleeve (29) mounted in the body opening, the sleeve having an outer surface (40) arranged to face toward a portion (31 ) of the body that surrounds the opening and having an inner surface (36, 39) arranged to face toward a penetrant portion of the spindle; and a tubular bearing (46) arranged within the sleeve, the tubular bearing having an outer surface (51 ) arranged to face the sleeve inner surface and having an inner surface (50) arranged to face the spindle penetrant portion.
The present invention provides an improvement for use in a machine tool having a spindle (51) mounted in a body opening (30) for axial and rotative movement relative to a body (31). The improvement includes a bearing assembly (25) that permits spindles (S1, S2, S3, . . . ) to be quickly exchanged while obviating the need to recenter a replacement spindle with respect to the opening after the original spindle has been initially center therein. The improved bearing assembly (25) broadly includes: a ferrous tubular sleeve (29) mounted in the body opening, the sleeve having an outer surface (40) arranged to face toward a portion (31) of the body that surrounds the opening and having an inner surface (36, 39) arranged to face toward a penetrant portion of the spindle; and a tubular bearing (46) arranged within the sleeve, the tubular bearing having an outer surface (51) arranged to face the sleeve inner surface and having an inner surface (50) arranged to face the spindle penetrant portion.
An improved Davenport® multi-spindle automatic screw machine has a tool arm (14) mounted on a shaft (41) for rotational movement relative to a revolving head cap (13). A needle bearing (42, 42) is operatively arranged between the shaft and the revolving head cap. The bearing is radially loaded as said bearing is installed and that the individual needles of same remain elastically deformed by the radial load immediately after said bearing has been installed. The shaft has a hardened surface (52) that is engaged by the needles. The diameter of the shaft hardened surface portion is greater than the diameters of the adjacent shaft portions. Annular recesses (51, 53) extend into the shaft at either end of the hardened portion. These recesses have frusto-conical surfaces (55) that act as ramps to guide insertion of the press-fittable needle bearing into the space between the shaft and the head cap.
An automatic screw machine (20) has a body (22), and a head (21) that is rotatably mounted on the body and that is adapted to be selectively rotated relative to the body between any of a plurality of index positions. The body and head have closely-spaced and facing bearing surfaces (25, 28 and 26, 29), have spindles (23) journalled on the head for rotation relative thereto, and have a source of pressurized lubricant. The improvement broadly includes: at least one body passageway (32) communicating the source with the body bearing surface, the intersection of each body passageway with the body bearing surface defining a body port (33); a head passageway (36) communicating the head bearing surface with the spindle, the intersection of said head passageway with said head bearing surface defining at least one head port (42); and the body and head passageways being so configured and arranged such that lubricant may flow from the source to the spindle only when the head is in the vicinity of the index position such that the body and head ports overlap one another.
B23B 19/02 - Working-spindlesFeatures relating thereto, e.g. supporting arrangements
B23B 13/04 - Arrangements for automatically conveying, chucking or guiding stock for turning machines for turning-machines with a plurality of working-spindles
F16N 7/36 - Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated with feed by pumping action of the member to be lubricated or of a shaft of the machineCentrifugal lubrication
F16N 7/00 - Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated
18.
DAVENPORT MULTI-SPINDLE SCREW MACHINE, AND IMPROVED TOOL ARM FOR USE THEREIN
An improved Davenport~ multi-spindle automatic screw machine has a tool arm (14) mounted on a shaft (41) for rotational movement relative to a revolving head cap (13). A needle bearing (42, 42) is operatively arranged between the shaft and the revolving head cap. The bearing is radially loaded as said bearing is installed and that the individual needles of same remain elastically deformed by the radial load immediately after said bearing has been installed. The shaft has a hardened surface (52) that is engaged by the needles. The diameter of the shaft hardened surface portion is greater than the diameters of the adjacent shaft portions. Annular recesses (51, 53) extend into the shaft at either end of the hardened portion. These recesses have frusto-conical surfaces (55) that act as rarnps to guide insertion of the press-fittable needle bearing into the space between the shaft and the head cap.
F16F 15/121 - Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon using springs as elastic members, e.g. metallic springs
B23Q 3/155 - Arrangements for automatic insertion or removal of tools
19.
DAVENPORT MULTI-SPINDLE SCREW MACHINE, AND IMPROVED TOOL ARM FOR USE THEREIN
An improved Davenportꡞ multi-spindle automatic screw machine has a tool arm (14) mounted on a shaft (41) for rotational movement relative to a revolving head cap (13). A needle bearing (42, 42) is operatively arranged between the shaft and the revolving head cap. The bearing is radially loaded as said bearing is installed and that the individual needles of same remain elastically deformed by the radial load immediately after said bearing has been installed. The shaft has a hardened surface (52) that is engaged by the needles. The diameter of the shaft hardened surface portion is greater than the diameters of the adjacent shaft portions. Annular recesses (51, 53) extend into the shaft at either end of the hardened portion. These recesses have frusto-conical surfaces (55) that act as rarnps to guide insertion of the press-fittable needle bearing into the space between the shaft and the head cap.
F16F 15/121 - Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon using springs as elastic members, e.g. metallic springs
B23Q 3/155 - Arrangements for automatic insertion or removal of tools
20.
LUBRICATION SYSTEM FOR A MULTI-SPINDLE AUTOMATIC SCREW MACHINE
An automatic screw machine (20) has a body (22), and a head (21) that is rotat- ably mounted on the body and that is adapted to be selectively rotated relative to the body between any of a plurality of index positions. The body and head have closely-spaced and facing bearing surfaces (25, 28 and 26, 29), have spindles (23) journalled on the head for rotation relative thereto, and have a source of pressurized lubricant. The improvement broadly includes: at least one body passageway (32) communicating the source with the body bearing surface, the intersection of each body passageway with the body bearing surface defining a body port (33); a head passageway (36) communicating the head bearing surface with the spindle, the intersection of said head passageway with said head bearing surface defining at least one head port (42); and the body and head passageways being so configured and arranged such that lubricant may flow from the source to the spindle only when the head is in the vicinity of the index position such that the body and head ports overlap one another.
A rear worm drive shaft (60) for a Davenportꡞ multi-spindle automatic screw machine, comprises: a shaft first part (61) having a portion with a first hardness; a shaft second part (62) having a portion with a second hardness, said second hardness being greater than the first hardness; and a coupling (63) adapted to join the shaft first and second parts in an axially-aligned relation and to prevent relative rotation therebetween. The improved shaft may be changed on a Davenportꡞ screw machine is about one-half hour.
The present invention provides an improvement (20) in a Davenport~ automatic screw machine having a stationary spindle. The improvement broadly includes a quick-change mechanism (26) associated with the stationary spindle (22). The mechanism includes mating frusto-conical first and second surfaces (28, 31) on the spindle and tool holder, and a multi-lead threaded connection (32) between the tool holder and stationary spindle such that the tool holder may be quickly locked into mating engagement with the stationary spindle by relative rotation therebetween through a short angular distance. The invention may also include an adjustment mechanism (33) that allows the axis (X2-X2) of the tool to be aligned with the axis (X1-X1) of a spaced rotatable spindle. This adjustment mechanism includes a base member (34), an adjustment member (35), and a locking mechanism (37) for selectively holding the adjustment member in the desired position relative to the base member.
The present invention provides an improvement (20) in a Davenportꡞ automatic screw machine having a stationary spindle. The improvement broadly includes a quick-change mechanism (26) associated with the stationary spindle (22). The mechanism includes mating frusto-conical first and second surfaces (28, 31) on the spindle and tool holder, and a multi-lead threaded connection (32) between the tool holder and stationary spindle such that the tool holder may be quickly locked into mating engagement with the stationary spindle by relative rotation therebetween through a short angular distance. The invention may also include an adjustment mechanism (33) that allows the axis (X2-X2) of the tool to be aligned with the axis (X1-X1) of a spaced rotatable spindle. This adjustment mechanism includes a base member (34), an adjustment member (35), and a locking mechanism (37) for selectively holding the adjustment member in the desired position relative to the base member.
1) of a spaced rotatable spindle. This adjustment mechanism includes a base member (34), an adjustment member (35), and a locking mechanism (37) for selectively holding the adjustment member in the desired position relative to the base member.
An improved tool holder, such as a shave tool (20), broadly includes: an adapter plate (23) adapted to be mounted on the screw machine (21) for controlled movement toward and away from the workpiece (W); a tool block (24) slidably mounted on the adapter plate for relative movement relative thereto along a first axis (x-x); a slide body (25) mounted on the tool block for rotation relative thereto about a second axis (y-y), an adjustment mechanism (28) acting between the slide body and the tool block for controllably varying the angular position of the slide body relative to the tool block; and a head (26) slidably mounted on the slide body for movement relative thereto along a third axis (z-z). The head has a roller (22) and cutting tool (T) spaced from the roller.
A spindle assembly (20) adapted to be mounted on the rotatable head (21) of a Davenport~ multi-spindle automatic screw machine, broadly includes a one-piece outer spindle (38), a seal member (39), a front bearing assembly (40A, 40B, 40C), a front bearing retainer nut (41) forming with the seal member a tortuous passageway (85), a two-part spacer (37), a rear bearing assembly (44A, 44B), and a rear bearing retainer nut (45).
F16C 19/10 - Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for axial load mainly
machine operated tools, namely thread rolls, knurls, tool holders, shave tool holders, work holding slides, bent-shank taps, burnishing rolls and thread rolling parts and fittings therefore, for the screw machines and metal turning industries
Machine operated tools, namely, thread rolls, knurls, and thread rolling parts and fittings therefore, tool slides for screw machines tool holders for screw machines
Machine operated tools, namely, thread rolls, knurls, and thread rolling parts and fittings therefore, tool slides for screw machines tool holders for screw machines