01 - Chemical and biological materials for industrial, scientific and agricultural use
Goods & Services
(1) Metal oxides; fumed silica; fumed silica for use in glass, ceramic, plastics and rubber industries; fumed silica for reinforcing, rheology control and free flowing; fumed silicon dioxide; fumed silicon dioxide for use in assisting the free flow of materials and as an anti-caking agent
2.
SMOOTH EPDM PROFILES WITH BLENDS OF RECLAIMED CARBON AND CARBON BLACK
A method of making a solid pellet is described. The method can include feeding reclaimed carbon particles (or pellets) and feeding virgin carbon black particles (or pellets) as separate feeds to a mill and then milling the reclaimed carbon and the virgin carbon black together to obtained a milled blend, and then wet pelletizing the milled blend to obtain wet solid pellets, and then drying the wet solid pellets to obtain dry solid pellets. The solid pellets formed are further described as well as method to form profiles, such as EPDM profiles using the solid pellets of the present invention.
Metal oxide-polymer composite particles have a median particle size D50 of 40-75 nm or 100-150 nm and an average RTA of at least 0.06. Alternatively or in addition, metal oxide-polymer composites comprise two or more populations of metal oxide particles differing in size, particle size distribution, or shape. Alternatively or in addition, the use of a multicomponent hydrophobizing system including an alkylsilane to fabricate metal oxide-polymer composite particles increases the tribocharge of the composite particles.
A flexible insulating member is described. The insulating member can be a single layer or can include a first layer having aerogel and a first fibrous component, and a second layer that is a mat having a second fibrous component. The first layer and second layer are adhered together. The flexible insulating member is non-flammable per UL94 V0 and has a thermal conductivity at 25°C of less than 40 mW/m.K, and has a thickness of at least 0.3 mm. Methods of making the insulating member are further described along with uses for the insulating member.
D04H 1/413 - Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties containing granules other than absorbent substances
D04H 1/4374 - Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece using different kinds of webs, e.g. by layering webs
D04H 1/4382 - Stretched reticular film fibresComposite fibresMixed fibresUltrafine fibresFibres for artificial leather
B32B 5/02 - Layered products characterised by the non-homogeneity or physical structure of a layer characterised by structural features of a layer comprising fibres or filaments
B32B 5/26 - Layered products characterised by the non-homogeneity or physical structure of a layer characterised by the presence of two or more layers which comprise fibres, filaments, granules, or powder, or are foamed or specifically porous one layer being a fibrous or filamentary layer another layer also being fibrous or filamentary
B60L 50/64 - Constructional details of batteries specially adapted for electric vehicles
H01M 10/658 - Means for temperature control structurally associated with the cells by thermal insulation or shielding
01 - Chemical and biological materials for industrial, scientific and agricultural use
Goods & Services
Reinforcing materials, namely, carbon black for industrial purposes, reclaimed and renewable carbon for industrial purposes, carbon nanotubes in the nature of tubular discrete carbon molecules for use in manufacture of a wide variety of goods, and blends thereof, all for use in the manufacture or production of a wide variety of goods; Chemicals for use in industry, namely, composites; Reinforced composites, namely, polymeric compositions and masterbatches for use in the manufacture of a wide variety of goods; Polymer composites for use in the manufacture of a wide variety of goods; Unprocessed polymers for industrial use
6.
METHODS OF MAKING CARBON COATED PARTICLES FROM RECLAIMED CARBON AND OTHER PARTICLES
Methods to form carbon coated particles are described. Methods to form coated particles involve subjecting the particles to an energy source that is at least one of hot gas, microwave energy, induction energy, direct current passing through the particles, electromagnetic radiation, or solar radiation, so as to form heated particles, and feeding a hydrocarbon source that is in the form of a gas or vapor into the chamber, such that the hydrocarbon source pyrolyzes, in at least in part, in the chamber to form carbon deposits, and thereby coating the heated base particles with the carbon deposits and form the carbon coated particles. Coated particles produced by one of the methods of the present invention is further described. The advantages achieved with the methods are further described.
01 - Chemical and biological materials for industrial, scientific and agricultural use
Goods & Services
granulated concentrates of carbons and blends thereof for use in the manufacture of plastics for use in industry; unprocessed black plastics in granular form for use in industry
8.
SOLVENT-FREE PROCESS FOR PREPARING LITHIUM-ION BATTERIES
A solvent-free process employs carbon nanotubes to prepare compositions and electrodes for lithium-ion batteries. The carbon nanotubes can be multifunctional, providing two or more desirable characteristics, acting, for example, as a conductive carbon additive, as a fibrillizing agent and/or as a mechanical reinforcement. In one example, the carbon nanotubes are provided in combination with a carbon black. In another example, an electroactive material, a fibrillizable binder, e.g., PTFE, and carbon nanotubes are combined in one or more steps. High shear mixing is used to fibrillize the binder. The resulting composition can be formed into a film which can be applied onto a suitable substrate to form an electrode.
A method to produce carbonblack includes, in a carbonblack reactor having combustion zone and a reaction zone and a feedstock injection zone therebetween, converting a portion of at least one hydrocarbon feedstock to carbon black in the presence of combustion gases generated by burning a fuel in an oxidation gas mixture containing low amounts of nitrogen to form a product stream in which carbon black is carried by hot gases. The carbon black is separated from the hot gas, which is then processed to produce a flue gas high in carbon dioxide and low in nitrogen at least a portion of which is redirected to at least one of the combustion zone, the reaction zone, and the feedstock injection zone.
An aqueous hydrophobic silica dispersion includes a hydrophilic particulate silica, a hydrophobic particulate silica having a methanol number of at least 60, and a dispersant having at least one cationic or cationizable group and an HLB ratio of 2 to 20.
D06M 11/79 - Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereofSuch treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof with silicon dioxide, silicic acids or their salts
11.
CARBON BLACKS HAVING STRONTIUM AND/OR BARIUM ADDITIVES AND METHODS TO MAKE SAME
The present invention, in part, relates to a method to make carbon blacks utilizing at least feedstock additive that is or includes strontium, barium, or a combination thereof. Optional additional feedstock additives can be used in combination with the strontium and/or barium. The present invention further relates to a carbon black produced by one or more methods of the present invention. The present invention also relates to a carbon black carbon black having a nitrogen BET surface area (N2SA) of from 800 m2/g to 2,500 m2/g and concentration (ppm) of Group IIA elements in the carbon black that is less than or equal to 4.3*N2SA-2150, wherein the additive is or includes strontium, barium, or a combination thereof. Formulations, articles, and devices containing the carbon black are also disclosed.
Disclosed herein are compositions comprising a dimeric (diarylide) pigment and a synergist, in which the synergist has a structure similar to a monomer of the dimeric pigment. Also disclosed are aqueous dispersions and inkjet inks comprising such compositions. In a first preferred composition, the symmetric diarylide pigment has the following structure: (P-1) and the synergist has the following structure: (S-1). In a second preferred composition, the symmetric diarylide pigment has the following structure: (P-2) and the synergist has the following structure: (S-2).
C09B 67/00 - Influencing the physical, e.g. the dyeing or printing, properties of dyestuffs without chemical reaction, e.g. by treating with solventsProcess features in the making of dyestuff preparationsDyestuff preparations of a special physical nature, e.g. tablets, films
C09B 67/22 - Mixtures of different pigments or dyes or solid solutions of pigments or dyes
The invention relates to a conductive agent, an electrode for a lithium battery, and a method for preparing the conductive agent. The conductive agent comprises a mixture of dried, preferably freeze-dried carbon nanostructures and carbon black.
H01B 1/24 - Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon, or silicon
H01B 13/00 - Apparatus or processes specially adapted for manufacturing conductors or cables
H01M 4/62 - Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
An aerogel composition includes aerogel particles and a fibrous component that includes one or more materials selected from the group consisting of polymer fibers and inorganic fibers. The ratio of the aerogel particles:fibrous component is from 1:3 to 10:1 by weight. The aerogel composition further includes up to 25 % of polymer by weight, based on the total weight of the composition.
D04H 1/413 - Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties containing granules other than absorbent substances
D04H 1/58 - Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
D04H 1/732 - Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by fluid current, e.g. air-lay
B60L 50/64 - Constructional details of batteries specially adapted for electric vehicles
H01M 10/658 - Means for temperature control structurally associated with the cells by thermal insulation or shielding
01 - Chemical and biological materials for industrial, scientific and agricultural use
Goods & Services
granulated concentrates of carbons and blends thereof for use in the manufacture of plastics for use in industry; unprocessed black plastics in granular form for use in industry
16.
PROCESSES TO CLEAN TAIL GAS FROM CARBON BLACK PRODUCTION AND SYSTEM AND FACILITY FOR SAME
A process to clean a gas stream is described. The gas stream can include tail gas generated during carbon black production. The process involves a number of steps to systematically clean the starting gas stream so as to obtain a treat gas stream having fuel value and converting other parts of the gas stream to sulfur and carbon dioxide for recovery. A facility or system having various operation units to conduct the process of the present invention is further described.
B01D 46/30 - Particle separators, e.g. dust precipitators, using loose filtering material
B01D 53/14 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by absorption
C01B 3/16 - Production of hydrogen or of gaseous mixtures containing hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
17.
Thermally conductive polymer compositions containing carbon black
A composite polymer composition comprising partially crystallized carbon black. The composition exhibits superior thermal transfer properties in plastic formulations. The polymer precursor exhibits excellent rheology when compared to similar compositions comprising traditional carbon blacks. The composite polymers provide for higher loading of more thermally conductive carbon blacks in a variety of composite polymer compositions.
A flexible polyurethane foam comprises up to 10 wt % of a fumed silica having a surface area from 50 to 150 m2/g, wherein the fumed silica has C1-C3 alkylsilyl groups at its surface, the flexible polyurethane foam exhibiting has a resilience of at least 40%, for example, from 40% to 70%, a dry compression set no greater than 15%, for example, from 3% to 15%, or both. Alternatively in addition, the flexible polyurethane foam may have a compression force deflection at 50% as measured by ASTM D3574 that is at least 30%, for example, at least 50%, at least 70%, or from 30% to 155%, greater than a flexible polyurethane foam having the same composition but with polyol replacing the silica.
C08J 9/12 - Working-up of macromolecular substances to porous or cellular articles or materialsAfter-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
C08G 18/12 - Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
C08G 18/18 - Catalysts containing secondary or tertiary amines or salts thereof
A heat control member comprises a mixture of a) silica aerogel particles having particle sizes in a range from 0.1 mm to 5 mm and b) hydrophobic silica-containing particles having a methanol number of at least 30 and a particle size D50 of 100 microns or less, the mixture having a particle size distribution of silica-containing particles having at least two peaks. The silica aerogel particles and hydrophobic silica containing particles are present in a ratio from 1:99 to 99:1; and the heat control member has a thermal conductivity at 25 oC of from 5 to 30 mW/m.K and a thickness of 0.1-10 mm.
C01B 33/18 - Preparation of finely divided silica neither in sol nor in gel formAfter-treatment thereof
B32B 33/00 - Layered products characterised by particular properties or particular surface features, e.g. particular surface coatingsLayered products designed for particular purposes not covered by another single class
A carbon-based additive for negative active materials includes carbon nanostructures free of a fiber substrate, carbon nanostructures fused to a fiber substrate or any combination thereof. In many cases, the carbon-based additive further includes carbon black. The additive is used to prepare electrode compositions for lead acid batteries. Batteries that include such electrode compositions are characterized by improved dynamic charge acceptance and lead utilization, typically at acceptable water loss levels. Some of the batteries described herein exhibit a negligible memory effect.
A carbon black dispersion comprises a diol selected from an alkylene diol having 2-12 carbon atoms, cycloaliphatic diol having 6-24 carbon atoms, and an aromatic diol having 6-24 carbon atoms; 15-25 % by weight of a modified carbon black, the modified carbon black having a BET surface area between 25 and 180 m2/g as measured prior to treatment, the modified carbon black modified with a treating agent comprising an organic group and a sulfonic acid group at a treating agent concentration of from 1.0 to 4.0 µmol/m2 based on nitrogen surface area (BET); and polyvinylpyrrolidone in an amount from 0 to 0.2:1 with respect to the modified carbon black. The carbon black dispersion contains less than 2.5 wt% water and D99 of the carbon black dispersion is less than 1 micron.
A carbon black dispersion comprises a diol selected from an alkylene diol having 2-12 carbon atoms, cycloaliphatic diol having 6-24 carbon atoms, and an aromatic diol having 6-24 carbon atoms; 15-25 %by weight of a modified carbon black, the modified carbon black having a BET surface area between 25 and 180 m 2/g as measured prior to treatment, the modified carbon black modified with a treating agent comprising an organic group and a sulfonic acid group at a treating agent concentration of from 1.0 to 4.0 μmol/m 2based on nitrogen surface area (BET); and polyvinylpyrrolidone in an amount from 0 to 0.2: 1 with respect to the modified carbon black. The carbon black dispersion contains less than 2.5 wt%water and D99 of the carbon black dispersion is less than 1 micron.
C08L 67/00 - Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chainCompositions of derivatives of such polymers
23.
SOLVENT-FREE PROCESS FOR PREPARING LITHIUM-ION BATTERIES
A solvent-free process employs a multifunctional carbon black to prepare compositions and electrodes for lithium-ion batteries. The multifunctional carbon black provides two or more desirable characteristics, acting, for example, as a conductive carbon additive, as a fibrillizing agent and/or as a mechanical reinforcement. In one example, an electroactive material, e.g., graphite or a lithium transition metal compound, a binder and a multifunctional carbon black are combined in one or more steps. High shear mixing is used to process the binder in the presence of the multifunctional carbon black. The resulting composition can be formed into a film which can be applied onto a suitable substrate to produce an electrode.
01 - Chemical and biological materials for industrial, scientific and agricultural use
02 - Paints, varnishes, lacquers
Goods & Services
(1) Carbon black for industrial purposes; chemicals for the manufacture of pigments; chemicals for the manufacture of paints.
(2) Carbon black for use as a colorant.
01 - Chemical and biological materials for industrial, scientific and agricultural use
02 - Paints, varnishes, lacquers
Goods & Services
Carbon black for industrial purposes; chemicals for the manufacture of pigments; chemicals for the manufacture of paints. Carbon black for use as a colorant.
Conductive inks containing carbon nanostructures (CNS) are used to produce electrothermal heating elements. The use of carbon nanostructures decreases the amount of other conductive fillers, including metallic fillers, required to achieve similar temperatures. Small amounts of carbon nanostructures are used to formulate inks that can achieve temperatures in excess of 300 oF (149 oC).
Methods to produce carbon black from low-yielding carbon black feedstocks are described using a process that involves the use of electrical energy to cause formation of carbon black from a carbon black feedstock(s). Carbon blacks produced from these carbon black feedstocks are further described. The advantages achieved with the methods are further described.
01 - Chemical and biological materials for industrial, scientific and agricultural use
02 - Paints, varnishes, lacquers
Goods & Services
carbon black for industrial purposes; chemicals for the manufacture of pigments; chemicals for the manufacture of paints Carbon black for use as a colorant
A CNS millbase dispersion, comprises a solvent and up to 0.5 wt % of at least one CNS-derived material dispersed in the millbase dispersion and selected from the group consisting of: carbon nanostructures, fragments of carbon nanostructures, fractured carbon nanotubes, and any combination thereof. The carbon nanostructures or fragments of carbon nanostructures include a plurality of multiwall carbon nanotubes that are crosslinked in a polymeric structure by being branched, interdigitated, entangled and/or sharing common walls, and the fractured carbon nanotubes are derived from the carbon nanostructures and are branched and share common walls with one another. A Brookfield viscosity of the dispersion measured at room temperature at 10 rpm is less than 3000 cP.
A composition contains 5-15 wt% CNS-derived species and a polymer resin having a hydroxyl content of at least 1.5 wt% and a melt viscosity of at least 8 Pa.s at a shear rate of 0.1 s1 at a temperature 60 ℃ greater than the highest temperature at which the resin undergoes a thermal transition. The polymer resin further has either a solubility in a 1:1 (w/w) mixture of butyl acetate and propylene glycol methyl ether acetate of at least 5 wt%, an acid number of at least 100, or both.
11 at a temperature 60 °C greater than the highest temperature at which the resin undergoes a thermal transition. The polymer resin further has either a solubility in a 1:1 (w/w) mixture of butyl acetate and propylene glycol methyl ether acetate of at least 5 wt%, an acid number of at least 100, or both.
Methods to produce carbon black from low-yielding carbon black feedstocks are described. Carbon blacks produced from these carbon black feedstocks are further described. The advantages achieved with the methods are further described.
Methods to produce carbon black from low-yielding carbon black feedstocks are described. Carbon blacks produced from these carbon black feedstocks are further described. The advantages achieved with the methods are further described.
Methods to produce carbon black from low-yielding carbon black feedstocks are described. Low-yielding feedstocks are used in combination with traditional carbon black feedstocks to produce carbon black via a furnace process. Carbon blacks produced from these carbon black feedstocks are further described. The advantages achieved with the methods are further described.
Surface treated silica containing particles are combined with a resin to form a liquid prepolymer composition for use in additive manufacturing. A surface treatment on the silica containing particles may participate in polymerization of the composition. The silica containing particles may be colloidal silica or a silica polymer composite particle.
01 - Chemical and biological materials for industrial, scientific and agricultural use
17 - Rubber and plastic; packing and insulating materials
Goods & Services
Aerogel being chemicals for use in the manufacture of insulation materials Aerogel and aerogel-containing products for insulation, namely, thermal insulation material comprised of aerogel for use in insulation materials for electric vehicle batteries; aerogel-based insulating materials
38.
SILICONE-BASED COMPOSITIONS CONTAINING CARBON NANOSTRUCTURES FOR CONDUCTIVE AND EMI SHIELDING APPLICATIONS
Carbon nanostructures are used to prepare curable silicone-based compositions that can be used to manufacture various molded parts for EMI shielding applications. In one illustration, a cured material includes carbon nanostructures, fragments of carbon nanostructures, fractured carbon nanotubes, elongated carbon strands, and/or dispersed carbon nanostructures dispersed in a silicone component.
A method to produce carbon black includes, in a carbon black reactor having combustion zone and a reaction zone and a feedstock injection zone therebetween, converting a portion of at least one hydrocarbon feedstock to carbon black in the presence of combustion gases generated by burning a fuel in an oxidation gas mixture containing low amounts of nitrogen to form a product stream in which carbon black is carried by hot gases. The carbon black is separated from the hot gas, which is then processed to produce a flue gas high in carbon dioxide and low in nitrogen at least a portion of which is redirected to at least one of the combustion zone, the reaction zone, and the feedstock injection zone.
A method to produce carbon black includes, in a carbon black reactor having combustion zone and a reaction zone and a feedstock injection zone therebetween, converting a portion of at least one hydrocarbon feedstock to carbon black in the presence of combustion gases generated by burning a fuel in an oxidation gas mixture containing low amounts of nitrogen to form a product stream in which carbon black is carried by hot gases. The carbon black is separated from the hot gas, which is then processed to produce a flue gas high in carbon dioxide and low in nitrogen at least a portion of which is redirected to at least one of the combustion zone, the reaction zone, and the feedstock injection zone.
01 - Chemical and biological materials for industrial, scientific and agricultural use
Goods & Services
Carbon black for use in industry; Carbon, and blends thereof; Chemicals for use in industry; Chemicals for use in industry namely composites, including engineered elastomer composites, plastic masterbatches; Polymers for industrial use.
An epoxy composition containing CNS-derived fragments provides conductivity and surface hardness. In one illustration, the epoxy composition includes carbon nanostructures, fragments of carbon nanostructures, fractured carbon nanotubes, elongated carbon strands, and/or dispersed carbon nanostructures dispersed in an epoxy resin. The epoxy composition may also include additional fillers or other additives.
H01B 1/24 - Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon, or silicon
A composite polymer composition comprising partially crystallized carbon black. The composition exhibits superior thermal transfer properties in plastic formulations. The polymer precursor exhibits excellent rheology when compared to similar compositions comprising traditional carbon blacks. The composite polymers provide for higher loading of more thermally conductive carbon blacks in a variety of composite polymer compositions.
An epoxy composition containing CNS-derived fragments provides conductivity and surface hardness. In one illustration, the epoxy composition includes carbon nanostructures, fragments of carbon nanostructures, fractured carbon nanotubes, elongated carbon strands, and/or dispersed carbon nanostructures dispersed in an epoxy resin. The epoxy composition may also include additional fillers or other additives.
Hydrophobic silica is combined with a polyether in an in situ process for producing thermoplastic polyurethane with superior mechanical properties. The resulting thermoplastic polyurethane may be used in a variety of applications, including midsoles and outsoles in footwear and in wire insulation, hoses, films, wheels and tires, and drilling/mining screens.
A method of producing a thermoplastic elastomer includes providing a polyether composition comprising at least a first diol terminated polyether having a number average molecular weight of 400-6000 and up to 15 wt% of fumed silica having C1-C8 alkylsilyl groups or acrylate or methacrylate ester groups at its surface, combining the polyether composition with optional additional first polyether and either a) at least one dicarboxylic acid and at least one organic diol having a molecular weight less than 250 or b) at least one dicarboxylate terminated polyamide, to form a prepolymer composition, and allowing the prepolymer composition to polymerize to form a thermoplastic elastomer.
A method of producing a thermoplastic elastomer includes providing a polyether composition comprising at least a first diol terminated polyether having a number average molecular weight of 400-6000 and up to 15 wt % of fumed silica having C1-C8 alkylsilyl groups or acrylate or methacrylate ester groups at its surface, combining the polyether composition with optional additional first polyether and either a) at least one dicarboxylic acid and at least one organic diol having a molecular weight less than 250 or b) at least one dicarboxylate terminated polyamide, to form a prepolymer composition, and allowing the prepolymer composition to polymerize to form a thermoplastic elastomer.
Hydrophobic silica is combined with a polyether in an in situ process for producing thermoplastic polyurethane with superior mechanical properties. The resulting thermoplastic polyurethane may be used in a variety of applications, including midsoles and outsoles in footwear and in wire insulation, hoses, films, wheels and tires, and drilling/mining screens.
C08K 9/06 - Ingredients treated with organic substances with silicon-containing compounds
C08G 18/12 - Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
C08G 18/24 - Catalysts containing metal compounds of tin
Methods for the production of densified granules of graphene oxide worm (rGOW) particles. Graphene oxide worms are combined with a liquid to produce densified granules of graphene oxide worms. The granules can be easily processed and can incorporated into polymeric compositions such as elastomers. Also disclosed are masterbatch and composite materials made by combining the granules with a polymer.
Carbon nanostructures are used to prepare electrode compositions for lithium ion batteries. In one example, an anode for a Li ion battery includes three-dimensional carbon nanostructures made of highly entangled nanotubes, fragments of carbon nanostructures and/or fractured nanotubes, which are derived from the carbon nanostructures, are branched and share walls with one another. Amounts of carbon nanostructures employed can be less than or equal to 0.5 weight % relative to the weight of the electrode composition.
Carbon nanostructures are used to prepare electrode compositions for lithium ion batteries. In one example, a cathode for NCM batteries includes three-dimensional carbon nanostructures which are made of highly entangled nanotubes, fragments of carbon nanostructures and/or fractured nanotubes which are derived from the carbon nanostructures, are branched and share walls with one another. Amounts of carbon nanostructures employed can be less than or equal to 1 weight % relative to the electrode composition.
Carbon nanostructures are used to prepare electrode compositions for lithium ion batteries. In one example, carbon nanostructures, fragments of carbon nanostructures and/or fractured carbon nanotubes are provided in an aqueous dispersion that can be used in the manufacture of silicon-containing anodes. The aqueous dispersion can further include another conductive carbon additive such as carbon black.
A photo-curable composition for use in additive manufacturing, said composition comprising: a) at least one photocurable monomer or oligomer; b) a photoinitiator for polymerization of the monomer; and, from 0.01 to 1 wt.%, based on the weight of the composition, of c) CNS-derived materials. Following polymerization, the resulting polymerized composition has a volume resistivity no greater than 105 ohm.cm.
B33Y 70/00 - Materials specially adapted for additive manufacturing
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
A photo-curable composition for use in additive manufacturing, said composition comprising: a) at least one photocurable monomer or oligomer; b) a photoinitiator for polymerization of the monomer; and, from 0.01 to 1 wt. %, based on the weight of the composition, of c) CNS-derived materials. Following polymerization, the resulting polymerized composition has a volume resistivity no greater than 105 ohm·cm.
B29C 64/129 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
B33Y 70/10 - Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
A flexible polyurethane foam comprises up to 10 wt% of a fumed silica having a surface area from 50 to 150 m2/g, wherein the fumed silica has C1-C3 alkylsilyl groups at its surface, the flexible polyurethane foam exhibiting has a resilience of at least 40%, for example, from 40% to 70%, a dry compression set no greater than 15%, for example, from 3% to 15%, or both. Alternatively or in addition, the flexible polyurethane foam may have a compression force deflection at 50% as measured by ASTM D3574 that is at least 30%, for example, at least 50%, at least 70%, or from 30% to 155%, greater than a flexible polyurethane foam having the same composition but with polyol replacing the silica.
A carbon-based additive for negative active materials includes carbon nanostructures free of a fiber substrate, carbon nanostructures fused to a fiber substrate or any combination thereof. In many cases, the carbon-based additive further includes carbon black. The additive is used to prepare electrode compositions for lead acid batteries. Batteries that include such electrode compositions are characterized by improved dynamic charge acceptance and lead utilization, typically at acceptable water loss levels. Some of the batteries described herein exhibit a negligible memory effect.
Core particles produced in situ or introduced as preformed core particles are coated with a layer of carbon. Non-carbon as well as some carbon-based core materials can be utilized. The resulting carbon coated particles can find applications in rubber products, for instance as reinforcement for tire components.
An electrode includes an electrode composition including carbon black particles having a Brunauer-Emmett-Teller (BET) surface area greater than 90 m2/g, and an oil adsorption number (OAN) greater than 150 mL/100g; graphite particles; carbon nanotubes; and an electroactive material selected from the group consisting of lithium nickel cobalt manganese oxide and lithium nickel cobalt aluminum oxide, wherein the total concentration of the carbon nanotubes and the carbon black particles is equal to or less than 3 wt% of the electrode composition, and the ratio of the carbon nanotubes to the carbon black particles ranges from 0.3:1 to 8:1 by weight; and a current collector contacting the electrode composition.
H01M 4/62 - Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
H01M 4/131 - Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
H01M 4/50 - Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
H01M 4/525 - Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
C09D 11/107 - Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from unsaturated acids or derivatives thereof
C09D 11/324 - Pigment inks containing carbon black
C09D 11/38 - Inkjet printing inks characterised by non-macromolecular additives other than solvents, pigments or dyes
Method for treating a carbon black tail gas wherein the carbon black tail gas is catalytically oxidized to produce an oxidized tail gas. The oxidized tail gas is then treated to remove particulate matter and sulfur oxides. If present, nitrogen oxides can be also removed.
Metal oxide-polymer composite particles have a median particle size D50 of 40-75 nm or 100-150 nm and an average RTA of at least 0.06. Alternatively or in addition, metal oxide-polymer composites comprise two or more populations of metal oxide particles differing in size, particle size distribution, or shape. Alternatively or in addition, the use of a multicomponent hydrophobizing system including an alkylsilane to fabricate metal oxide-polymer composite particles increases the tribocharge of the composite particles.
Pigmented masonry compositions are provided that include chemically treated carbon black pigments having attached an organic group including an ionic or an ionizable group, the ionic or ionizable group being present at a level from 1.0 to 3.0 μmol/m2. The compositions exhibit excellent color consistency and jetness and provide consistent color after long term exposure to high levels of moisture.
C04B 40/00 - Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
An electrode includes an electrode composition having carbon nanotubes; carbon black particles having a Brunauer-Emmett-Teller (BET) surface area greater than 90 m2/g, and an oil adsorption number (OAN) greater than 150 mL/100 g, wherein the ratio of the carbon nanotubes to the carbon black particles ranges from 3:1 to 0.25:1 by weight; and an electroactive material selected from lithium nickel cobalt manganese oxide or lithium nickel cobalt aluminum oxide; and a current collector contacting the electrode composition. The total concentration of the carbon nanotubes and the carbon black particles is equal to or less than 3 wt % of the electrode composition.
H01M 4/62 - Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
H01M 4/131 - Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
H01M 4/505 - Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
H01M 4/525 - Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
H01M 10/0525 - Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodesLithium-ion batteries
A CNS millbase dispersion, comprises a solvent and up to 0.5 wt% of at least one CNS-derived material dispersed in the millbase dispersion and selected from the group consisting of: carbon nanostructures, fragments of carbon nanostructures, fractured carbon nanotubes, and any combination thereof. The carbon nanostructures or fragments of carbon nanostructures include a plurality of multiwall carbon nanotubes that are crosslinked in a polymeric structure by being branched, interdigitated, entangled and/or sharing common walls, and the fractured carbon nanotubes are derived from the carbon nanostructures and are branched and share common walls with one another. A Brookfield viscosity of the dispersion measured at room temperature at 10 rpm is less than 3000 cP.
C09D 17/00 - Pigment pastes, e.g. for mixing in paints
H01B 1/24 - Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon, or silicon
70.
SILICONE-BASED COMPOSITIONS CONTAINING CARBON NANOSTRUCTURES FOR CONDUCTIVE AND EMI SHIELDING APPLICATIONS
Carbon nanostructures are used to prepare curable silicone-based compositions that can be used to manufacture various molded parts for EMI shielding applications. In one illustration, a cured material includes carbon nanostructures, fragments of carbon nanostructures, fractured carbon nanotubes, elongated carbon strands, and/or dispersed carbon nanostructures dispersed in a silicone component.
Surface treated silica containing particles are combined with a resin to form a liquid prepolymer composition for use in additive manufacturing. A surface treatment on the silica containing particles may participate in polymerization of the composition. The silica containing particles may be colloidal silica or a silica polymer composite particle.
The invention provides a process for preparing core-shell composite particles comprising a polyester, polymerized ethylenically unsaturated silane compounds, and optionally a hydrophobic surface treatment. The invention further provides a composite particle comprising a polyester and a radically polymerized ethylenically unsaturated silane compound.
Methods to prepare elastomer compounds are described that include dry mixing at least one additive to an elastomer composite masterbatch at low temperatures over a shortened mixing cycle with reduced energy consumption. The elastomer composite masterbatch is produced in a liquid masterbatch process. The resulting elastomer compounds are further described as well as property improvements that can be achieved.
An electrolyte composition for lead-acid batteries that improves battery performance is described. Polyphosphate, and more specifically sodium tripolyphosphate (STPP), can be added to lead-acid electrolyte. This dopant increases the number of hours of discharge at a given discharge current and voltage and/or the number of cycles of discharging and charging that a battery can undergo before failing.
An aqueous hydrophobic silica dispersion includes a hydrophilic particulate silica, a hydrophobic particulate silica having a methanol number of at least 60, and a dispersant having at least one cationic or cationizable group and an HLB ratio of 2 to 20.
D06M 11/79 - Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereofSuch treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof with silicon dioxide, silicic acids or their salts
77.
Composite particles having coated aggregates with low structure carbon black cores, coatings and inks with high resistivity and optical density, devices made therewith, and methods for making same
Composite particles that super-aggregates of coated aggregates having low structure carbon black cores and metal/metalloid oxide mantles are described. Coatings containing filler-polymer compositions which have the composite particles as filler, such as curable coatings and cured coatings or films formed therefrom containing the filler-polymer compositions, with combinations of high resistivity, good optical density properties, good thermal stability, high dielectric constant, and good processability, along with their use in black matrices, black column spacers, light shielding elements in LCDs and other display devices, also are described. Inks containing the composite particle are described. Devices having these compositions, components and/or elements, and methods of preparing and making these various materials and products are described.
Methods for the production of densified granules of graphene oxide worm (rGOW) particles. Graphene oxide worms are combined with a liquid to produce densified granules of graphene oxide worms. The granules can be easily processed and can be incorporated into polymeric compositions such as elastomers. Also disclosed are masterbatch and composite materials made by combining the granules with a polymer.
C07D 401/04 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring- member bond
C07D 401/14 - Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
Carbon nanostructures are used to prepare electrode compositions for lithium ion batteries. In one example, an anode for a Li ion battery includes three-dimensional carbon nanostructures made of highly entangled nanotubes, fragments of carbon nanostructures and/or fractured nanotubes, which are derived from the carbon nanostructures, are branched and share walls with one another. Amounts of carbon nanostructures employed can be less than or equal to 0.5 weight % relative to the weight of the electrode composition.
H01M 4/38 - Selection of substances as active materials, active masses, active liquids of elements or alloys
H01M 4/485 - Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
H01M 4/58 - Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFySelection of substances as active materials, active masses, active liquids of polyanionic structures, e.g. phosphates, silicates or borates
H01M 4/583 - Carbonaceous material, e.g. graphite-intercalation compounds or CFx
84.
CATHODE ELECTRODE COMPOSITIONS FOR BATTERY APPLICATIONS
Carbon nanostructures are used to prepare electrode compositions for lithium ion batteries. In one example, a cathode for NCM batteries includes three-dimensional carbon nanostructures which are made of highly entangled nanotubes, fragments of carbon nanostructures and/or fractured nanotubes which are derived from the carbon nanostructures, are branched and share walls with one another. Amounts of carbon nanostructures employed can be less than or equal to 1 weight % relative to the electrode composition.
Carbon nanostructures are used to prepare electrode compositions for lithium ion batteries. In one example, carbon nanostructures, fragments of carbon nanostructures and/or fractured carbon nanotubes are provided in an aqueous dispersion that can be used in the manufacture of silicon-containing anodes. The aqueous dispersion can further include another conductive carbon additive such as carbon black.
Core particles produced in situ or introduced as preformed core particles are coated with a layer of carbon. Non-carbon as well as some carbon-based core materials can be utilized. The resulting carbon coated particles can find applications in rubber products, for instance as reinforcement for tire components.
A composition suitable for a negative plate of lead-acid battery includes (a) a lead-based active material; (b) at least one material selected from the group consisting of a lignosulfonate and barium sulfate; and (c1) carbon black particles having a Brunauer-Emmett-Teller (BET) surface area greater than or equal to 90 m2/g and less than or equal to 900 m2/g, and an oil adsorption number (OAN) greater than or equal to 150 mL/100g and less than or equal to 300 mL/100g, or (c2) carbon black particles having a BET surface area greater than or equal to 40 m2/g and less than or equal to 500 m2/g, and graphenes particles. The composition has a theoretical negative active mass (NAM) BET surface area greater than or equal to 0.75 m2/g and less than or equal to 2 m2/g. The compositions can be used in electrodes, e.g., those used in lead-acid batteries.
Activated carbon for removal of sulfur containing materials from fluids. The activated carbon has a high sulfur capacity and can be manufactured without the addition of a catalyst. Lignite is treated to provide an activated carbon with a high mesoporosity and total surface area. The starting material has a high ash content, such as greater than 10% by weight.
B01J 20/20 - Solid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbonSolid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof comprising inorganic material comprising carbon obtained by carbonising processes
B01D 53/02 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by adsorption, e.g. preparative gas chromatography
B01J 20/28 - Solid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof characterised by their form or physical properties
B01J 20/30 - Processes for preparing, regenerating or reactivating
Pigmented masonry compositions are provided that include chemically treated carbon black pigments having attached an organic group including an ionic or an ionizable group, the ionic or ionizable group being present at a level from 1.0 to 3.0 µmol/m2. The compositions exhibit excellent color consistency and jetness and provide consistent color after long term exposure to high levels of moisture.
C04B 28/02 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
Pigmented masonry compositions are provided that include chemically treated carbon black pigments having attached an organic group including an ionic or an ionizable group, the ionic or ionizable group being present at a level from 1.0 to 3.0 µmol/m2. The compositions exhibit excellent color consistency and jetness and provide consistent color after long term exposure to high levels of moisture.
C04B 28/02 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
21212 alkyl, R111212 alkyl, an amine having the formula ‑NR3R4, and a guanidine residue having the formula -N(R5)‑C(=NH)‑N(R6)(R733 to R711212 alkyl, and R211212 alkyl, and an acid group. The inkjet ink composition further comprises an aqueous liquid medium.
C09D 11/107 - Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from unsaturated acids or derivatives thereof
An electrode includes an electrode composition having carbon nanotubes; carbon black particles having a Brunauer-Emmett-Teller (BET) surface area greater than 90 m 2/g, and an oil adsorption number (OAN) greater than 150 mL/100g, wherein the ratio of the carbon nanotubes to the carbon black particles ranges from 3: 1 to 0.25: 1 by weight; and an electroactive material selected from lithium nickel cobalt manganese oxide or lithium nickel cobalt aluminum oxide; and a current collector contacting the electrode composition. The total concentration of the carbon nanotubes and the carbon black particles is equal to or less than 3 wt%of the electrode composition.
A composition, includes: carbon black particles having a surface energy less than 5 mJ/m2; graphite particles having a BET surface area greater than 5 m2/g and more than about 50 graphitic layers, wherein the ratio of the carbon black particles to the graphite particles ranges from 0.25:1 to 4:1 by weight; and a liquid medium.
H01M 4/136 - Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
H01M 4/1397 - Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
H01M 4/58 - Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFySelection of substances as active materials, active masses, active liquids of polyanionic structures, e.g. phosphates, silicates or borates
H01M 4/62 - Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
Metal oxide-polymer composite particles have a median particle size D50 of 40-75 nm or 100-150 nm and an average RTA of at least 0.06. Alternatively or in addition, metal oxide-polymer composites comprise two or more populations of metal oxide particles differing in size, particle size distribution, or shape. Alternatively or in addition, the use of a multicomponent hydrophobizing system including an alkylsilane to fabricate metal oxide-polymer composite particles increases the tribocharge of the composite particles.
H01M 4/505 - Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
H01M 4/525 - Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
H01M 10/0525 - Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodesLithium-ion batteries
H01M 4/02 - Electrodes composed of, or comprising, active material
98.
Methods of making an elastomer composite reinforced with silica and products containing same
Methods to make a silica elastomer composite with a destabilized dispersion of a never-dried, or as-produced, precipitated silica are described, along with silica elastomer composites made from the methods. The advantages achieved with the methods are further described.
Methods to make a silica elastomer composite with a destabilized dispersion of silica are described, along with silica elastomer composites made from the methods. The advantages achieved with the methods are further described.
C08J 3/215 - Compounding polymers with additives, e.g. colouring in the presence of a liquid phase the polymer being premixed with a liquid phase at least one additive being also premixed with a liquid phase
Methods to make a silica and carbon black elastomer composite with a destabilized dispersion that includes silica are described, along with particle reinforced elastomer composites made from the methods. The advantages achieved with the methods are further described.