A process for preparing a sunflower protein product from a sunflower protein source, the sunflower protein product having a protein content of greater than 60 wt % (N×6.25) d.b, is provided. A sunflower protein product as well as a residual sunflower protein product are also provided as are food and beverages, pet food, animal feed, industrial product, cosmetic product or personal care product comprising the sunflower protein product as well as a residual sunflower protein product.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
A process for preparing a pulse protein product from a pulse protein source, the pulse protein product having a protein content of greater than 60 wt % (N×6.25) d.b, is provided. A pulse protein product is also provided as are food and beverages, pet food, animal feed, industrial product, cosmetic product or personal care product comprising the pulse protein product.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
A process for preparing a sunflower protein product from a sunflower protein source, the sunflower protein product having a protein content of greater than 60 wt % (N×6.25) d.b, is provided. A sunflower protein product as well as a residual sunflower protein product are also provided as are food and beverages, pet food, animal feed, industrial product, cosmetic product or personal care product comprising the sunflower protein product as well as a residual sunflower protein product.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
Processes for preparing hemp protein products having a neutral or near neutral natural pH from a hemp protein source are provided. Protein extracted from the hemp protein source is processed to provide a hemp protein product having a protein content of greater than 60 wt% (N x 6.25) d.b. and having a neutral or near neutral natural pH in water. Optionally employing a membrane processing step after adjustment of the pH to the near neutral range results in a lower salt/mineral content in the protein product. These protein products are also provided as are food and beverages, pet food, animal feed, industrial product, cosmetic product or personal care product comprising the hemp protein products.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
Processes for preparing sunflower protein products from a sunflower protein source are provided. Protein extracted from the sunflower protein source is processed to provide a sunflower protein product having a protein content of greater than 60 wt% (N x 6.25) d.b. A separation step is employed in the process to improve the efficiency of membrane processing. Additional sunflower protein product is prepared from the residual sunflower protein source after protein extraction, preferably having a protein content of greater than 30 wt% (N x 6.25) d.b. These protein products are also provided as are food and beverages, pet food, animal feed, industrial product, cosmetic product or personal care product comprising the sunflower protein products.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
A process for preparing a first sunflower protein product from a sunflower protein source, the sunflower protein product having a protein content of greater than 60, 65, 70, 75, 80, 85 or 90 wt% (N x 6.25) d.b is provided. A food or beverage product comprising the sunflower protein product is also provided as is a sunflower protein product prepared using isoelectric precipitation.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
A process for preparing a first sunflower protein product from a sunflower protein source, the sunflower protein product having a protein content of greater than 60, 65, 70, 75, 80, 85 or 90 wt % (N×6.25) d.b is provided. A food or beverage product comprising the sunflower protein product is also provided as is a sunflower protein product prepared using isoelectric precipitation.
Process for preparing a sunflower protein product with a protein content of greater than 60 wt% (N x 6.25) on a dry weight basis, said process having three essential steps, performed in the following order: a) solubilization of a sunflower protein source into an aqueous phase and a residual solid phase, b) separating the aqueous phase from the residual solid phase, and c) acidifying the separated aqueous phase to a pH between 1.5 and 5.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
An aqueous solution of a soy protein product having a protein content of at least about 60 wt % (N×6.25) d.b. which is completely soluble in aqueous media at a pH of less than about 4.4 and heat stable at that pH range is adjusted in pH to a pH of about 6.1 to about 8. The resulting product is further processed by drying the product, recovering and drying any precipitated soy protein material, heat treating and then drying the product, or heat treating the product and recovering and drying any precipitated soy protein material.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
The present invention is directed to processes for producing pulse protein products, very low in, or substantially free of, pea/vegetable flavour notes useful for the fortification of food and beverage products and prepared without the use of salt in the process. The pulse protein products are obtained by extracting pulse protein source with water to form an aqueous pulse protein solution, at least partially separating the aqueous pulse protein solution from residual pulse protein source, adjusting the pH of the aqueous pulse protein solution to a pH of about 1.5 to about 3.4 to solubilize the bulk of the protein and forming an acidified pulse protein solution then separating the acidified pulse protein solution from the acid insoluble solid material. Also described is the preparation of an acid soluble protein product and which provides acidic solutions of improved clarity and is derived from the acidified pulse protein solution.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
A process for preparing a pulse protein product from a pulse protein source, the pulse protein product having a protein content of greater than 60 wt% (N x 6.25) d.b, is provided. A pulse protein product is also provided as are food and beverages, pet food, animal feed, industrial product, cosmetic product or personal care product comprising the pulse protein product.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
A process for preparing a sunflower protein product from a sunflower protein source, the sunflower protein product having a protein content of greater than 60 wt% (N x 6.25) d.b, is provided. A sunflower protein product as well as a residual sunflower protein product are also provided as are food and beverages, pet food, animal feed, industrial product, cosmetic product or personal care product comprising the sunflower protein product as well as a residual sunflower protein product.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
A process for preparing a sunflower protein product from a sunflower protein source, the sunflower protein product having a protein content of greater than 60 wt% (N x 6.25) d.b, is provided. A sunflower protein product as well as a residual sunflower protein product are also provided as are food and beverages, pet food, animal feed, industrial product, cosmetic product or personal care product comprising the sunflower protein product as well as a residual sunflower protein product.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
The present invention is directed to non-soy oilseed protein products, very low in, or free of, beany, green, vegetable or similar flavour notes and useful for the fortification of food and beverage products and prepared without the use of salt in the process. The non-soy oilseed protein products of the present invention are obtained by extracting non-soy oilseed protein source with water to form an aqueous non-soy oilseed protein solution, at least partially separating the aqueous non-soy oilseed protein solution from residual non-soy oilseed protein source, adjusting the pH of the aqueous non-soy oilseed protein solution to a pH between about 1.5 and a value about 1 pH unit lower than the typical pH of isoelectric precipitation to solubilize the bulk of the protein and form an acidified non-soy oilseed protein solution then separating the acidified non-soy oilseed protein solution from the acid insoluble solid material. The acidified non-soy oilseed protein solution may be dried following optional concentration and diafiltration to form a non-soy oilseed protein product, which may be an isolate. The acid insoluble solid material may be washed with acidified water and then dried to form another non-soy oilseed protein product. These products may be dried at the acidic pH at which they were prepared or may be adjusted in pH before drying.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
The present invention is directed to sunflower protein products, very low in, or free of, beany, green, vegetable or similar flavour notes and useful for the fortification of food and beverage products and prepared without the use of salt in the process. The sunflower protein products of the present invention are obtained by extracting sunflower protein source with water to form an aqueous sunflower solution, at least partially separating the aqueous sunflower protein solution from residual sunflower protein source, adjusting the pH of the aqueous sunflower protein solution to a pH between about 1.5 to about 3.5 to solubilize the bulk of the protein and form an acidified sunflower protein solution then separating the acidified sunflower protein solution from the add insoluble solid material. The acidified sunflower protein solution may be dried following optional concentration and diafiltration to form a sunflower protein product, which may be an isolate. The add insoluble Said material may be washed with acidified water and then dried to form another sunflower protein product. These products may be dried at the acidic pH at which they were prepared or may be adjusted in pH before drying.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
A23L 5/20 - Removal of unwanted matter, e.g. deodorisation or detoxification
B01D 69/02 - Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or propertiesManufacturing processes specially adapted therefor characterised by their properties
The present invention is directed to processes for producing pulse protein products, very low in, or substantially free of, pea/vegetable flavour notes useful for the fortification of food and beverage products and prepared without the use of salt in the process. The pulse protein products are obtained by extracting pulse protein source with water to form an aqueous pulse protein solution, at least partially separating the aqueous pulse protein solution from residual pulse protein source, adjusting the pH of the aqueous pulse protein solution to a pH of about 1.5 to about 3.4 to solubilize the bulk of the protein and forming an acidified pulse protein solution then separating the acidified pulse protein solution from the acid insoluble solid material. Also described is the preparation of an acid soluble protein product and which provides acidic solutions of improved clarity and is derived from the acidified pulse protein solution.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
The present invention is directed to soy protein products, very low in, or free of, beany flavour notes and useful for the fortification of food and beverage products and prepared without the use of salt in the process. The soy protein products of the present invention are obtained by extracting soy protein source with water to form an aqueous soy protein solution, at least partially separating the aqueous soy protein solution from residual soy protein source, adjusting the pH of the aqueous soy protein solution to a pH of about 1.5 to about 3.6 to solubilize at least a portion of the protein and form an acidified soy protein solution then separating the acidified soy protein solution from the acid insoluble solid material. The acidified soy protein solution may be dried following optional concentration and diafiltration to form a soy protein product, which may be an isolate. The acid insoluble solid material may be washed with acidified water and then dried to form another soy protein product. These products may be dried at the acidic pH at which they were prepared or may be adjusted in pH before drying.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
B01D 69/02 - Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or propertiesManufacturing processes specially adapted therefor characterised by their properties
An aqueous solution of a pulse protein product having a protein content of at least about 60 wt% (N x 6.25) d.b. which is soluble in aqueous media at a pH of less than about4.4 and heat stable at that pH range is adjusted in pH to a pH of about 6 to about 8. The resulting product is further processed by drying the product, recovering and drying any precipitated pulse protein material, heat treating and then drying the product, or heat treating the product and recovering and drying any precipitated pulse protein material. The pulse protein product may be used in dairy alternative beverages.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
A23C 11/00 - Milk substitutes, e.g. coffee whitener compositions
The present invention is directed to non-soy oilseed protein products, very low in, or free of, beany, green, vegetable or similar flavour notes and useful for the fortification of food and beverage products and prepared without the use of salt in the process. The non-soy oilseed protein products of the present invention are obtained by extracting non-soy oilseed protein source with water to form an aqueous non-soy oilseed protein solution, at least partially separating the aqueous non-soy oilseed protein solution from residual non-soy oilseed protein source, adjusting the pH of the aqueous non-soy oilseed protein solution to a pH between about 1.5 and a value about 1 pH unit lower than the typical pH of isoelectric precipitation to solubilize the bulk of the protein and form an acidified non-soy oilseed protein solution then separating the acidified non-soy oilseed protein solution from the acid insoluble solid material. The acidified non-soy oilseed protein solution may be dried following optional concentration and diafiltration to form a non-soy oilseed protein product, which may be an isolate. The acid insoluble solid material may be washed with acidified water and then dried to form another non-soy oilseed protein product. These products may be dried at the acidic pH at which they were prepared or may be adjusted in pH before drying.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
An aqueous solution of a pulse protein product having a protein content of at least about 60 wt % (N×6.25) d.b. which is soluble in aqueous media at a pH of less than about 4.4 and heat stable at that pH range is adjusted in pH to a pH of about 6 to about 8. The resulting product is further processed by drying the product, recovering and drying any precipitated pulse protein material, heat treating and then drying the product, or heat treating the product and recovering and drying any precipitated pulse protein material. The pulse protein product may be used in dairy alternative beverages.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
The invention relates to a method of processing a pulse protein material, which comprises effecting hydrolysis of the pulse protein material, optionally adjusting the pH, then separating to form a soluble fraction and processing the soluble fraction to provide a pulse protein hydrolyzate which is substantially completely soluble throughout the pH range of about 2 to about 7 and which provides little or no astringency when an acidic beverage containing the pulse protein hydrolyzate is consumed and a solid residue, and processing the solid residue to provide a second pulse protein hydrolyzate having an improved Amino Acid Score, which is improved compared to the substrate pulse protein material.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
A23J 3/30 - Working-up of proteins for foodstuffs by hydrolysis
A23J 3/34 - Working-up of proteins for foodstuffs by hydrolysis using chemical agents using enzymes
The invention relates to a method of processing a pulse protein material, which comprises effecting hydrolysis of the pulse protein material, optionally adjusting the pH, then separating to form a soluble fraction and processing the soluble fraction to provide a pulse protein hydrolyzate which is substantially completely soluble throughout the pH range of about 2 to about 7 and which provides little or no astringency when an acidic beverage containing the pulse protein hydrolyzate is consumed and a solid residue, and processing the solid residue to provide a second pulse protein hydrolyzate having an improved Amino Acid Score, which is improved compared to the substrate pulse protein material.
A23J 3/30 - Working-up of proteins for foodstuffs by hydrolysis
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
The present invention is directed to non-soy oilseed protein products, very low in, or free of, beany, green, vegetable or similar flavour notes and useful for the fortification of food and beverage products and prepared without the use of salt in the process. The non- soy oilseed protein products of the present invention are obtained by extracting non-soy oilseed protein source with water to form an aqueous non-soy oilseed protein solution, at least partially separating the aqueous non-soy oilseed protein solution from residual non-soy oilseed protein source, adjusting the pH of the aqueous non-soy oilseed protein solution to a pH between about 1.5 and a value about 1 pH unit lower than the typical pH of isoelectric precipitation to solubilize the bulk of the protein and form an acidified non-soy oilseed protein solution then separating the acidified non-soy oilseed protein solution from the acid insoluble solid material. The acidified non-soy oilseed protein solution may be dried following optional concentration and diafiltration to form a non-soy oilseed protein product, which may be an isolate. The acid insoluble solid material may be washed with acidified water and then dried to form another non-soy oilseed protein product. These products may be dried at the acidic pH at which they were prepared or may be adjusted in pH before drying.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
An aqueous solution of a pulse protein product having a protein content of at least about 60 wt% (N x 6.25) d.b. which is soluble in aqueous media at a pH of less than about 4.4 and heat stable at that pH range is adjusted in pH to a pH of about 6 to about 8. The resulting product is further processed by drying the product, recovering and drying any precipitated pulse protein material, heat treating and then drying the product, or heat treating the product and recovering and drying any precipitated pulse protein material.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
A21D 13/064 - Products with modified nutritive value, e.g. with modified starch content with modified protein content
Pulse proteins of reduced astringency are obtained by fractionating pulse protein products which are completely soluble and heat stable in aqueous media at acid pH value of less than about 4.4 into lower molecular weight, less astringent proteins and higher molecular weight, more astringent proteins.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
A23L 11/30 - Removing undesirable substances, e.g. bitter substances
26.
Soy protein products of improved water-binding capacity
Soy protein products are provided which lack the characteristic beany flavor of conventional soy protein isolates and can replace conventional isolates in various food products to provide food products having improved flavor.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
27.
PRODUCTION OF SOY PROTEIN PRODUCTS WITH REDUCED ASTRINGENCY (I)
The present invention is directed to soy protein products of reduced astnngency. The reduced astnngency soy protein products may be obtained by using a pH adjustment step to fractionate soy protein solutions, which provide soy protein products which are completely soluble and heat stable in aqueous media at acid pH value of less than about 4.4, into lower molecular weight, less astringent proteins and higher molecular weight, more astringent proteins.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
The present invention is directed to soy protein products of reduced astringency. The reduced astringency soy protein products of the present invention may be obtained by using membrane processing to fractionate soy protein solutions, which provide soy protein products which are completely soluble and heat stable in aqueous media at acid pH value of less than about 4.4, into lower molecular weight, less astringent proteins and higher molecular weight, more astringent proteins.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
The present invention is directed to soy protein products, very low in, or free of, beany flavor notes and useful for the fortification of food and beverage products and prepared without the use of salt in the process. The soy protein products of the present invention are obtained by extracting soy protein source with water to form an aqueous soy protein solution, at least partially separating the aqueous soy protein solution from residual soy protein source, adjusting the pH of the aqueous soy protein solution to a pH of about 1.5 to about 3.6 to solubilize at least a portion of the protein and form an acidified soy protein solution then separating the acidified soy protein solution from the acid insoluble solid material. The acidified soy protein solution may be dried following optional concentration and diafiltration to form a soy protein product, which may be an isolate. The acid insoluble solid material may be washed with acidified water and then dried to form another soy protein product. These products may be dried at the acidic pH at which they were prepared or may be adjusted in pH before drying.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
The present invention is directed to soy protein products, very low in, or free of, beany flavour notes and useful for the fortification of food and beverage products and prepared without the use of salt in the process. The soy protein products of the present invention are obtained by extracting soy protein source with water to form an aqueous soy protein solution, at least partially separating the aqueous soy protein solution from residual soy protein source, adjusting the pH of the aqueous soy protein solution to a pH of about 1.5 to about 3.6 to solubilize at least a portion of the protein and form an acidified soy protein solution then separating the acidified soy protein solution from the acid insoluble solid material. The acidified soy protein solution may be dried following optional concentration and diafiltration to form a soy protein product, which may be an isolate. The acid insoluble solid material may be washed with acidified water and then dried to form another soy protein product. These products may be dried at the acidic pH at which they were prepared or may be adjusted in pH before drying.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
A23L 1/211 - Removing bitter or other undesirable substances
The present invention is directed to pulse protein products, very low in, or substantially free of, pea/vegetable flavour notes characteristic of conventional commercial pulse protein products and useful for the fortification of food and beverage products and prepared without the use of salt in the process. The pulse protein products of the present invention are obtained by extracting pulse protein source with water to form an aqueous pulse protein solution, at least partially separating the aqueous pulse protein solution from residual pulse protein source, adjusting the pH of the aqueous pulse protein solution to a pH of about 1.5 to about 3.4 to solubilize the bulk of the protein and form an acidified pulse protein solution then separating the acidified pulse protein solution from the acid insoluble solid material. The acidified pulse protein solution may be dried following optional concentration and diafiltration to form a pulse protein product, which may be an isolate. The acid insoluble solid material may be washed with acidified water and then dried to form another pulse protein product. These products may be dried at the acidic pH at which they were prepared or may be adjusted in pH before drying. Also described is the preparation of an acid soluble protein product, which may be an isolate, and which provides acidic solutions of improved clarity and is derived from the acidified pulse protein solution.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
A23L 1/20 - Treatment of pulse, i.e. fruits of leguminous plants, for production of fodder or food; Preparation of products from legumes; Chemical means for rapid cooking of these foods, e.g. treatment with phosphates
32.
Preparation of soy protein isolate using calcium chloride extraction (“S703 cip”)
A soy protein product having a protein content of at least about 60 wt % (N×6.25) d.b., preferably an isolate having a protein content of at least about 90 wt % (N×6.25) d.b., is formed by a procedure in which soy protein is extracted from a soy source material using an aqueous calcium chloride solution at low pH, generally about 1.5 to about 5, and separating the resulting aqueous soy protein solution from residual soy protein source. The resulting clarified aqueous soy protein solution may be diluted and the pH adjusted within the range of 1.5-5.0. The solution may be concentrated by ultrafiltration, diafiltered and then dried to provide the soy protein product. Alternatively, the concentrated and optionally diafiltered soy protein solution may be optionally adjusted in pH within the range of 1.5-7.0 then diluted into water to cause the formation of a precipitate, separating the precipitate from the diluting water (supernatant) and drying the separated soy protein to form a soy protein product having a protein content of at least about 60 wt % (N×6.25) d.b., preferably a soy protein isolate having a protein content of at least about 90 wt % (N×6.25) d.b. The supernatant may be processed to form soy protein products having a protein content of at least about 60 wt % (N×6.25) d.b., preferably a soy protein isolate having a protein content of at least 90 wt % (N×6.25) d.b. Alternatively, the precipitate from the dilution step may be re-solubilized in the diluting water by adjustment of the pH to resolubilize the precipitate and form a protein solution. The soy protein solution may be concentrated while maintaining the ionic strength substantially constant by using a selective membrane technique followed by optional diafiltration and drying. The soy protein product is soluble in acidic medium and produces transparent, heat stable solutions and hence may be used for protein fortification of soft drinks and sports drinks.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
Pulse proteins of reduced astringency are obtained by fractionating pulse protein products which are completely soluble and heat stable in aqueous media at acid pH value of less than about 4.4 into lower molecular weight, less astringent proteins and higher molecular weight, more astringent proteins.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
Pulse proteins of reduced astringency are obtained by fractionating pulse protein products which are completely soluble and heat stable in aqueous media at acid pH value of less than about 4.4 into lower molecular weight, less astringent proteins and higher molecular weight, more astringent proteins.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
A23L 11/30 - Removing undesirable substances, e.g. bitter substances
A pulse protein product having a protein content of at least about 50 wt% (N x 6.25) d.b. is recovered in the processing of pulse protein source material to form pulse protein products wherein the pulse protein source is extracted in one embodiment with calcium salt solution. The resulting pulse protein solution is separated from the bulk of the residual pulse protein source and then the pulse protein solution is processed to remove finer residual solids, which are optionally washed and then dried to provide the pulse protein product. In another embodiment, the pulse protein source is extracted with water, the bulk of the residual protein source removed and the resulting pulse protein solution treated with calcium salt to precipitate phytic acid. The precipitated phytic acid and any finer residual solids remaining in solution after the initial separation step are removed from the pulse protein solution then optionally washed and dried to provide the pulse protein product.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
A pulse protein product having a protein content of at least about 60 wt% (N x 6.25) d.b., preferably a pulse protein isolate having a protein content of at least about 90 wt% (N x 6.25) d.b., is prepared from a pulse protein source material by extraction of the pulse protein source material with an aqueous calcium salt solution, preferably calcium chloride solution, to cause solubilization of pulse protein from the protein source and to form an aqueous pulse protein solution, separating the aqueous pulse protein solution from residual pulse protein source, optionally concentrating the aqueous pulse protein solution while maintaining the ionic strength substantially constant by using a selective membrane technique, optionally diafiltering the optionally concentrated pulse protein solution, and optionally drying the optionally concentrated and optionally diafiltered pulse protein solution.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
A21D 13/06 - Products with modified nutritive value, e.g. with modified starch content
A23L 1/20 - Treatment of pulse, i.e. fruits of leguminous plants, for production of fodder or food; Preparation of products from legumes; Chemical means for rapid cooking of these foods, e.g. treatment with phosphates
A hemp protein product, which may be an isolate, produces solutions at low pH values and is useful for the fortification of soft drinks and sports drinks without precipitation of protein. The hemp protein product is obtained by extracting a hemp protein source material with an aqueous calcium salt solution to form an aqueous hemp protein solution, separating the aqueous hemp protein solution from residual hemp protein source, adjusting the pH of the aqueous hemp protein solution to a pH of about 1.5 to about 4.4 to produce an acidified hemp protein solution, which may be dried, following optional concentration and diafiltration, to provide the hemp protein product.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
An aqueous solution of a pulse protein product having a protein content of at least about 60 wt% (N x 6.25) d.b. which is soluble in aqueous media at a pH of less than about 4.4 and heat stable at that pH range is adjusted in pH to a pH of about 6 to about 8. The resulting product is further processed by drying the product, recovering and drying any precipitated pulse protein material, heat treating and then drying the product, or heat treating the product and recovering and drying any precipitated pulse protein material.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
A21D 13/00 - Finished or partly finished bakery products
Pulse protein products having a protein content of at least about 60 wt% (N x 6.25) d.b., preferably at least about 90 wt%, and being soluble at pH values of less than about 4.4 and heat stable at such pH values, or alternatively adjusted in pH to a pH of about 6 to about 8 and further processed by drying the product, recovering and drying any precipitated pulse protein material, heat treating and then drying the product, or heat treating the product and recovering and drying any precipitated pulse protein material are used to provide, at least in part, the protein component of a dairy analogue, dairy alternative or plant/dairy blend frozen dessert mix.
A23G 9/42 - Frozen sweets, e.g. ice confectionery, ice-creamMixtures therefor characterised by the composition containing plants or parts thereof, e.g. fruits, seeds, extracts
40.
SOY PROTEIN PRODUCT WITH NEUTRAL OR NEAR NEUTRAL PH ("S701N2")
An aqueous solution of a soy protein product having a protein content of at least about 60 wt% (N x 6.25) d.b. which is completely soluble in aqueous media at a pH of less than about 4.4 and heat stable at that pH range is adjusted in pH to a pH of about 6.1 to about 8. The resulting product is further processed by drying the product, recovering and drying any precipitated soy protein material, heat treating and then drying the product, or heat treating the product and recovering and drying any precipitated soy protein material.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
A23L 1/20 - Treatment of pulse, i.e. fruits of leguminous plants, for production of fodder or food; Preparation of products from legumes; Chemical means for rapid cooking of these foods, e.g. treatment with phosphates
41.
IMPROVED PRODUCTION OF SOLUBLE PROTEIN PRODUCTS FROM PULSES
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
Canola protein isolates are provided which contain both albumin and globulin protein fractions that are soluble, transparent and heat stable in an acidic aqueous environment. The canola protein isolates are completely soluble in water at low pH, low in phytic acid and useful in products for human consumption, pet foods and aquaculture.
A soy protein product having a protein content of at least about 60 wt% (N x 6.25) d.b., preferably at least about 90 wt%, and being completely soluble at pH values of less than about 4.4 and heat stable at such pH values is used to provide, at least in part, the protein component of a dairy analogue or plant/dairy blend frozen dessert mix.
A23G 9/38 - Frozen sweets, e.g. ice confectionery, ice-creamMixtures therefor characterised by the composition containing peptides or proteins
A23G 9/36 - Frozen sweets, e.g. ice confectionery, ice-creamMixtures therefor characterised by the composition containing microorganisms or enzymesFrozen sweets, e.g. ice confectionery, ice-creamMixtures therefor characterised by the composition containing paramedical or dietetical agents, e.g. vitamins
44.
FROZEN DESSERT MIXES USING CANOLA PROTEIN PRODUCTS
A canola protein product having a protein content of at least about 60 wt% (N x 6.25) d.b., preferably at least about 90 wt%, and consisting predominantly of 2S canola protein and derived from supernatant from a protein micellar mass settling step is used to provide, at least in part, the protein component of a dairy analogue or plant/dairy blend frozen dessert mix.
A pulse protein product, which may be an isolate, produces heat-stable solutions at low pH values and is useful for the fortification of acidic beverages such as soft drinks and sports drinks without precipitation of protein. The pulse protein product is obtained by extracting a pulse protein source material with an aqueous calcium salt solution to form an aqueous pulse protein solution, separating the aqueous pulse protein solution from residual pulse protein source, adjusting the pH of the aqueous pulse protein solution to a pH of about 1.5 to about 4.4 to produce an acidified pulse protein solution, which may be dried, following optional concentration and diafiltration, to provide the pulse protein product.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
Canola protein products having a protein content of at least about 60 wt % (N×6.25) d.b., preferably at least about 90 wt %, more preferably at lease about 100 wt %, and low phytic acid content, are produced by extracting canola seeds or canola oil seed meal with an aqueous calcium salt solution, preferably calcium chloride solution, to cause solubilization of canola protein from the seeds or meal.
C07K 14/415 - Peptides having more than 20 amino acidsGastrinsSomatostatinsMelanotropinsDerivatives thereof from plants
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
Canola protein products having a protein content of at least about 60 wt% (N x 6.25) d.b., preferably at least about 90 wt%, more preferably at lease about 100 wt%, and low phytic acid content, are produced by extracting canola seeds or canola oil seed meal with an aqueous calcium salt solution, preferably calcium chloride solution, to cause solubilization of canola protein from the seeds or meal.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
A soy protein product having a protein content of at least about 60 wt% (N x 6.25) d.b. is recovered in the processing of soy protein source material to form soy protein products wherein the soy protein source is extracted with calcium salt solution. The resulting soy protein solution is separated from the bulk of the residual soy protein source and then the soy protein solution is processed to remove finer residual solids, which are washed and dried to provide the soy protein product.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
A soy protein product is obtained by extracting a soy protein source material with an aqueous calcium salt solution to form an aqueous soy protein solution and adjusting the pH of the mixture of aqueous soy protein solution and residual soy protein source to a pH of about 1.5 to about 4.4. The acidified soy protein solution then is separated from the residual soy protein source. The acidified soy protein solution may be dried, following optional concentration and diafiltration, to provide the soy protein product.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
A23L 11/00 - Pulses, i.e. fruits of leguminous plants, for production of foodProducts from legumesPreparation or treatment thereof
A soy protein product having a protein content of at least about 60 wt% (N x 6.25) d.b., preferably an isolate having a protein content of at least about 90 wt% (N x 6.25) d.b., is formed by a procedure in which soy protein is extracted from a soy source material using an aqueous calcium chloride solution at low pH, generally about 1.5 to about 5, and separating the resulting aqueous soy protein solution from residual soy protein source. The resulting clarified aqueous soy protein solution may be diluted and the pH adjusted within the range of 1.5-5.0. The solution may be concentrated by ultrafiltration, diafiltered and then dried to provide the soy protein product. Alternatively, the concentrated and optionally diafiltered soy protein solution may be optionally adjusted in pH within the range of 1.5-7.0 then diluted into water to cause the formation of a precipitate, separating the precipitate from the diluting water (supernatant) and drying the separated soy protein to form a soy protein product having a protein content of at least about 60 wt% (N x 6.25) d.b., preferably a soy protein isolate having a protein content of at least about 90 wt% (N x 6.25) d.b.. The supernatant may be processed to form soy protein products having a protein content of at least about 60 wt% (N x 6.25) d.b., preferably a soy protein isolate having a protein content of at least 90 wt% (N x 6.25) d.b.. Alternatively, the precipitate from the dilution step may be re-solubilized in the diluting water by adjustment of the pH to resolubilize the precipitate and form a protein solution. The soy protein solution may be concentrated while maintaining the ionic strength substantially constant by using a selective membrane technique followed by optional diafiltration and drying. The soy protein product is soluble in acidic medium and produces transparent, heat stable solutions and hence may be used for protein fortification of soft drinks and sports drinks.
A soy protein product is obtained by extracting a soy protein source material with an aqueous calcium salt solution to form an aqueous soy protein solution and adjusting the pH of the mixture of aqueous soy protein solution and residual soy protein source to a pH of about 1.5 to about 4.4. The acidified soy protein solution then is separated from the residual soy protein source. The acidified soy protein solution may be dried, following optional concentration and diafiltration, to provide the soy protein product.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
A soy protein product having reduced astringency, which may be an isolate, produces transparent heat-stable solutions at low pH values and is useful for the fortification of soft drinks and sports drinks without precipitation of protein. The soy protein product is obtained by extracting a soy protein source material with an aqueous calcium salt solution to form an aqueous soy protein solution, separating the aqueous soy protein solution from residual soy protein source, adjusting the pH of the aqueous soy protein solution to a pH of about 1.5 to about 4.4 using at least one organic acid, such as citric acid or a blend of citric acid and malic acid or a mixture of at least one organic acid and at least one mineral acid, such as hydrochloric acid and phosphoric acid, to produce an acidified clear soy protein solution, which may be dried directly or following optional concentration and diafiltration, to provide the soy protein product.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
Soy protein products are provided which lack the characteristic beany flavour of conventional soy protein isolates and can replace conventional isolates in various food products to provide food products having improved flavour.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
A novel canola protein isolate of predominantly 2S canola protein and having improved solubility properties, has an increased proportion of 2S canola protein and a decreased proportion of 7S canola protein. The novel canola protein isolate is formed by heat treatment of aqueous supernatant from canola protein micelle formation and precipitation, to effect precipitation of 7S protein which is sedimented and removed.
The supernatant from the deposition of canola protein micellar mass is processed to provide a canola protein product having a protein content of about 60 to less than about 90 wt % (N×6.25) protein on a dry weight basis and which is soluble in an aqueous acidic environment.
A soy protein product, which may be an isolate, produces transparent heat-stable solutions at low pH values and is useful for the fortification of soft drinks and sports drinks without precipitation of protein. The soy protein product is obtained by extracting a soy protein source material with an aqueous calcium salt solution to form an aqueous soy protein solution, separating the aqueous soy protein solution from residual soy protein source, adjusting the pH of the aqueous soy protein solution to a pH of about 1.5 to about 4.4 to produce an acidified clear soy protein solution, which may be dried, following optional concentration and diafiltration, to provide the soy protein product.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
A soy protein product, which may be an isolate, useful for the fortification of soft drinks and sports drinks without precipitation of protein, is prepared by extraction of a soy protein source using aqueous calcium salt solution in a counter-current operation in which the extracting aqueous calcium salt solution flows in counter-current direction to the flow of soy protein source, to form an aqueous soy protein solution, entrained fine particulates are at least partially removed from the aqueous soy protein solution and the pH of the resulting soy protein solution is adjusted to about pH 1.5 to about 4.4 to produce an acidified clear soy protein solution, which may be dried, following optional concentration and diafiltration.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
Soy protein products which can be reconstituted to provide an aqueous acidic solution having a preferred level of clarity are produced by extracting a soy protein source with an aqueous calcium chloride solution to cause solubilization of soy protein from the protein source and separating the resulting aqueous soy protein solution from residual soy protein source. Either, within about 20 minutes of separation step, the aqueous soy protein solution is diluted to a conductivity of less than about 90 mS and the pH of the aqueous soy protein solution is adjusted to about 1.5 to about 4.4 to produce an acidified soy protein solution having an absorbance of visible light at 600 nm (A600) of less than about 0.055, or, within about 40 minutes of the separation step, the aqueous soy protein solution is diluted to a conductivity of less than about 90 mS, the pH of the aqueous soy protein solution is adjusted to about 1.5 to about 4.4, the acidified soy protein solution is heat treated at a temperature of about 70° to about 160°C for about 10 seconds to about 60 minutes to produce an acidified soy protein solution having an absorbance of visible light at 600 nm (A600) of less than about 0.055. The resulting acidified soy protein solution may be directly dried or further processed by concentration and diafiltration. Each of the steps of the process preferably is effected at a temperature of about 50° to about 60°C.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
A pulse protein product, which may be an isolate, produces heat-stable solutions at low pH values and is useful for the fortification of soft drinks and sports drinks without precipitation of protein. The pulse protein product is obtained by extracting a pulse protein source material with an aqueous calcium salt solution to form an aqueous pulse protein solution, separating the aqueous pulse protein solution from residual pulse protein source, adjusting the pH of the aqueous pulse protein solution to a pH of about 1.5 to about 4.4 to produce an acidified pulse protein solution, which may be dried, following optional concentration and diafiltration, to provide the pulse protein product.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
A soy protein product having a protein content of at least about 60 wt % (N×6.25) d.b., prefereably an isolate having a protein content of at least about 90 wt % (N×6.25) d.b., is formed by a procedure in which soy protein is extracted from a soy source material using an aqueous calcium chloride solution at low pH, generally about 1.5 to about 5, and separating the resulting aqueous soy protein solution from residual soy protein source. The resulting clarified aqueous soy protein solution may be diluted and the pH adjusted with the range of 1.5 to 5.0. the solution may be concentrated by ultrafiltration, diafiltered and the dried to provide the soy protein product. The soy protein product is soluble in acidic medium and produces transparent, heat stable solutions and hence may be used for protein fortification of soft drinks and sports drinks.
A novel canola protein isolate consisting predominantly of 2S canola protein and having equal to better solubility properties and improved clarity properties in aqueous media, has an increased proportion of 2S canola protein and a decreased proportion of 7S canola protein. The novel canola protein isolate is formed by isoelectric precipitation of aqueous supernatant from canola protein micelle formation and precipitation, to effect precipitation of 7S protein which is sedimented and removed.
A61K 36/00 - Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
62.
Production of canola protein isolate without heat treatment
The supernatant from the deposition of canola protein micellar mass is processed to provide a canola protein isolate which is soluble in an aqueous acidic environment.
Canola protein isolates are provided which contain both albumin and globulin protein fractions that are soluble and transparent in an acidic aqueous environment. The canola protein isolates are completely soluble in water at low pH, low in phytic acid and useful in products for human consumption, pet foods and aquaculture.
pH-adjusted soy protein products, particularly isolates, that have a natural pH of about 6 and have a non-beany flavor are provided by the processing of soy protein product which is completely soluble in aqueous media at a pH of less than about 4.4 and heat stable in this pH range or a concentrated soy protein solution produced in the preparation of such soy protein product.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
65.
STABILIZATION OF CITRUS FRUIT BEVERAGES COMPRISING SOY PROTEIN
A composition which permits protein fortification of citrus juices, particularly orange juice, or beverages containing citrus juices, to be carried out without separation of the juice or beverage and the rapid development of a clear or nearly clear liquid layer on top of the juice or beverage, comprises a soy protein product having a protein content of at least about 60 wt% (N x 6.25), preferably at least about 90 wt%, and preferably at least about 100 wt%, which is completely soluble in water at an acid pH value of less than about 4.4 and which is heat stable in aqueous solution, and at least one of at least one calcium salt and at least one organic acid.
pH-adjusted soy protein products, particularly isolates, that have a natural pH of about 6 and have a non-beany flavour are provided by the processing of soy protein product which is completely soluble in aqueous media at a pH of less than about 4.4 and heat stable in this pH range or a concentrated soy protein solution produced in the preparation of such soy protein product.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
A novel canola protein product consisting predominantly of 2S canola protein and having improved solubility properties, has an increased proportion of 2 S canola protein and a decreased proportion of 7S canola protein, and a protein content of less than about 90 wt% (N x 6.25) d.b. The novel canola protein isolate is formed by heat treatment or isoelectric precipitation of aqueous supernatant from canola protein micelle formation and precipitation, to effect precipitation of 7S protein which is sedimented and removed.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
C07K 1/24 - ExtractionSeparationPurification by electrochemical means
C07K 14/415 - Peptides having more than 20 amino acidsGastrinsSomatostatinsMelanotropinsDerivatives thereof from plants
68.
PRODUCTION OF ACID SOLUBLE SOY PROTEIN ISOLATES ("S700")
A soy protein product having a protein content of at least about 60 wt% (N x 6.25) d.b., preferably an isolate having a protein content of at least about 90 wt% (N x 6.25) d.b., is formed by extracting a soy protein source with a salt solution, preferably aqueous sodium chloride solution, to form an aqueous protein solution having a pH of about 1.5 to 11, preferably about 5 to about 7 and separating the resulting aqueous protein solution from residual soy protein source. The protein concentration of the aqueous protein solution is increased to about 50 to about 400 g/L while the ionic strength is maintained substantially constant by using a selective membrane technique. The resulting concentrated protein solution is optionally diafiltered and a calcium salt, preferably calcium chloride, is added to the concentrated and optionally diafiltered protein solution to a conductivity of 15 to about 85 mS. Precipitate formed as a result of the calcium salt addition is removed and the resulting clarified retentate is diluted into about 2 to about 20 volumes of water prior to acidification to a pH of about 1.5 to about 4.4 to produce an acidified clear protein solution. The acidified clear protein solution is then concentrated and optionally diafiltered and optionally dried. Variations of this procedure can be used to produce a soy protein product which is soluble, transparent and heat stable in acidic aqueous environments.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
A soy protein product having a protein content of at least about 60 wt% (N x 6.25) d.b., preferably an isolate, is formed by a procedure in which soy protein is extracted from a soy source material using an aqueous calcium chloride solution at low pH, generally about 1.5 to about 5, and separating the resulting aqueous soy protein solution from residual soy protein source. The resulting clarified aqueous soy protein solution may be diluted and the pH adjusted within the range of 1.5-5.0. The solution may be concentrated by ultrafiltration, diafiltered and then dried to provide the soy protein product. The soy protein product is soluble in acidic medium and produces transparent, heat stable solutions and hence may be used for protein fortification of soft drinks and sports drinks.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
A soy protein product having a protein content of at least about 60 wt% (N x 6.25) d.b., preferably an isolate having a protein content of at least about 90 wt% (N x 6.25) d.b., is formed by extracting a soy protein source with water to form an aqueous protein solution having a pH of about 1.5 to about 11, preferably about 5 to about 7, and separating the resulting aqueous protein solution from residual soy protein source. The protein concentration of the aqueous protein solution is increased to about 50 to about 400 g/L while the ionic strength is maintained substantially constant by using a selective membrane technique. The resulting concentrated protein solution is optionally diafiltered and a calcium salt, preferably calcium chloride, is added to the concentrated and optionally diafiltered protein solution to a conductivity of 5 to about 30 mS. Precipitate formed as a result of the calcium salt addition is removed and the resulting clarified retentate is diluted into about 2 to about 20 volumes of water prior to acidification to a pH of about 1.5 to about 4.4 to produce an acidified clear protein solution. The acidified clear protein solution is then concentrated and optionally diafiltered and optionally dried. Variations of this procedure can be used to produce a soy protein product which is soluble, transparent and heat stable in acidic aqueous environments.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
A soy protein product having a protein content of at least about 60 wt % (N×6.25) d.b., preferably an isolate having a protein content of at least about 90 wt % (N×6.25) d.b., is formed by extracting a soy protein source with water to form an aqueous protein solution having a pH of about 1.5 to about 11, preferably about 5 to about 7, and separating the resulting aqueous protein solution from residual soy protein source. The protein concentration of the aqueous protein solution is increased to about 50 to about 400 g/L while the ionic strength is maintained substantially constant by using a selective membrane technique. The resulting concentrated protein solution is optionally diafiltered and a calcium salt, preferably calcium chloride, is added to the concentrated and optionally diafiltered protein solution to a conductivity of 5 to about 30 mS. Precipitate formed as a result of the calcium salt addition is removed and the resulting clarified retentate is diluted into about 2 to about 20 volumes of water prior to acidification to a pH of about 1.5 to about 4.4 to produce an acidified clear protein solution. The acidified clear protein solution is then concentrated and optionally diafiltered and optionally dried. Variations of this procedure can be used to produce a soy protein product which is soluble, transparent and heat stable in acidic aqueous environments.
A soy protein product having a protein content of at least about 60 wt % (N×6.25) d.b., preferably an isolate having a protein content of at least about 90 wt % (N×6.25) d.b., is formed by extracting a soy protein source with a salt solution, preferably aqueous sodium chloride solution, to form an aqueous protein solution having a pH of about 1.5 to 11, preferably about 5 to about 7 and separating the resulting aqueous protein solution from residual soy protein source. The protein concentration of the aqueous protein solution is increased to about 50 to about 400 g/L while the ionic strength is maintained substantially constant by using a selective membrane technique. The resulting concentrated protein solution is optionally diafiltered and a calcium salt, preferably calcium chloride, is added to the concentrated and optionally diafiltered protein solution to a conductivity of 15 to about 85 mS. Precipitate formed as a result of the calcium salt addition is removed and the resulting clarified retentate is diluted into about 2 to about 20 volumes of water prior to acidification to a pH of about 1.5 to about 4.4 to produce an acidified clear protein solution. The acidified clear protein solution is then concentrated and optionally diafiltered and optionally dried. Variations of this procedure can be used to produce a soy protein product which is soluble, transparent and heat stable in acidic aqueous environments.
The supernatant from the deposition of canola protein micellar mass is processed to provide a canola protein product having a protein content of about 60 to less than about 90 wt % (N×6.25) protein on a dry weight basis and which is soluble in an aqueous acidic environment.
The supernatant from the deposition of canola protein micellar mass is processed to provide a canola protein product having a protein content of about 60 to less than about 90 wt% (N x 6.25) protein on a dry weight basis and which is soluble in an aqueous acidic environment.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
A soy protein product having a protein content of at least 60 wt % (N×6.25) dry weight, preferably a soy protein isolate having a protein content of at least about 90 wt % (N×6.25) d.b., is formed by a soy protein micellar mass production route. The supernatant from the coalesced protein micellar mass may be processed to recover additional quantities of soy protein product. The soy protein product may be used for a fortification of soft drinks and sports drinks.
A soy protein product having a protein content of at least about 60 wt % (N×6.25) d.b., preferably a soy protein isolate having a protein content of at least about 90 wt % (N×6.25) d.b., is prepared from a soy protein source material by extraction of the soy protein source material with an aqueous calcium salt solution, preferably calcium chloride solution, to cause solubilization of soy protein from the protein source and to form an aqueous soy protein solution, separating the aqueous soy protein solution from residual soy protein source, concentrating the aqueous soy protein solution while maintaining the ionic strength substantially constant by using a selective membrane technique, optionally diafiltering the concentrated soy protein solution, diluting the concentrated and optionally diafiltered soy protein solution into water to cause the formation of a precipitate, acidifying the mixture of precipitate and diluting water to re-solubilize the precipitate and form a clear acidified soy protein solution, concentrating the clear acidified soy protein solution while maintaining the ionic strength substantially constant by using a selective membrane technique, optionally diafiltering the concentrated clear acidified soy protein solution, and drying the concentrated and optionally diafiltered clear acidified soy protein solution.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
A soy protein product having a protein content of at least about 60 wt% (N x 6.25) d.b., preferably a soy protein isolate having a protein content of at least about 90 wt% (N x 6.25) d.b., is prepared from a soy protein source material by extraction of the soy protein source material with an aqueous calcium salt solution, preferably calcium chloride solution, to cause solubilization of soy protein from the protein source and to form an aqueous soy protein solution, separating the aqueous soy protein solution from residual soy protein source, concentrating the aqueous soy protein solution while maintaining the ionic strength substantially constant by using a selective membrane technique, optionally diafiltering the concentrated soy protein solution, and drying the concentrated and optionally diafiltered soy protein solution. Alternatively, the concentrated and optionally diafiltered soy protein solution may be diluted into water to cause the formation of a precipitate, separating the precipitate from the diluting water (supernatant), and drying the separated soy protein solution to form a soy protein product having a protein content of at least about 60 wt% (N x 6.25) d.b., preferably a soy protein isolate having a protein content of at least about 90 wt% (N x 6.25) d.b.. The supernatant may be processed to form soy protein products having a protein content of at least about 60 wt% (N x 6.25) d.b., preferably a soy protein isolate having a protein content of at least 90 wt% (N x 6.25) d.b. Alternatively, the precipitate from the dilution step and diluting water is acidified to resolubilize the precipitate and form a clear soy protein solution. The clear soy protein solution is concentrated while maintaining the ionic strength substantially constant by using a selective membrane technique followed by optional diafiltration and drying.
A23C 11/10 - Milk substitutes, e.g. coffee whitener compositions containing at least one non-milk component as source of fats or proteins containing or not lactose but no other milk components as source of fats, carbohydrates or proteins
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
A23L 2/46 - Preservation of non-alcoholic beverages by heating
A23L 2/74 - Clarifying or fining of non-alcoholic beveragesRemoving unwanted matter by filtration using membranes, e.g. osmosis, ultrafiltration
78.
PREPARATION OF SOY PROTEIN PRODUCT USING WATER EXTRACTION ("S803")
A soy protein product which is completely soluble and is capable of providing transparent and heat stable solutions at low and neutral pH values is produced by extracting a soy protein source material with water at low pH, subjecting the resulting aqueous soy protein solution to ultrafiltration and optional diafiltration to provide a concentrated and optionally diafiltered soy protein solution, which may be dried to provide the soy protein product. The soy protein product may be used for protein fortification of, in particular, soft drinks and sports drinks, without precipitation of protein.
A23C 11/10 - Milk substitutes, e.g. coffee whitener compositions containing at least one non-milk component as source of fats or proteins containing or not lactose but no other milk components as source of fats, carbohydrates or proteins
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
A23L 2/46 - Preservation of non-alcoholic beverages by heating
A23L 2/74 - Clarifying or fining of non-alcoholic beveragesRemoving unwanted matter by filtration using membranes, e.g. osmosis, ultrafiltration
79.
PRODUCTION OF SOLUBLE SOY PROTEIN PRODUCT FROM SOY PROTEIN MICELLAR MASS ("S200Ca")
A soy protein product having a protein content of at least 60 wt% (N x 6.25) d.b., preferably an isolate having a protein content of at least about 90 wt% (N x 6.25) d.b., is formed from the supernatant from the precipitation of a soy protein micellar mass. A calcium salt or other divalent salt is added to the supernatant, before concentration, after initial concentration or after final concentration, to provide a conductivity of about 2 to about 30 mS. Precipitate is removed from the resulting solution and the pH of the clear soy protein solution is optionally adjusted to about 1.5 to about 4.4. The optionally pH-adjusted clear solution is concentrated to a concentration of about 50 to about 400 g/L and the clear concentrated protein solution is optionally diafiltered prior to drying. The soy protein product is soluble in acidic media and produces transparent, heat stable solutions at low pH values and, therefore, may be used for protein fortification of soft drinks and sports drinks.
A23L 3/16 - Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by heating loose unpacked materials
80.
PRODUCTION OF SOLUBLE PROTEIN SOLUTIONS FROM SOY ("S701")
A soy protein product, which may be an isolate, produces transparent heat-stable solutions at low pH values and is useful for the fortification of soft drinks and sports drinks without precipitation of protein. The soy protein product is obtained by extracting a soy protein source material with an aqueous calcium salt solution to form an aqueous soy protein solution, separating the aqueous soy protein solution from residual soy protein source, adjusting the pH of the aqueous soy protein solution to a pH of about 1.5 to about 4.4 to produce an acidified clear soy protein solution, which may be dried, following optional concentration and diafiltration, to provide the soy protein product.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
A23C 11/10 - Milk substitutes, e.g. coffee whitener compositions containing at least one non-milk component as source of fats or proteins containing or not lactose but no other milk components as source of fats, carbohydrates or proteins
A soy protein product, which may be an isolate, produces transparent heat-stable solutions at low pH values and is useful for the fortification of soft drinks and sports drinks without precipitation of protein. The soy protein product is obtained by extracting a soy protein source material with an aqueous calcium salt solution to form an aqueous soy protein solution, separating the aqueous soy protein solution from residual soy protein source, adjusting the pH of the aqueous soy protein solution to a pH of about 1.5 to about 4.4 to produce an acidified clear soy protein solution, which may be dried, following optional concentration and diafiltration, to provide the soy protein product.
A23L 1/20 - Treatment of pulse, i.e. fruits of leguminous plants, for production of fodder or food; Preparation of products from legumes; Chemical means for rapid cooking of these foods, e.g. treatment with phosphates
Emulsified foods are provided in which whole egg or egg yolk, conventionally employed to formulate such foods, such as mayonnaises, is replaced, in whole or in part, by a canola protein isolate, which may be a PMM-derived canola protein isolate, the canola protein isolate directly obtained from the supernatant from the formation of PMM or the canola protein isolate obtained following heat treatment.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
The supernatant from the deposition of canola protein micellar mass is processed to provide a canola protein isolate which is soluble in an aqueous acidic environment.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
A23K 1/14 - from vegetable materials, e.g. potatoes or roots without ensilaging
Canola protein isolate is recovered from canola oil seeds by crushing the oil seeds and extracting the crushed canola oil seeds. Fat co-extracted from the crushed oil seeds is removed from the aqueous canola protein solution which then is processed by the micellar route to obtain the canola protein isolate.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
A soluble canola protein isolate is prepared from canola protein micellar mass by solubilizing the protein micellar mass in a calcium salt solution, preferably a calcium chloride solution, followed by dilution of the resulting canola protein solution. Following removal of the precipitate phytic acid, the aqueous canola protein solution is concentrated, optionally diafiltered, and acidified to a pH of about 2.5 to 4.0 to produce an acidified clear canola protein solution, which may be concentrated, subjected to a colour removal step and dried. The canola protein isolate so formed is soluble, transparent and heat stable in an acid aqueous environment and also is soluble at natural pH, without precipitation of protein.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
The supernatant from the deposition of canola protein micellar mass is processed to provide a canola protein isolate which is soluble in an aqueous acidic environment.
A novel canola protein isolate with predominantly of 2S canola protein and having equal to better solubility properties and improved clarity properties, has an increased proportion of 2S canola protein and a decreased proportion of 7S canola protein. The novel canola protein isolate is formed by heat treatment or isoelectric precipitation of aqueous supernatant from canola protein micelle formation and precipitation, to effect precipitation of 7S protein which is sedimented and removed. Alternatively, the novel canola protein isolate may be derived from a selective membrane procedure in which an aqueous canola protein solution containing 12S, 7S and 2S canola proteins is subjected to a first selective membrane technique to retain 12S and 7S canola proteins in a retentate, which is dried to provide a canola protein isolate with predominantly 7S canola protein, and to permit 2S canola protein to pass through the membrane. The permeate is subjected to a second selective membrane technique to retain 2S canola protein and to permit low molecular weight contaminants to pass through the membrane, and the retentate from the latter membrane technique is dried.
Canola protein isolates are provided which contain both albumin and globulin protein fractions that are soluble and parent in an acidic aqueous environment. The canola protein isolates are completely soluble in water at low pH, low in phytic acid and useful in products for human consumption, pet foods and aquaculture.
A61K 36/00 - Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
Canola protein isolates are provided which contain both albumin and globulin protein fractions that are soluble and transparent in an acidic aqueous environment. The canola protein isolates are completely soluble in water at low pH, low in phytic acid and useful in products for human consumption, pet foods and aquaculture.
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
A novel canola protein isolate consisting predominantly of 2S canola protein and having equal to better solubility properties and improved clarity properties in aqueous media, has an increased proportion of 2S canola protein and a decreased proportion of 7S canola protein. The novel canola protein isolate is formed by isoelectric precipitation of aqueous supernatant from canola protein micelle formation and precipitation, to effect precipitation of 7S protein which is sedimented and removed.
C07K 14/415 - Peptides having more than 20 amino acidsGastrinsSomatostatinsMelanotropinsDerivatives thereof from plants
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
A novel canola protein isolate consisting predominantly of 2S canola protein and having equal to better solubility properties and improved clarity properties, has an increased proportion of 2S canola protein and a decreased proportion of 7S canola protein. The novel canola protein isolate is formed by heat treatment or isoelectric precipitation of aqueous supernatant from canola protein micelle formation and precipitation, to effect precipitation of 7S protein which is sedimented and removed.
A23J 1/00 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites
A23J 1/14 - Obtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from leguminous or other vegetable seedsObtaining protein compositions for foodstuffsBulk opening of eggs and separation of yolks from whites from press-cake or oil-bearing seeds
Canola protein isolates consisting predominantly of 7S canola proteins are formed by isoelectric precipitation from aqueous salt solution extracts of canola oil seed meal. Canola protein isolates consisting predominantly of 2S canola protein are recovered from supernatant from the isoelectric precipitation step.
Oil seed protein isolates, particularly canola protein isolate, are produced continuously from oil seed meals, preferably at a high purity level of at least about 100 wt % (N×6.25), by a process wherein oil seed protein is continuously extracted from oil seed meal, the resulting protein solution is continuously concentrated, preferably to a protein content of at least about 200 g/L, and the concentrated protein solution is continuously mixed with chilled water having a temperature below about 15° C. to form protein micellar, which are settled in the settling vessel to provide a protein micellar mass (PMM) while supernatant overflows the vessel. The PMM, when accumulated to a desired degree, may be separated from supernatant and dried. The supernatant may be processed to recover additional oil seed protein isolate.
A61K 36/00 - Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
A61K 47/00 - Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additivesTargeting or modifying agents chemically bound to the active ingredient
A01N 65/00 - Biocides, pest repellants or attractants, or plant growth regulators containing material from algae, lichens, bryophyta, multi-cellular fungi or plants, or extracts thereof
A61K 9/00 - Medicinal preparations characterised by special physical form
94.
PRODUCTION OF 2S CANOLA PROTEIN INVOLVING ION EXCHANGE
Substantially pure 2S canola protein is obtained substantially free from 7S and 12S canola protein by a procedure in which 2S canola protein is captured by binding to a cation-exchange medium while permitting other proteins and impurities to be washed away. The 2S canola protein then is removed from the cation-exchange medium by exposure of the cation-exchange medium to saline at a suitably high salt concentration.
Substantially pure 2S canola protein is obtained substantially free from 7S and 12S canola protein by a procedure in which 2S canola protein is captured by binding to a cation-exchange medium while permitting other proteins and impurities to be washed away. The 2S canola protein then is removed from the cation-exchange medium by exposure of the cation-exchange medium to saline at a suitably high salt concentration.
A novel canola protein isolate including predominantly 2S canola protein and having equal to better solubility properties and improved clarity properties, has an increased proportion of 2S canola protein and a decreased proportion of 7S canola protein. The novel canola protein isolate is formed by heat treatment or isoelectric precipitation of aqueous supernatant from canola protein micelle formation and precipitation, to effect precipitation of 7S protein which is sedimented and removed. Alternatively, the novel canola protein isolate may be derived from a selective membrane procedure in which an aqueous canola protein solution containing 12S, 7S and 2S canola proteins is subjected to a first selective membrane technique to retain 12S and 7S canola proteins in a retentate, which is dried to provide a canola protein isolate including predominantly 7S canola protein, and to permit 2S canola protein to pass through the membrane. The permeate is subjected to a second selective membrane technique to retain 2S canola protein and to permit low molecular weight contaminants to pass through the membrane, and the retentate from the latter membrane technique is dried.
A canola protein isolate useful in aquaculture is formed by a procedure in which canola oil seed meal is extracted to cause solubilization of protein in the canola oil seed meal to form an aqueous protein solution having a protein content of about 5 to about 40 g/L and a pH of about 5 to about 6.8. After separation of the aqueous protein solution from the residual canola oil seed meal, the protein concentration is increased to at least about 50 g/L while maintaining the ionic strength substantially constant by using a selective membrane technique. The concentrated protein solution is dried to provide a canola protein isolate having a protein content of at least about 90 wt % (N×6.25) d.b.
A canola protein isolate having a protein content of at least about 90 wt % (N×6.25), preferably at least about 100 wt %, and consisting predominantly of the 2S protein and substantially free from the 7S and 12S proteins is prepared. In one aspect, canola oil seed meal is extracted with aqueous protein solution at an elevated temperature to preferentially extract 2S protein from the meal to produce a canola protein solution containing predominantly 2S protein. The 2S canola protein is recovered as an isolate. In another aspect, the canola oil seed meal is extracted with aqueous saline solution to extract 2S, 7S and 12S proteins from the meal. The aqueous protein extract solution is heat treated at an elevated temperature to precipitate 7S and 12S proteins and leave a 2S protein solution from which the isolate may be recovered. In a further aspect, the aqueous protein solution is concentrated prior to the heat treatment.
A61K 9/00 - Medicinal preparations characterised by special physical form
A61K 47/00 - Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additivesTargeting or modifying agents chemically bound to the active ingredient
A61K 36/00 - Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
A canola protein isolate consisting predominantly of 2S canola protein and having improved solubility properties, has an increased proportion of 2S canola protein and a decreased proportion of 7S canola protein. The canola protein isolate is formed by heat treatment of aqueous supernatant from canola protein micelle formation and precipitation, to effect precipitation of 7S protein which is sedimented and removed. Alternatively, the canola protein isolate may be derived from a selective membrane procedure in which an aqueous canola protein solution containing 12S, 7S and 2S canola proteins is subjected to a first selective membrane technique to retain 12S and 7S canola proteins in a retentate, which is dried to provide a canola protein isolate consisting predominantly of 7S canola protein, and to permit 2S canola protein to pass through the membrane, the permeate is subjected to a second selective membrane technique to retain 2S canola protein and to permit low molecular weight contaminants to pass through the membrane, and the retentate from the latter membrane technique is dried.
A01N 65/00 - Biocides, pest repellants or attractants, or plant growth regulators containing material from algae, lichens, bryophyta, multi-cellular fungi or plants, or extracts thereof
A61K 36/00 - Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
Flax protein isolates are obtained in a procedure in which flax oil seeds are initially extracted to remove mucilage therefrom prior to crushing to recover the oil and produce a meal. The flax protein meal then is processed to recover a flax protein isolate therefrom.