A multiple degree of freedom sample stage or testing assembly including a multiple degree of freedom sample stage. The multiple degree of freedom sample stage includes a plurality of stages including linear, and one or more of rotation or tilt stages configured to position a sample in a plurality of orientations for access or observation by multiple instruments in a clustered volume that confines movement of the multiple degree of freedom sample stage. The multiple degree of freedom sample stage includes one or more clamping assemblies to statically hold the sample in place throughout observation and with the application of force to the sample, for instance by a mechanical testing instrument. Further, the multiple degree of freedom sample stage includes one or more cross roller bearing assemblies that substantially eliminate mechanical tolerance between elements of one or more stages in directions orthogonal to a moving axis of the respective stages.
A method of batch-fabricating an array of probe devices for a surface analysis instrument, such as an atomic force microscope (AFM), includes providing a wafer, and photolithographically forming a base and a cantilever for each probe. The cantilever includes a built-in angle, θ, relative to the base, and the base is substantially parallel to a sample holder when the probe device is mounted in a probe holder of the surface analysis instrument.
Among other things, a heating jacket configured for heating a mechanical testing instrument having a probe is disclosed herein. The heating jacket includes a heating element including a jacket wall, and the jacket wall extends around a probe recess, the jacket wall is configured to receive a probe of a mechanical testing instrument within the probe recess, and the heating element is mechanically isolated from the probe with a probe gap. Additionally, a system to correct for thermomechanical drift in a mechanical testing assembly is disclosed herein. The system isolates the mechanical testing instrument from thermomechanical drift of a system frame using a determined difference between, for instance, a probe displacement and a sample displacement.
Shortcomings associated with insufficient control of a conventional CMP-process are obviated by providing an CMP-apparatus configured to complement a constant force (to which a workpiece that is being polished is conventionally exposed) with a time-alternating force and/or means for measuring an electrical characteristic of the CMP-process. The time-alternating force is applied with the use of a system component that is electrically isolated from the workpiece and that is disposed in the carrier-chick in which the workpiece is affixed for CMP-process, while the electrical characteristic is measured with the use of a judiciously-configured reservoir in which the used fluid is collected. The use of such CMP-apparatus.
B24B 37/013 - Devices or means for detecting lapping completion
B24B 37/04 - Lapping machines or devicesAccessories designed for working plane surfaces
B24B 37/10 - Lapping machines or devicesAccessories designed for working plane surfaces characterised by the movement of the work or lapping tool for single side lapping
B24B 37/30 - Work carriers for single side lapping of plane surfaces
B24B 49/00 - Measuring or gauging equipment for controlling the feed movement of the grinding tool or workArrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
B24B 49/10 - Measuring or gauging equipment for controlling the feed movement of the grinding tool or workArrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving electrical means
A debris collection and metrology system for collecting and analyzing debris from a tip used in nanomachining processes, the system including an irradiation source, an irradiation detector, an actuator, and a controller. The irradiation source is operable to direct incident irradiation onto the tip, and the irradiation detector is operable to receive a sample irradiation from the tip, the sample irradiation being generated as a result of the direct incident irradiation being applied onto the tip. The controller is operatively coupled to an actuator system and the irradiation detector, and the controller is operable to receive a first signal based on a first response of the irradiation detector to the sample irradiation, and the controller is operable to effect relative motion between the tip and at least one of the irradiation source and the irradiation detector based on the first signal.
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
An atomic-force-microscope-based apparatus and method including hardware and software, configured to collect, in a dynamic fashion, and analyze data representing mechanical properties of soft materials on a nanoscale, to map viscoelastic properties of a soft-material sample. The use of the apparatus as an addition to the existing atomic-force microscope device.
An apparatus and method of performing sample characterization with an AFM and a pulsed IR laser directed at the tip of a probe of the AFM. Gated laser pulsing and gated detection based on a lock-in amplifier, boxcar integrator or FFT may be employed in Peak force tapping operation. Nano-spectroscopic measurements with sub-20 nm, and even sub- 10 nm resolution can be executed together with nano-mechanical and other property measurements.
An apparatus and method of performing sample characterization with an AFM and a pulsed IR laser directed at the tip of a probe of the AFM. Gated laser pulsing and gated detection based on a lock-in amplifier, boxcar integrator or FFT may be employed in Peak force tapping operation. Nano-spectroscopic measurements with sub-20 nm, and even sub-10 nm resolution can be executed together with nano-mechanical and other property measurements.
The preferred embodiments are directed to a metrology method used, for example, in recess analysis in semiconductor fabrication that includes using atomic force microscopy (ATM) data of a sample having an array of 2D-periodic features to generate a sample image, and calculating a periodicity of the features. The method identifies the peaks in the periodicity to determine a feature period and a lattice angle, and constructs a lattice mask that is registered to the image to perform an alignment calculation. The mask is offset, and alignment calculation made, to optimize cost.
The preferred embodiments are directed to a metrology method used, for example, in recess analysis in semiconductor fabrication that includes using atomic force microscopy (AFM) data of a sample having an array of 2D-periodic features to generate a sample image, and calculating a periodicity of the features. The method identifies the peaks in the periodicity to determine a feature period and a lattice angle, and constructs a lattice mask that is registered to the image to perform an alignment calculation. The mask is offset, and alignment calculation made, to optimize cost.
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
09 - Scientific and electric apparatus and instruments
Goods & Services
Recorded and downloadable software for operating probe-based instruments in the fields of manufacturing and scientific research; hardware for facilitating a mode of operation sold as integral part of probe-based instruments, namely, scanning probe microscopes and atomic force microscopes
17.
SPECTROSCOPIC ELLIPSOMETRY SYSTEM FOR THIN FILM IMAGING
An imaging spectroscopic ellipsometry apparatus and method configured to measure thin films with high spatial resolution. The apparatus includes a rotating compensator that enables to simultaneously collect both spectrometric ellipsometric data and ellipsometric imaging with the use of the same measurement beam of light. Collecting both data sets simultaneously increases the information content for analysis and affords a substantial increase in measurement performance.
An atomic-force-microscope-based apparatus and method including hardware and software, configured to collect, in a dynamic fashion, and analyze data representing mechanical properties of soft materials on a nanoscale, to map viscoelastic properties of a soft-material sample. The use of the apparatus as an addition to the existing atomic-force microscope device.
A debris collection and metrology system for collecting and analyzing debris from a tip used in nanomachining processes, the system including an irradiation source, an irradiation detector, an actuator, and a controller. The irradiation source is operable to direct incident irradiation onto the tip, and the irradiation detector is operable to receive a sample irradiation from the tip, the sample irradiation being generated as a result of the direct incident irradiation being applied onto the tip. The controller is operatively coupled to an actuator system and the irradiation detector, and the controller is operable to receive a first signal based on a first response of the irradiation detector to the sample irradiation, and the controller is operable to effect relative motion between the tip and at least one of the irradiation source and the irradiation detector based on the first signal.
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
An imaging spectropolarimeter configured to examine targets with polarized light, in which orientation of light-polarizing components is judiciously chosen to be target-specific and which employ a three-camera optical detection system defining an optical detection axis with respect to which individual camera analyzers are oriented in a specifically-defined fashion. Programmable electronic circuitry is adapted to substantially simultaneously acquire polarimetric images of the target utilizing intensity information collected by the multi-pixel sensors of the optical detection system.
A large radius probe for a surface analysis instrument such as an atomic force microscope (AFM). The probe is microfabricated to have a tip with a hemispherical distal end or apex. The radius of the apex is the range of about a micron making the probes particularly useful for nanoindentation analyses, but other applications are contemplated. In particular, tips with aspect ratios greater than 2:1 can be made for imaging, for example, semiconductor samples. The processes of the preferred embodiments allow such large radius probes to be batch fabricated to facilitate cost and robustness.
C23C 16/44 - Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
A system and method of operating an atomic force microscope (AFM) that includes providing relative scanning motion between a probe of the AFM and a sample in a slow scan direction of a data scan to generate a reference image (plane) of a region of interest. Then, relative scanning motion between the probe and the sample is provided in a fast scan direction of a final data scan to generate a data image. By mapping the data image against the reference image in real-time during the supplying step, the preferred embodiments generate a final drift corrected data image without post-image acquisition processing.
A spectroscopic ellipsometry system and method for thin film measurement with high spatial resolution. The system includes a rotating compensator so that spectroscopic ellipsometric and imaging ellipsometric data are collected simultaneously with the same measurement beam. Collecting both ellipsometric data sets simultaneously increases the information content for analysis and affords a substantial increase in measurement performance.
G01N 21/31 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
A system and method of operating an atomic force microscope (AFM) that includes providing relative scanning motion between a probe of the AFM and a sample in a slow scan direction of a data scan to generate a reference image (plane) of a region of interest. Then, relative scanning motion between the probe and the sample is provided in a fast scan direction of a final data scan to generate a data image. By mapping the data image against the reference image in real-time during the supplying step, the preferred embodiments generate a final drift corrected data image without post-image acquisition processing.
A method of batch-fabricating an array of probe devices for a surface analysis instrument, such as an atomic force microscope (AFM), includes providing a wafer, and photolithographically forming a base and a cantilever for each probe. The cantilever includes a built-in angle, θ, relative to the base, and the base is substantially parallel to a sample holder when the probe device is mounted in a probe holder of the surface analysis instrument.
A method of batch-fabricating an array of probe devices for a surface analysis instrument, such as an atomic force microscope (AFM), includes providing a wafer, and photolithographically forming a base and a cantilever for each probe. The cantilever includes a built-in angle, 9, relative to the base, and the base is substantially parallel to a sample holder when the probe device is mounted in a probe holder of the surface analysis instrument.
G01Q 60/24 - AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
An atomic force microscope (AFM) and method of operating the same includes a separate Z height sensor to measure, simultaneously with AFM system control, probe sample distance, pixel-by-pixel during AFM data acquisition. By mapping the AFM data to low resolution data of the Z height data, a high resolution final data image corrected for creep is generated in real time.
An atomic force microscope (AFM) and method of operating the same includes a separate Z height sensor to measure, simultaneously with AFM system control, probe sample distance, pixel-by-pixel during AFM data acquisition. By mapping the AFM data to low resolution data of the Z height data, a high resolution final data image corrected for creep is generated in real time.
A multiple degree of freedom sample stage or testing assembly including a multiple degree of freedom sample stage. The multiple degree of freedom sample stage includes a plurality of stages including linear, and one or more of rotation or tilt stages configured to position a sample in a plurality of orientations for access or observation by multiple instruments in a clustered volume that confines movement of the multiple degree of freedom sample stage. The multiple degree of freedom sample stage includes one or more clamping assemblies to statically hold the sample in place throughout observation and with the application of force to the sample, for instance by a mechanical testing instrument. Further, the multiple degree of freedom sample stage includes one or more cross roller bearing assemblies that substantially eliminate mechanical tolerance between elements of one or more stages in directions orthogonal to a moving axis of the respective stages.
Shortcomings associated with insufficient control of a conventional CMP-process are obviated by providing an CMP-apparatus configured to complement a constant force (to which a workpiece that is being polished is conventionally exposed) with a time-alternating force and/or means for measuring an electrical characteristic of the CMP-process. The time-alternating force is applied with the use of a system component that is electrically isolated from the workpiece and that is disposed in the carrier-chick in which the workpiece is affixed for CMP-process, while the electrical characteristic is measured with the use of a judiciously-configured reservoir in which the used fluid is collected. The use of such CMP-apparatus.
B24B 37/013 - Devices or means for detecting lapping completion
B24B 37/04 - Lapping machines or devicesAccessories designed for working plane surfaces
B24B 37/10 - Lapping machines or devicesAccessories designed for working plane surfaces characterised by the movement of the work or lapping tool for single side lapping
B24B 37/30 - Work carriers for single side lapping of plane surfaces
B24B 49/00 - Measuring or gauging equipment for controlling the feed movement of the grinding tool or workArrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
B24B 49/10 - Measuring or gauging equipment for controlling the feed movement of the grinding tool or workArrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving electrical means
34.
AFM IMAGING WITH METROLOGY-PRESERVING REAL TIME DENOISING
A method of operating an atomic force microscope (AFM), using a denoising algorithm, real-time, during AFM data acquisition. Total Variation and Non-Local Means denoising are preferred. Real time images with minimized sensor noise needing no post-image acquisition processing to account for noise as described herein results.
A method of operating an atomic force microscope (AFM), using a denoising algorithm, real-time, during AFM data acquisition. Total Variation and Non-Local Means denoising are preferred. Real time images with minimized sensor noise needing no post-image acquisition processing to account for noise as described herein results.
An atomic-force-microscope-based apparatus and method including hardware and software, configured to collect, in a dynamic fashion, and analyze data representing mechanical properties of soft materials on a nanoscale, to map viscoelastic properties of a soft-material sample. The use of the apparatus as an addition to the existing atomic-force microscope device.
In one embodiment, an automated high-speed X-ray inspection tool may emit, by an X-ray source, an X-ray beam to an object of interest with a portion of the X-ray beam penetrating through the object of interest. The automated high-speed X-ray inspection tool may capture, by an X-ray sensor, one or more X-ray images of the object of interest based on the portion of the X-ray beam that penetrates through the object of interest. Each of the X-ray images may be captured with a field of view of at least 12 million pixels.
G01N 23/083 - Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups , or by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
G01N 23/04 - Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups , or by transmitting the radiation through the material and forming images of the material
H01L 21/66 - Testing or measuring during manufacture or treatment
A torsional probe for a metrology instrument includes a cantilever coupled to a support structure via a torsion bar. The cantilever, support structure, and arms of torsion bar have substantially the same thickness. A method of manufacture of the torsion probe, as well as a method of using the torsion probe to measure photothermal induced surface displacement of a sample are also described.
A method for producing a radiation window includes patterning a photo resist structure onto a double-sided silicon wafer, plasma etching the silicon wafer to create an etched silicon wafer having a silicon supporting structure etched upon a first side of the double-sided silicon wafer, applying a silicon nitride thin film to the etched silicon wafer, patterning a photo resist structure and plasma etching a second side of the double-sided silicon wafer to create an initial window in the silicon nitride thin film, and wet etching the second side of the double-sided silicon wafer to release the silicon nitride thin film and supporting structure from the portion of the double-sided silicon wafer defined by the initial window.
A method for producing a radiation window includes patterning a photo resist structure onto a double-sided silicon wafer, plasma etching the silicon wafer to create an etched silicon wafer having a silicon supporting structure etched upon a first side of the double-sided silicon wafer, applying a silicon nitride thin film to the etched silicon wafer, patterning a photo resist structure and plasma etching a second side of the double-sided silicon wafer to create an initial window in the silicon nitride thin film, and wet etching the second side of the double-sided silicon wafer to release the silicon nitride thin film and supporting structure from the portion of the double-sided silicon wafer defined by the initial window.
In one embodiment, an automatic high-speed X-ray system may generate a high-resolution X-ray image of an inspected sample at a direction substantially orthogonal to a plane of the inspected sample. The system may determine a first cross-sectional shape of a first portion of a first element of interest in the inspected sample based on grayscale values of the X-ray image associated with the first element of interest. The system may determine a second cross-sectional shape of a second portion of the first element of interest in the inspected sample. The second cross-sectional shape may be determined based on the grayscale values of the X-ray image associated with the first element of interest. The system may determine one or more first metrological parameters associated with the first element of interest in the inspected sample based a comparison of the first cross-sectional shape and the second cross-sectional shape.
G01B 15/04 - Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring contours or curvatures
G01N 23/04 - Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups , or by transmitting the radiation through the material and forming images of the material
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
H01L 21/66 - Testing or measuring during manufacture or treatment
H01L 23/00 - Details of semiconductor or other solid state devices
46.
METHOD AND APPARATUS OF ATOMIC FORCE MICROSCOPE BASED INFRARED SPECTROSCOPY WITH CONTROLLED PROBING DEPTH
A method for obtaining optical spectroscopic information about a sub-micron region of a sample with quantitatively controlled depth/volume of the sample subsurface using a scanning probe microscope. With controlled probing depth/volume, the method can separate top surface data from subsurface optical/chemical information. The method can also be applied in liquid suitable for studying biological and chemical samples in their native aqueous environments, as opposed to air. In the method, a depth-controlled spectrum of the surface layer is constructed by illuminating the sample with a beam of infrared radiation and measuring a probe response using at least one of the resonant frequencies of the probe. The surface sensitivity is obtained by limiting the heat diffusion effect of the subsurface so as to confine the signal. The signal confinement is achieved through non-linearity of the acoustic wave with probe, as well as benefits gained by a high modulation frequency of the infrared radiation source at >1 MHz.
G01N 21/35 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
G01Q 60/38 - Probes, their manufacture or their related instrumentation, e.g. holders
09 - Scientific and electric apparatus and instruments
Goods & Services
Tribology and micromechanical testing instruments, namely, tribometers and mechanical testers in the nature of macro-, micro- and nanomechanical testing instruments for conducting friction and wear testing as well as compression, tensile, torsional, indentation, lateral force, scratch, and fatigue testing, and data acquisition in ambient and controlled low and high temperature environments and under vacuum
A mechanical method of removing nanoscale debris from a sample surface using an atomic force microscope (AFM) probe. The probe is shaped to include an edge that provides shovel-type action on the debris as the probe is moved laterally to the sample surface. Advantageously, the probe is able to lift the debris without damaging the debris for more efficient cleaning of the surface. The edge is preferably made by focused ion beam (FIB) milling the diamond apex of the tip.
A mechanical method of removing nanoscale debris from a sample surface using an atomic force microscope (AFM) probe. The probe is shaped to include an edge that provides shovel-type action on the debris as the probe is moved laterally to the sample surface. Advantageously, the probe is able to lift the debris without damaging the debris for more efficient cleaning of the surface. The edge is preferably made by focused ion beam (FIB) milling the diamond apex of the tip.
An apparatus and method of operating an atomic force profiler (AFP), such as an AFM, using a feedforward control signal in subsequent scan lines of a large area sample to achieve large throughput advantages in, for example, automated applications.
A debris collection and metrology system for collecting and analyzing debris from a tip used in nanomachining processes, the system including an irradiation source, an irradiation detector, an actuator, and a controller. The irradiation source is operable to direct incident irradiation onto the tip, and the irradiation detector is operable to receive a sample irradiation from the tip, the sample irradiation being generated as a result of the direct incident irradiation being applied onto the tip. The controller is operatively coupled to an actuator system and the irradiation detector, and the controller is operable to receive a first signal based on a first response of the irradiation detector to the sample irradiation, and the controller is operable to effect relative motion between the tip and at least one of the irradiation source and the irradiation detector based on the first signal.
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
09 - Scientific and electric apparatus and instruments
Goods & Services
probe-based instrument, namely, scanning probe microscopes, in particular, an atomic force microscope, used to acquire data corresponding to submicron scale sample features
09 - Scientific and electric apparatus and instruments
Goods & Services
probe-based instrument, namely, scanning probe microscopes, in particular, an atomic force microscope, used to acquire data corresponding to submicron scale sample features
55.
Chemical-mechanical polishing system with a potentiostat and pulsed-force applied to a workpiece
Shortcomings associated with insufficient control of a conventional CMP-process are obviated by providing an CMP-apparatus configured to complement a constant force (to which a workpiece that is being polished is conventionally exposed) with a time-alternating force and/or means for measuring an electrical characteristic of the CMP-process. The time-alternating force is applied with the use of a system component that is electrically isolated from the workpiece and that is disposed in the carrier-chick in which the workpiece is affixed for CMP-process, while the electrical characteristic is measured with the use of a judiciously-configured reservoir in which the used fluid is collected. The use of such CMP-apparatus.
B24B 37/013 - Devices or means for detecting lapping completion
B24B 37/04 - Lapping machines or devicesAccessories designed for working plane surfaces
B24B 37/10 - Lapping machines or devicesAccessories designed for working plane surfaces characterised by the movement of the work or lapping tool for single side lapping
B24B 37/30 - Work carriers for single side lapping of plane surfaces
B24B 49/00 - Measuring or gauging equipment for controlling the feed movement of the grinding tool or workArrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
B24B 49/10 - Measuring or gauging equipment for controlling the feed movement of the grinding tool or workArrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving electrical means
56.
Super-Resolution X-Ray Imaging Method and Apparatus
In one embodiment, a computing system may obtain a high-resolution X-ray image and a number of low-resolution X-ray images of an object of interest. The system may divide each of the low-resolution X-ray images into a number of low-resolution patches. Each low-resolution patch may be associated with a portion of the object of interest. The system may input a set of low-resolution patches associated with a same portion of the object of interest into a machine-learning model. Each low-resolution patch of the set may be from a different low-resolution X-ray image. The machine-learning model may output a high-resolution patch for the same portion of the object of interest. The system may compare the high-resolution patch outputted by the machine-learning model to a corresponding portion of the high-resolution X-ray image of the object of interest and adjust one or more parameters of the machine-learning model based on the comparison.
G06T 3/40 - Scaling of whole images or parts thereof, e.g. expanding or contracting
G01N 23/04 - Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups , or by transmitting the radiation through the material and forming images of the material
G01N 23/18 - Investigating the presence of defects or foreign matter
G06T 5/50 - Image enhancement or restoration using two or more images, e.g. averaging or subtraction
57.
CHEMICAL-MECHANICAL POLISHING SYSTEM AND METHOD OF OPERATING THE SAME
Shortcomings associated with insufficient control of a conventional CMP-process are obviated by providing a CMP-apparatus configured to complement a constant force (to which a workpiece that is being polished is conventionally exposed) with a time-alternating force and/or means for measuring an electrical characteristic of the CMP-process. The time-alternating force is applied with the use of a system component that is electrically isolated from the workpiece and that is disposed in the carrier-chick in which the workpiece is affixed for CMP-process, while the electrical characteristic is measured with the use of a judiciously-configured reservoir in which the used polishing electrolytic fluid is collected. The use of such CMP- apparatus.
B24B 37/005 - Control means for lapping machines or devices
B24B 37/04 - Lapping machines or devicesAccessories designed for working plane surfaces
B24B 37/30 - Work carriers for single side lapping of plane surfaces
B24B 49/10 - Measuring or gauging equipment for controlling the feed movement of the grinding tool or workArrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving electrical means
B24B 49/00 - Measuring or gauging equipment for controlling the feed movement of the grinding tool or workArrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
B24B 49/16 - Measuring or gauging equipment for controlling the feed movement of the grinding tool or workArrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation taking regard of the load
B24B 57/02 - Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents for feeding of fluid, sprayed, pulverised, or liquefied grinding, polishing or lapping agents
58.
Methods and systems for printed circuit board design based on automatic corrections
In one embodiment, a computing system may access design data of a printed circuit board to be produced by a manufacturing process. The system may determine one or more corrections for the design data of the printed circuit board based on one or more correction rules for correcting one or more parameters associated with the printed circuit board. The system may automatically adjust one or more of the parameters associated with the design data of the printed circuit board based on the one or more corrections. The adjusted parameters may be associated with an impedance of the printed circuit board. The one or more corrections may cause the impendence of the printed circuit board to be independent from layer thickness variations of the printed circuit board to be produced by the manufacturing process.
G06F 30/398 - Design verification or optimisation, e.g. using design rule check [DRC], layout versus schematics [LVS] or finite element methods [FEM]
G01N 23/04 - Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups , or by transmitting the radiation through the material and forming images of the material
G01N 23/083 - Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups , or by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
G01N 23/18 - Investigating the presence of defects or foreign matter
H01L 21/67 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components
H05K 1/11 - Printed elements for providing electric connections to or between printed circuits
H05K 3/40 - Forming printed elements for providing electric connections to or between printed circuits
Methods and apparatus for obtaining extremely high sensitivity chemical composition maps with spatial resolution down to a few nanometers. In some embodiments these chemical composition maps are created using a combination of three techniques: (1) Illuminating the sample with IR radiation than is tuned to an absorption band in the sample; and (2) Optimizing a mechanical coupling efficiency that is tuned to a specific target material; (3) Optimizing a resonant detection that is tuned to a specific target material. With the combination of these steps it is possible to obtain (1) Chemical composition maps based on unique IR absorption; (2) spatial resolution that is enhanced by extremely short-range tip-sample interactions; and (3) resonant amplification tuned to a specific target material. In other embodiments it is possible to take advantage of any two of these steps and still achieve a substantial improvement in spatial resolution and/or sensitivity.
G01Q 30/02 - Non-SPM analysing devices, e.g. SEM [Scanning Electron Microscope], spectrometer or optical microscope
G01N 21/35 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
G01N 21/3563 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solidsPreparation of samples therefor
A large radius probe for a surface analysis instrument such as an atomic force microscope (AFM). The probe is microfabricated to have a tip with a hemispherical distal end or apex. The radius of the apex is the range of about a micron making the probes particularly useful for nanoindentation analyses. The processes of the preferred embodiments allow such large radius probes to be batch fabricated to facilitate cost and robustness.
C23C 16/44 - Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
C23C 16/02 - Pretreatment of the material to be coated
In one embodiment, an automated high-speed X-ray inspection system may identify reference objects for an object of interest to be inspected. Each reference object may have a same type and components as the object of interest. The system may generate a reference model for the object of interest based on X-ray images of the reference objects. The system may determine whether the object of interest is associated with one or more defects by comparing an X-ray image of the object of interest to the reference model. The defects may be characterized by one or more pre-determined defect models and may be classified into respective defect categories based on the pre-determined defect models.
G01N 23/04 - Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups , or by transmitting the radiation through the material and forming images of the material
G01N 23/083 - Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups , or by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
G01N 23/18 - Investigating the presence of defects or foreign matter
62.
Methods and systems for process control based on X-ray inspection
2 per minute or greater. The system may determine, in real-time, metrology information related to the samples of interest based on the X-ray images. The metrology information may indicate that a sample parameter associated with the samples of interest is outside of a pre-determined range. The system may provide instructions or data to one or more of the first tool or one or more second tools to adjust process parameters associated with the respective tools based on metrology information. The adjusted process parameters may reduce a processing error probability, of the respective tool for processing subsequent samples, related to the sample parameter being outside of the pre-determined range.
G01N 23/04 - Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups , or by transmitting the radiation through the material and forming images of the material
G01T 1/20 - Measuring radiation intensity with scintillation detectors
H05K 1/11 - Printed elements for providing electric connections to or between printed circuits
H05K 3/40 - Forming printed elements for providing electric connections to or between printed circuits
H01L 21/67 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components
G06F 30/398 - Design verification or optimisation, e.g. using design rule check [DRC], layout versus schematics [LVS] or finite element methods [FEM]
G01N 23/083 - Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups , or by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
G01N 23/18 - Investigating the presence of defects or foreign matter
G06K 9/62 - Methods or arrangements for recognition using electronic means
G06F 119/18 - Manufacturability analysis or optimisation for manufacturability
In one embodiment, an X-ray inspection system may access a first set of X-ray images of one or more first samples that are labeled as being non-conforming. The system may adjust a classification algorithm based on the first set of X-ray images. The classification algorithm may classify samples into conforming or non-conforming categories based on an analysis of corresponding X-ray images. The system may analyze a second set of X-ray images of a number of second samples using the adjusted classification algorithm. The second samples may be previously inspected samples that have been classified as conforming by the classification algorithm during a previous analysis before the classification algorithm is adjusted. The system may identify one or more of the second samples from the second set of X-ray images. Each identified second sample may be classified as non-conforming by the adjusted classification algorithm.
G06F 30/398 - Design verification or optimisation, e.g. using design rule check [DRC], layout versus schematics [LVS] or finite element methods [FEM]
G01N 23/04 - Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups , or by transmitting the radiation through the material and forming images of the material
G01N 23/083 - Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups , or by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
G01N 23/18 - Investigating the presence of defects or foreign matter
G01T 1/20 - Measuring radiation intensity with scintillation detectors
G06K 9/62 - Methods or arrangements for recognition using electronic means
H01L 21/67 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components
H05K 1/11 - Printed elements for providing electric connections to or between printed circuits
H05K 3/40 - Forming printed elements for providing electric connections to or between printed circuits
G06F 119/18 - Manufacturability analysis or optimisation for manufacturability
In one embodiment, an X-ray inspection system may nondestructively inspect a printed circuit board to measure a number of dimensions at a number of pre-determined locations of the printed circuit board. The X-ray inspection system may generate a data set for the printed circuit board based on the measured dimensions. The X-ray inspection system may calculate one or more drilling values based on the data set of the printed circuit board. The X-ray inspection system may provide, to a drilling machine, instructions for drilling a number of plated-through vias based on the calculated drilling values for the printed circuit board.
G01N 23/04 - Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups , or by transmitting the radiation through the material and forming images of the material
G01T 1/20 - Measuring radiation intensity with scintillation detectors
G06F 30/398 - Design verification or optimisation, e.g. using design rule check [DRC], layout versus schematics [LVS] or finite element methods [FEM]
G01N 23/083 - Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups , or by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
G01N 23/18 - Investigating the presence of defects or foreign matter
G06K 9/62 - Methods or arrangements for recognition using electronic means
H01L 21/67 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components
H05K 1/11 - Printed elements for providing electric connections to or between printed circuits
H05K 3/40 - Forming printed elements for providing electric connections to or between printed circuits
G06F 119/18 - Manufacturability analysis or optimisation for manufacturability
In one embodiment, an automated high-speed X-ray inspection system may generate a first X-ray image of an inspected sample at a first direction substantially orthogonal to a plane of the inspected sample. The first X-ray image may be a high-resolution grayscale image. The system may identify one or more elements of interest of the inspected sample based on the first X-ray image. The first X-ray image may include interfering elements that interfere with the one or more elements of interest in the first X-ray image. The system may determine one or more first features associated with respective elements of interest based on variations of grayscale values in the first X-ray images. The system may determine whether one or more defects are associated with the respective elements of interest based on the one or more first features associated with the element of interest.
G06F 30/398 - Design verification or optimisation, e.g. using design rule check [DRC], layout versus schematics [LVS] or finite element methods [FEM]
G01N 23/04 - Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups , or by transmitting the radiation through the material and forming images of the material
G01N 23/083 - Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups , or by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
G01N 23/18 - Investigating the presence of defects or foreign matter
G01T 1/20 - Measuring radiation intensity with scintillation detectors
H01L 21/67 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components
H05K 1/11 - Printed elements for providing electric connections to or between printed circuits
H05K 3/40 - Forming printed elements for providing electric connections to or between printed circuits
In one embodiment, a computing system may access design data of a printed circuit board to be produced by a first manufacturing process. The system may analyze the design data of the printed circuit board using a machine-learning model, wherein the machine-learning model is trained based on X-ray inspection data associated with the first manufacturing process. The system may automatically determine one or more corrections for the design data of the printed circuit board based on the analysis result by the machine-learning model.
G01N 23/04 - Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups , or by transmitting the radiation through the material and forming images of the material
G01T 1/20 - Measuring radiation intensity with scintillation detectors
H05K 1/11 - Printed elements for providing electric connections to or between printed circuits
H05K 3/40 - Forming printed elements for providing electric connections to or between printed circuits
H01L 21/67 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components
G01N 23/083 - Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups , or by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
G01N 23/18 - Investigating the presence of defects or foreign matter
G06K 9/62 - Methods or arrangements for recognition using electronic means
G06F 119/18 - Manufacturability analysis or optimisation for manufacturability
A method for obtaining optical spectroscopic information about a sub-micron region of a sample with quantitatively controlled depth/volume of the sample subsurface using a scanning probe microscope. With controlled probing depth/volume, the method can separate top surface data from subsurface optical/chemical information. The method can also be applied in liquid suitable for studying biological and chemical samples in their native aqueous environments, as opposed to air. In the method, a depth-controlled spectrum of the surface layer is constructed by illuminating the sample with a beam of infrared radiation and measuring a probe response using at least one of the resonant frequencies of the probe. The surface sensitivity is obtained by limiting the heat diffusion effect of the subsurface so as to confine the signal. The signal confinement is achieved through non-linearity of the acoustic wave with probe, as well as benefits gained by a high modulation frequency of the infrared radiation source at >1 MHz.
G01Q 60/38 - Probes, their manufacture or their related instrumentation, e.g. holders
G01N 21/35 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
68.
Testing assembly including a multiple degree of freedom stage
A multiple degree of freedom sample stage or testing assembly including a multiple degree of freedom sample stage. The multiple degree of freedom sample stage includes a plurality of stages including linear, and one or more of rotation or tilt stages configured to position a sample in a plurality of orientations for access or observation by multiple instruments in a clustered volume that confines movement of the multiple degree of freedom sample stage. The multiple degree of freedom sample stage includes one or more clamping assemblies to statically hold the sample in place throughout observation and with the application of force to the sample, for instance by a mechanical testing instrument. Further, the multiple degree of freedom sample stage includes one or more cross roller bearing assemblies that substantially eliminate mechanical tolerance between elements of one or more stages in directions orthogonal to a moving axis of the respective stages.
The present disclosure provides methods and apparatus for rapidly classifying detected defects in subcomponents of a manufactured component or device. The defect classification may occur after defect detection or, because the classification may be sufficiently rapid to be performed in real-time, during defect detection, as part of the defect detection process. In an exemplary implementation, the presently-disclosed technology may be utilized to enable real-time classification of detected defects in multiple subcomponents of the component in parallel. The component may be, for example, a multi-chip package with silicon interposers, and the subcomponents may include, for example, through-silicon vias and solder joints. Defects in subcomponents of other types of components may be also be classified. One embodiment relates to a method of classifying detected defects in subcomponents of a manufactured component. Another embodiment relates to a product manufactured using a disclosed method of inspecting multiple subcomponents of a component for defects.
The presently-disclosed technology enables real-time inspection of a multitude of subcomponents of a component in parallel. For example, the component may be a semiconductor package, and the subcomponents may include through-silicon vias. One embodiment relates to a method for inspecting multiple subcomponents of a component for defects, the method comprising, for each subcomponent undergoing defect detection: extracting a subcomponent image from image data of the component; computing a transformed feature vector from the subcomponent image; computing pairwise distances from the transformed feature vector to each transformed feature vector in a training set; determining a proximity metric using said pairwise distances; and comparing the proximity metric against a proximity threshold to detect a defect in the subcomponent. Another embodiment relates to a product manufactured using a disclosed method of inspecting multiple subcomponents of a component for defects. Other embodiments, aspects and features are also disclosed.
A torsional probe for a metrology instrument includes a cantilever coupled to a support structure via a torsion bar. The cantilever, support structure, and arms of torsion bar have substantially the same thickness.
A torsional probe for a metrology instrument includes a cantilever coupled to a support structure via a torsion bar. The cantilever, support structure, and arms of torsion bar have substantially the same thickness.
09 - Scientific and electric apparatus and instruments
Goods & Services
Downloadable industrial process control software; Electro-optical instruments for use in inspection and measurement of industrial components; Industrial X-ray apparatus in the nature of testing equipment for determining industrial flaws; Instruments for detecting and measuring two-dimensional distribution of force and pressure; Water testing instrumentation for monitoring and detecting contamination; X-ray apparatus not for medical purposes
09 - Scientific and electric apparatus and instruments
Goods & Services
Downloadable industrial process control software; Electro-optical instruments for use in inspection and measurement of industrial components; Industrial X-ray apparatus in the nature of testing equipment for determining industrial flaws; Instruments for detecting and measuring two-dimensional distribution of force and pressure; Water testing instrumentation for monitoring and detecting contamination; X-ray apparatus not for medical purposes
Among other things, a heating jacket configured for heating a mechanical testing instrument having a probe is disclosed herein. The heating jacket includes a heating element including a jacket wall, and the jacket wall extends around a probe recess, the jacket wall is configured to receive a probe of a mechanical testing instrument within the probe recess, and the heating element is mechanically isolated from the probe with a probe gap. Additionally, a system to correct for thermomechanical drift in a mechanical testing assembly is disclosed herein. The system isolates the mechanical testing instrument from thermomechanical drift of a system frame using a determined difference between, for instance, a probe displacement and a sample displacement.
The presently-disclosed technology improves the resolution of an x-ray microscope so as to obtain super-resolution x-ray images having resolutions beyond the maximum normal resolution of the x-ray microscope. Furthermore, the disclosed technology provides for the rapid generation of the super-resolution x-ray images and so enables real-time super-resolution x-ray imaging for purposes of defect detection, for example. A method of super-resolution x-ray imaging using a super-resolving patch classifier is provided. In addition, a method of training the super-resolving patch classifier is disclosed. Other embodiments, aspects and features are also disclosed.
G01N 23/04 - Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups , or by transmitting the radiation through the material and forming images of the material
G01N 23/18 - Investigating the presence of defects or foreign matter
G06T 3/40 - Scaling of whole images or parts thereof, e.g. expanding or contracting
G06T 5/50 - Image enhancement or restoration using two or more images, e.g. averaging or subtraction
G06K 9/62 - Methods or arrangements for recognition using electronic means
77.
Reduction of error in testing friction and wear with the use of high-speed reciprocating motion
System for conducting measurements of friction of a chosen material with reduced errors. The system includes a sample holder, a bushing accommodating such holder while permitting reversible repositioning of the holder along a bushing axis, a horizontal force sensor, a vertical force sensor, a sample holder pusher and a subsystem including a linear vertical bearing (disposed in the bushing and separating the holder from the bushing) and/or a horizontally-sliding element between the rod pusher and the vertical force sensor. The subsystem is structured to reduce a rocking motion of the holder in the bushing caused by a relative motion between the sample and an auxiliary body brought in contact with the sample. The method for performing measurements with such system.
G01N 3/56 - Investigating resistance to wear or abrasion
F16C 17/24 - Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load with devices affected by abnormal or undesired conditions, e.g. for preventing overheating, for safety
A probe assembly for a surface analysis instrument such as an atomic force microscope (AFM) that accommodates potential thermal drift effects includes a substrate defining a base of the probe assembly, a cantilever extending from the base and having a distal end, and a reflective pad disposed at or near the distal end. The reflective pad has a lateral dimension (e.g., length) between about twenty-five (25) microns, and can be less than a micron. Ideally, the reflective pad is patterned on the cantilever using photolithography. A corresponding method of manufacture of the thermally stable, drift resistant probe is also provided.
System and Methods may be provided for performing chemical spectroscopy on samples from the scale of nanometers with surface sensitivity even on very thick sample. In the method, a signal indicative of infrared absorption of the surface layer is constructed by illuminating the surface layer with a beam of infrared radiation and measuring a probe response comprising at least one of a resonance frequency shift and a phase shift of a resonance of a probe in response to infrared radiation absorbed by the surface layer.
G01N 21/35 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
G01Q 30/06 - Display or data processing devices for error compensation
G01N 21/3563 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solidsPreparation of samples therefor
G01Q 30/02 - Non-SPM analysing devices, e.g. SEM [Scanning Electron Microscope], spectrometer or optical microscope
G01N 21/359 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
An improved mode of AFM imaging (Peak Force Tapping (PFT) Mode) uses force as the feedback variable to reduce tip-sample interaction forces while maintaining scan speeds achievable by all existing AFM operating modes. Sample imaging and mechanical property mapping are achieved with improved resolution and high sample throughput, with the mode workable across varying environments, including gaseous, fluidic and vacuum.
The present inventors have recognized that more accurate measurements can be taken with less drift due to thermal expansion by precisely controlling insulated heating and cooling modules abutting one another in substantial alignment to rapidly heat a sample to be scanned by a Scanning Probe Microscope (SPM) with minimal temperature variation. The heating and cooling modules can be "flat-packed," with parallel surfaces of each module in contact with one another, to more efficiently heat a sample that is positioned in axial alignment with the heating and cooling modules. This can allow heating the sample to at least 250 degrees Celsius in less than 5 seconds, continuously maintaining a temperature of the sample to within ±.001 degree Celsius, and maintaining a drift of less than 0.1 nanometers per minute in the z direction.
The present inventors have recognized that more accurate measurements can be taken with less drift due to thermal expansion by precisely controlling insulated heating and cooling modules abutting one another in substantial alignment to rapidly heat a sample to be scanned by a Scanning Probe Microscope (SPM) with minimal temperature variation. The heating and cooling modules can be “flat-packed,” with parallel surfaces of each module in contact with one another, to more efficiently heat a sample that is positioned in axial alignment with the heating and cooling modules. This can allow heating the sample to at least 250 degrees Celsius in less than 5 seconds, continuously maintaining a temperature of the sample to within ±0.001 degree Celsius, and maintaining a drift of less than 0.1 nanometers per minute in the z direction.
An apparatus and method of operating an atomic force profiler (AFP), such as an AFM, using a feedforward control signal in subsequent scan lines of a large area sample to achieve large throughput advantages in, for example, automated applications.
An atomic-force-microscope-based apparatus and method including hardware and software, configured to collect, in a dynamic fashion, and analyze data representing mechanical properties of soft materials on a nanoscale, to map viscoelastic properties of a soft-material sample. The use of the apparatus as an addition to the existing atomic -force microscope device.
An apparatus and method of operating an atomic force profiler (AFP), such as an AFM, using a feedforward control signal in subsequent scan lines of a large area sample to achieve large throughput advantages in, for example, automated applications.
An atomic-force-microscope-based apparatus and method including hardware and software, configured to collect, in a dynamic fashion, and analyze data representing mechanical properties of soft materials on a nanoscale, to map viscoelastic properties of a soft-material sample. The use of the apparatus as an addition to the existing atomic-force microscope device.
The presently-disclosed technology improves the resolution of an x-ray microscope so as to obtain super-resolution x-ray images having resolutions beyond the maximum normal resolution of the x-ray microscope. Furthermore, the disclosed technology provides for the rapid generation of the super-resolution x-ray images and so enables real-time super-resolution x-ray imaging for purposes of defect detection, for example. A method of super-resolution x-ray imaging using a super-resolving patch classifier is provided. In addition, a method of training the super-resolving patch classifier is disclosed. Other embodiments, aspects and features are also disclosed.
G01N 23/04 - Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups , or by transmitting the radiation through the material and forming images of the material
G06T 3/40 - Scaling of whole images or parts thereof, e.g. expanding or contracting
G01N 23/18 - Investigating the presence of defects or foreign matter
G06T 5/50 - Image enhancement or restoration using two or more images, e.g. averaging or subtraction
G06K 9/62 - Methods or arrangements for recognition using electronic means
88.
Method and apparatus for resolution and sensitivity enhanced atomic force microscope based infrared spectroscopy
Methods and apparatus for obtaining extremely high sensitivity chemical composition maps with spatial resolution down to a few nanometers. In some embodiments these chemical composition maps are created using a combination of three techniques: (1) Illuminating the sample with IR radiation than is tuned to an absorption band in the sample; and (2) Optimizing a mechanical coupling efficiency that is tuned to a specific target material; (3) Optimizing a resonant detection that is tuned to a specific target material. With the combination of these steps it is possible to obtain (1) Chemical composition maps based on unique IR absorption; (2) spatial resolution that is enhanced by extremely short-range tip-sample interactions; and (3) resonant amplification tuned to a specific target material. In other embodiments it is possible to take advantage of any two of these steps and still achieve a substantial improvement in spatial resolution and/or sensitivity.
G01N 21/35 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
G01N 21/3563 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solidsPreparation of samples therefor
A debris collection and metrology system for collecting and analyzing debris from a tip used in nanomachining processes, the system including an irradiation source, an irradiation detector, an actuator, and a controller. The irradiation source is operable to direct incident irradiation onto the tip, and the irradiation detector is operable to receive a sample irradiation from the tip, the sample irradiation being generated as a result of the direct incident irradiation being applied onto the tip. The controller is operatively coupled to an actuator system and the irradiation detector, and the controller is operable to receive a first signal based on a first response of the irradiation detector to the sample irradiation, and the controller is operable to effect relative motion between the tip and at least one of the irradiation source and the irradiation detector based on the first signal.
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
A large radius probe for a surface analysis instrument such as an atomic force microscope (AFM). The probe is microfabricated to have a tip with a hemispherical distal end or apex. The radius of the apex is the range of about a micron making the probes particularly useful for nanoindentation analyses. The processes of the preferred embodiments allow such large radius probes to be batch fabricated to facilitate cost and robustness.
A large radius probe for a surface analysis instrument such as an atomic force microscope (AFM). The probe is microfabricated to have a tip with a hemispherical distal end or apex. The radius of the apex is the range of about a micron making the probes particularly useful for nanoindentation analyses. The processes of the preferred embodiments allow such large radius probes to be batch fabricated to facilitate cost and robustness.
C23C 16/44 - Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
C23C 16/02 - Pretreatment of the material to be coated
A debris collection and metrology system for collecting and analyzing debris from a tip used in nanomachining processes, the system including an irradiation source, an irradiation detector, an actuator, and a controller. The irradiation source is operable to direct incident irradiation onto the tip, and the irradiation detector is operable to receive a sample irradiation from the tip, the sample irradiation being generated as a result of the direct incident irradiation being applied onto the tip. The controller is operatively coupled to an actuator system and the irradiation detector, and the controller is operable to receive a first signal based on a first response of the irradiation detector to the sample irradiation, and the controller is operable to effect relative motion between the tip and at least one of the irradiation source and the irradiation detector based on the first signal.
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
G01Q 80/00 - Applications, other than SPM, of scanning-probe techniques
G01Q 20/02 - Monitoring the movement or position of the probe by optical means
A probe assembly for a surface analysis instrument such as an atomic force microscope (AFM) that accommodates potential thermal drift effects includes a substrate defining a base of the probe assembly, a cantilever extending from the base and having a distal end, and a reflective pad disposed at or near the distal end. The reflective pad has a lateral dimension (e.g., length) between about twenty-five (25) microns, and can be less than a micron. Ideally, the reflective pad is patterned on the cantilever using photolithography. A corresponding method of manufacture of the thermally stable, drift resistant probe is also provided.
Methods and apparatuses are provided for automatically controlling and stabilizing aspects of a scanning probe microscope (SPM), such as an atomic force microscope (AFM), using Peak Force Tapping (PFT) Mode. In an embodiment, a controller automatically controls periodic motion of a probe relative to a sample in response to a substantially instantaneous force determined and automatically controls a gain in a feedback loop. A gain control circuit automatically tunes a gain based on separation distances between a probe and a sample to facilitate stability. Accordingly, instability onset is quickly and accurately determined during scanning, thereby eliminating the need of expert user tuning of gains during operation.
System and Methods may be provided for performing chemical spectroscopy on samples from the scale of nanometers with surface sensitivity even on very thick sample. In the method, a signal indicative of infrared absorption of the surface layer is constructed by illuminating the surface layer with a beam of infrared radiation and measuring a probe response comprising at least one of a resonance frequency shift and a phase shift of a resonance of a probe in response to infrared radiation absorbed by the surface layer.
G01Q 30/02 - Non-SPM analysing devices, e.g. SEM [Scanning Electron Microscope], spectrometer or optical microscope
G01N 21/3563 - Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solidsPreparation of samples therefor
B82Y 35/00 - Methods or apparatus for measurement or analysis of nanostructures
System and method for optical alignment of a near-field system, employing reiterative analysis of amplitude (irradiance) and phase maps of irradiated field obtained in back-scattered light while adjusting the system to arrive at field pattern indicative of and sensitive to a near-field optical wave produced by diffraction-limited irradiation of a tip of the near-field system. Demodulation of optical data representing such maps is carried out at different harmonics of probe-vibration frequency. Embodiments are operationally compatible with methodology of chemical nano-identification of sample utilizing normalized near-field spectroscopy, and may utilize suppression of background contribution to collected data based on judicious coordination of data acquisition with motion of the tip. Such coordination may be defined without knowledge of separation between the tip and sample. Computer program product with instructions effectuating the method and operation of the system.
According to embodiments, a cantilever probe for use with an atomic force microscope (AFM) or scanning probe microscope (SPM) has a pad of conformable material that facilitates non-permanent adhesion through van der Waals interactions. Such removable probes and probe tips facilitate use of multiple tips or probes, while reducing the need for recalibration or repositioning.