A beverage system that produces a fermented beverage from two or more liquid streams, includes a first source including an ultra-high gravity beverage at a pressure of 82.7 kPa to 1034.2 kPa; a second source including a carbonated and/or nitrogenated water at a pressure of 82.7 kPa to 1034.2 kPa and and a temperature of 0° to 8°; a mixing point that allows mixing of the ultra high gravity beverage to blend with the carbonated and/or nitrogenated water to produce a fermented beverage; and a fluid line fluidly coupled to the mixing point and configured to allow the fermented beverage to flow to a dispensing tap. The fluid line has a length of 0.3048 m to 45.72 m and an inner diameter of 3.2 mm to 15.9 mm for at least a portion of the line.
A high gravity non-alcoholic beverage is disclosed having an ABV between about 0.1% to about 0.8% or between about 3% to about 6%, a real extract by weight between about 15% to about 70%, and an ethyl acetate amount between about 1 to about 500 mg/l. A method for producing the high gravity non-alcoholic beverage from a starting liquid includes providing a set of reverse osmosis pressure vessels, each pressure vessel having a feed inlet, a retentate outlet, and a permeate outlet, the set having a first pressure vessel, providing the starting liquid to the feed inlet of the first pressure vessel, adding water at a blend point when ABV content in a selected one of the permeate streams exceeds ABV content of a retentate stream at the blend point, and obtaining the high gravity non-alcoholic beverage from a selected one of the retentate streams.
C12H 3/04 - Methods for reducing the alcohol content of fermented solutions or alcoholic beverages to obtain low-alcohol or non-alcoholic beverages using semi-permeable membranes
A beverage system that produces a beer includes a first source comprising uHGB, a second source including a carbonated and/or nitrogenated water, a first fluid line fluidly coupled to the first source and configured to allow the uHGB to flow from the first source through the first fluid line, a second fluid line fluidly coupled to the second source and configured to allow the water to flow from the second source through the second fluid line, a mixing point, that fluidly couples the first fluid line to the second fluid line, configured to allow the uHGB to blend with the water at the mixing point to produce the beer, first and second one-way valves on either side of the mixing point, and a third fluid line fluidly coupled to the mixing point and configured to allow the beer to flow to a dispensing tap.
A method for reducing beverage loss during loading of beverage into an ethanol concentration system having a set of reverse osmosis pressure vessels, each pressure vessel having a feed inlet, a retentate outlet, and a permeate outlet. The method includes feeding deaerated water into the feed inlet of a first pressure vessel, feeding the beverage into the feed inlet of the first pressure vessel, monitoring an alcohol percentage at the retentate outlet of a second pressure vessel, the second pressure vessel coupled directly or indirectly to the first pressure vessel, and coupling a retentate from the retentate outlet of the second pressure vessel to a feed tank coupled to the feed inlet of the first pressure vessel when the alcohol percentage is within a first target range of 0.5 to 18% alcohol-by-volume (ABV).
C12G 3/08 - Preparation of other alcoholic beverages by methods for altering the composition of fermented solutions or alcoholic beverages not provided for in groups
C02F 103/32 - Nature of the water, waste water, sewage or sludge to be treated from the food or foodstuff industry, e.g. brewery waste waters
6.
Membrane-based production of high ethanol content solutions
A method for producing an ethanol solution includes obtaining, from a starting liquid, a liquid feed having less than by weight of constituents and having 3% to 25% by weight of ethanol, supplying the liquid feed to a feed stream inlet of a reverse osmosis separation system having a first pass, wherein (i) each pass has an reverse osmosis membrane filtration unit, each membrane filtration unit having an ethanol rejection percentage of between 50% to 99%, and (ii) each pass has the feed stream inlet for a feed stream, a permeate stream outlet for a permeate stream, and a retentate stream outlet for a retentate stream, operating the system to maintain pressure in one of the membrane filtration units in a range of 1,200 to 4,000 psi, and obtaining retentate that is enriched with ethanol, the retentate differs from the starting liquid by absence of the removed constituents.
C12H 3/04 - Methods for reducing the alcohol content of fermented solutions or alcoholic beverages to obtain low-alcohol or non-alcoholic beverages using semi-permeable membranes
A reverse osmosis filtration system includes a set of two or more reverse osmosis pressure vessels coupled in series, each pressure vessel having one or more reverse osmosis membrane elements, a feed inlet, a retentate outlet, a permeate outlet. The pressure vessels are coupled so that each successive pressure vessel has (a) its feed inlet coupled to the retentate outlet of its preceding pressure vessel and (b) its permeate outlet coupled to the permeate outlet of its preceding pressure vessel. The permeate outlet of at least one pressure vessel includes a front permeate outlet and the permeate outlet of at least one other pressure vessel includes a back permeate outlet. The back permeate outlet of one pressure vessel is coupled to the front permeate outlet of a successive pressure vessel.
The present invention relates to a method and equipment for extraction of lipid fractions from marine raw materials, such as fish and krill, whereby valuable components are preserved in the extracted material by performing the extraction process under an essentially inert atmosphere at transiently elevated temperatures and without the use of organic solvents. The process comprises supplying an inert gas, such as Nitrogen, to exclude oxygen, mechanical grinding of the raw material, high frequency treatment of the grinded material, separation of liquid and solid components by conventional means, and recovering a lipid rich fraction from the liquid component.
According to the present disclosure there is provided a method for extracting lipid fractions from krill, wherein freshly captured krill is ground to produce a slurry, which is gently heated to a temperature below 90°C for less than 45 minutes, whereafter the liquid into an aqueous phase and a krill oil phase from which a krill oil extract is derived without the use of organic solvents. Moreover there is also provided a pharmaceutical composition for the treatment of thrombosis in a patient comprising an effective amount of a krill oil extract.