An assembly (7) for triggering an explosive in a hole (9) to produce an explosive blast in the hole includes (a) an explosion trigger (15, 19) for triggering the explosive in the hole, (b) a detonation unit body (21) that is configured to be located at or proximate an open end of the hole in an initial position of the assembly in the hole and (c) a trigger cord (31) that is connected to the detonation unit body and to the explosion trigger.
Systems, methods and apparatus that facilitate mechanisation and/or automation of blasting processes in mining and civil engineering applications are disclosed. The disclosure includes a trigger assembly for triggering an explosive in a hole in rock. The disclosure also includes a mining or civil engineering vehicle for working proximate an end face. The vehicle comprises a positioning unit for moving a functional unit to a selected location in relation to the end face. The positioning unit can include (a) a coarse positioning module and a fine positioning module and/or (b) a vision module for monitoring the position of the functional unit to facilitate guiding the functional unit to the selected location and/or (c) can be configured to move independently from an initial position to a second position closer to the selected location whilst the vehicle remains stationary.
An explosives delivery vehicle for delivering a booster for initiating an explosion of an explosive material in a hole in a floor of a mine pit to an operative depth in the hole. The vehicle comprises a storage assembly for storing a plurality of the boosters, a booster loading assembly for (i) supporting the booster in a delivery position above the hole and (ii) moving the booster downwardly into the hole and inserting the booster at an operative depth in the hole; and a delivery assembly for transporting the booster from the storage assembly to the loading assembly.
An assembly (7) for triggering an explosive in a hole (9) to produce an explosive blast in the hole includes (a) an explosion trigger (15, 19) for triggering the explosive in the hole, (b) a detonation unit body (21) that is configured to be located at or proximate an open end of the hole in an initial position of the assembly in the hole and (c) a trigger cord (31) that is connected to the detonation unit body and to the explosion trigger.
A booster assembly (60) for use in a drill and blast operation comprises in co- axial alignment: (a) a booster (65) for initiating an explosion of an explosives material in a hole (90) in a pit floor (91) as part of a drill and blast operation, (b) a spool (63) and a detonation cord (66) wrapped around the spool in a storage position outside the hole and connected to the spool and to the booster, and (b) a stake (61). The spool allows the detonation cord to be unwound from the spool as the booster is moved from the storage position to an operative depth in the hole and the spool remains in the storage position. The stake is provided for locating the spool in the pit floor proximate the hole after the booster is at the operative depth in the hole.
An explosives delivery vehicle for delivering a booster (65) for initiating an explosion of an explosive material in a hole (90) in a floor (91) of a mine pit to an operative depth in the hole. The vehicle comprises a storage assembly (10) for storing a plurality of the boosters, a booster loading assembly (30) for (i) supporting the booster in a delivery position above the hole and (ii) moving the booster downwardly into the hole and inserting the booster at an operative depth in the hole; and a delivery assembly (20) for transporting the booster from the storage assembly to the loading assembly.
A control system for controlling operation of a fluid delivery system that includes at least a first pump (14) for delivering a first fluid and a second pump (24) for mixing a second fluid with the first fluid. The control system includes a controller (58), the controller including a first pump map for the first pump (14), the first pump map having a first pump flow rate mapped against one or more variables including a control output signal, the controller (58) including a second pump map for the second pump (24), the second pump map having a second pump flow rate mapped against one or more variables including a control output signal, the controller (58) determining the control output signal for the first pump (14) to obtain a desired flow rate from the first pump, the controller determining the control output signal for the second pump (24) to obtain a target flow rate and a target percentage of the second fluid relative to the first fluid or a target percentage of the second fluid relative to an overall fluid flow, the respective control output signals for the first pump (14) and the second pump(24) being determined using the first pump map and the second pump map, respectively.
G01F 9/00 - Measuring volume flow relative to another variable, e.g. of liquid fuel for an engine
B24B 49/00 - Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
E21B 43/12 - Methods or apparatus for controlling the flow of the obtained fluid to or in wells
E21B 43/26 - Methods for stimulating production by forming crevices or fractures
E21C 37/12 - Other methods or devices for dislodging with or without loading by making use of hydraulic or pneumatic pressure in a borehole by injecting into the borehole a liquid, either initially at high pressure or subsequently subjected to high pressure, e.g. by pulses, by explosive cartridges acting on the liquid
A control system for controlling operation of a fluid delivery system that includes at least a first pump (14) for delivering a first fluid and a second pump (24) for mixing a second fluid with the first fluid. The control system includes a controller (58), the controller including a first pump map for the first pump (14), the first pump map having a first pump flow rate mapped against one or more variables including a control output signal, the controller (58) including a second pump map for the second pump (24), the second pump map having a second pump flow rate mapped against one or more variables including a control output signal, the controller (58) determining the control output signal for the first pump (14) to obtain a desired flow rate from the first pump, the controller determining the control output signal for the second pump (24) to obtain a target flow rate and a target percentage of the second fluid relative to the first fluid or a target percentage of the second fluid relative to an overall fluid flow, the respective control output signals for the first pump (14) and the second pump(24) being determined using the first pump map and the second pump map, respectively.
B24B 49/00 - Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
E21B 43/12 - Methods or apparatus for controlling the flow of the obtained fluid to or in wells
E21C 37/12 - Other methods or devices for dislodging with or without loading by making use of hydraulic or pneumatic pressure in a borehole by injecting into the borehole a liquid, either initially at high pressure or subsequently subjected to high pressure, e.g. by pulses, by explosive cartridges acting on the liquid
E21B 43/26 - Methods for stimulating production by forming crevices or fractures